首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Copper homeostasis is maintained in part by membrane-bound P(1B)-type ATPases that are found in all organisms and drive the transport of this essential, yet toxic, metal ion across cellular membranes. CopA from Archaeoglobus fulgidus is a hyperthermophilic member of this ATPase subfamily and is homologous to the human Wilson and Menkes disease ATPases. To gain insight into Cu(+)-ATPase function, the structure of the CopA actuator domain (A-domain) was determined to 1.65 A resolution. The CopA A-domain functions to couple ATP hydrolysis in the ATP binding domain (ATPBD) with structural rearrangements of critical transmembrane segments. Its fold is quite similar to that of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1) A-domain, with the exception of an external loop region. On the basis of sequence and structural comparisons, specific residues that probably interact with the CopA ATPBD have been identified. Comparisons to the Wilson and Menkes disease A-domains reveal the presence of an additional loop that may be associated with regulatory functions in eukaryotic Cu(+)-ATPases. Finally, several mutations in the Wilson and Menkes disease ATPases occur in the A-domain, and their likely effects on function can be inferred from the CopA A-domain structure.  相似文献   

2.
3.
P-type ATPases play an important role in Cu homeostasis, which provides sufficient Cu for metalloenzyme biosynthesis but prevents oxidative damage of free Cu to the cell. The P(IB) group of P-type ATPases includes ATP-dependent pumps of Cu and other transition metal ions, and it is distinguished from other family members by the presence of N-terminal metal-binding domains (MBD). We have determined structures of two constructs of a Cu pump from Archaeoglobus fulgidus (CopA) by cryoelectron microscopy of tubular crystals, which reveal the overall architecture and domain organization of the molecule. By comparing these structures, we localized its N-terminal MBD within the cytoplasmic domains that use ATP hydrolysis to drive the transport cycle. We have built a pseudoatomic model by fitting existing crystallographic structures into the cryoelectron microscopy maps for CopA, which suggest a Cu-dependent regulatory role for the MBD.  相似文献   

4.
The thermophilic, sulfur metabolizing Archaeoglobus fulgidus contains two genes, AF0473 and AF0152, encoding for PIB-type heavy metal transport ATPases. In this study, we describe the cloning, heterologous expression, purification, and functional characterization of one of these ATPases, CopA (NCB accession number AAB90763), encoded by AF0473. CopA is active at high temperatures (75 degrees C; E(a) = 103 kJ/mol) and inactive at 37 degrees C. It is activated by Ag+ (ATPase V(max) = 14.82 micromol/mg/h) and to a lesser extent by Cu+ (ATPase V(max) = 3.66 micromol/mg/h). However, Cu+ interacts with the enzyme with higher apparent affinity (ATPase stimulation, Ag+ K(12) = 29.4 microm; Cu+ K(12) = 2.1 microm). This activation by Ag+ or Cu+ is dependent on the presence of millimolar amounts of cysteine. In the presence of ATP, these metals drive the formation of an acid-stable phosphoenzyme with apparent affinities similar to those observed in the ATPase activity determinations (Ag+, K(12) = 23.0 microm; Cu+, K(12) = 3.9 microm). However, comparable levels of phosphoenzyme are reached in the presence of both cations (Ag+, 1.40 nmol/mg; Cu+, 1.08 nmol/mg). The stimulation of phosphorylation by the cations suggests that CopA drives the outward movement of the metal. CopA presents additional functional characteristics similar to other P-type ATPases. ATP interacts with the enzyme with two apparent affinities (ATPase K(m) = 0.25 mm; phosphorylation K(m) = 4.81 microm), and the presence of vanadate leads to enzyme inactivation (IC(50) = 24 microm). This is the first Ag+/Cu+ -ATPase expressed and purified in a functional form. Thus, it provides a model for structure-functional studies of these transporters. Moreover, its characterization will also contribute to an understanding of thermophilic ion transporters.  相似文献   

5.
The Enterococcus hirae ATPase CopA is a member of the recently discovered heavy metal ATPases and shares 43% sequence identity with the human Menkes and Wilson copper ATPases. To study CopA biochemically, it was overexpressed in E. coli with an N-terminal histidine tag and purified to homogeneity by nickel affinity chromatography. The purified CopA catalyzed ATP hydrolysis with a V(max) of 0.15 micromol/min/mg and a K(m) for ATP of 0.2 mM and had an optimum pH of 6.25. The activity was 3- to 4-fold stimulated by reconstitution into proteoliposomes. The enzyme formed an acylphosphate intermediate. Its kinetics of formation and the effects of inhibitors and metal ions upon it support a function of CopA in copper transport. Purification and functional reconstitution of CopA provides the basis to study copper transport in vitro.  相似文献   

6.
The Cu+‐ATPase CopA from Archaeoglobus fulgidus belongs to the P1B family of the P‐type ATPases. These integral membrane proteins couple the energy of ATP hydrolysis to heavy metal ion translocation across membranes. A defining feature of P1B‐1‐type ATPases is the presence of soluble metal binding domains at the N‐terminus (N‐MBDs). The N‐MBDs exhibit a conserved ferredoxin‐like fold, similar to that of soluble copper chaperones, and bind metal ions via a conserved CXXC motif. The N‐MBDs enable Cu+ regulation of turnover rates apparently through Cu‐sensitive interactions with catalytic domains. A. fulgidus CopA is unusual in that it contains both an N‐terminal MBD and a C‐terminal MBD (C‐MBD). The functional role of the unique C‐MBD has not been established. Here, we report the crystal structure of the apo, oxidized C‐MBD to 2.0 Å resolution. In the structure, two C‐MBD monomers form a domain‐swapped dimer, which has not been observed previously for similar domains. In addition, the interaction of the C‐MBD with the other cytoplasmic domains of CopA, the ATP binding domain (ATPBD) and actuator domain (A‐domain), has been investigated. Interestingly, the C‐MBD interacts specifically with both of these domains, independent of the presence of Cu+ or nucleotides. These data reinforce the uniqueness of the C‐MBD and suggest a distinct structural role for the C‐MBD in CopA transport. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The CopA copper ATPase of Enterococcus hirae belongs to the family of heavy metal pumping CPx-type ATPases and shares 43% sequence similarity with the human Menkes and Wilson copper ATPases. Due to a lack of suitable protein crystals, only partial three-dimensional structures have so far been obtained for this family of ion pumps. We present a structural model of CopA derived by combining topological information obtained by intramolecular cross-linking with molecular modeling. Purified CopA was cross-linked with different bivalent reagents, followed by tryptic digestion and identification of cross-linked peptides by mass spectrometry. The structural proximity of tryptic fragments provided information about the structural arrangement of the hydrophilic protein domains, which was integrated into a three-dimensional model of CopA. Comparative modeling of CopA was guided by the sequence similarity to the calcium ATPase of the sarcoplasmic reticulum, Serca1, for which detailed structures are available. In addition, known partial structures of CPx-ATPase homologous to CopA were used as modeling templates. A docking approach was used to predict the orientation of the heavy metal binding domain of CopA relative to the core structure, which was verified by distance constraints derived from cross-links. The overall structural model of CopA resembles the Serca1 structure, but reveals distinctive features of CPx-type ATPases. A prominent feature is the positioning of the heavy metal binding domain. It features an orientation of the Cu binding ligands which is appropriate for the interaction with Cu-loaded metallochaperones in solution. Moreover, a novel model of the architecture of the intramembranous Cu binding sites could be derived.  相似文献   

8.
ZntA, a bacterial zinc-transporting P-type ATPase, is homologous to two human ATPases mutated in Menkes and Wilson diseases. To explore the roles of the bacterial ATPase residues homologous to those involved in the human diseases, we have introduced several point mutations into ZntA. The mutants P401L, D628A and P634L correspond to the Wilson disease mutations P992L, D1267A and P1273L, respectively. The mutations D628A and P634L are located in the C-terminal part of the phosphorylation domain in the so-called hinge motif conserved in all P-type ATPases. P401L resides near the N-terminal portion of the phosphorylation domain whereas the mutations H475Q and P476L affect the heavy metal ATPase-specific HP motif in the nucleotide binding domain. All mutants show reduced ATPase activity corresponding 0-37% of the wild-type activity. The mutants P401L, H475Q and P476L are poorly phosphorylated by both ATP and P(i). Their dephosphorylation rates are slow. The D628A mutant is inactive and cannot be phosphorylated at all. In contrast, the mutant P634L six residues apart in the same domain shows normal phosphorylation by ATP. However, phosphorylation by P(i) is almost absent. In the absence of added ADP the P634L mutant dephosphorylates much more slowly than the wild-type, whereas in the presence of ADP the dephosphorylation rate is faster than that of the wild-type. We conclude that the mutation P634L affects the conversion between the states E1P and E2P so that the mutant favors the E1 or E1P state.  相似文献   

9.
A search with the proposed amino acid translation product from the new ‘candidate gene’ for human Menkes disease against protein sequence libraries showed a remarkable similarity to that for the cadmium efflux ATPase from Staphylococcus aureus resistance plasmids. The Menkes sequence appears closer to the CadA Cd2+ sequence than to P-type ATPases from animal sources. Menkes syndrome is an X-chromosome invariably fatal disease that results from abberant copper metabolism. The gene that is defective in Menkes patients, i.e. the Menkes candidate gene, encodes a P-type ATPase, whose properties satisfactorily explain the phenotype of the disease. P-type ATPases are all cation pumps, either for uptake (e.g. the bacterial Kdp K+ ATPase), for efflux (e.g. the muscle sarcoplasmic reticulum Ca2+ ATPase), or for cation exchange (e.g. the animal cell Na+/K+ ATPase). These enzymes have a conserved aspartate residue that is transiently phosphorylated from ATP during the transport cycle, hence the name ‘P-type’ ATPase. The Menkes sequence shares with the staphylococcal CadA ATPase those regions common to all P-type ATPases and also an N-terminal dithiol region that was proposed to be a ‘metal-binding motif’. There are one or two copies of this motif in the available CadA sequences and six copies in the Menkes sequence.  相似文献   

10.
The Menkes protein (MNK; ATP7A) is a copper-transporting P-type ATPase that is defective in the copper deficiency disorder, Menkes disease. MNK is localized in the trans-Golgi network and transports copper to enzymes synthesized within secretory compartments. However, in cells exposed to excessive copper, MNK traffics to the plasma membrane where it functions in copper efflux. A conserved feature of all P-type ATPases is the formation of an acyl-phosphate intermediate, which occurs as part of the catalytic cycle during cation transport. In this study we investigated the effect of mutations within conserved catalytic regions of MNK on intracellular localization and trafficking from the trans-Golgi network (TGN). Our findings suggest that mutations that block formation of the phosphorylated catalytic intermediate also prevent copper-induced relocalization of MNK from the TGN. Furthermore, mutations in the phosphatase domain, which resulted in hyperphosphorylation of MNK, caused constitutive trafficking from the TGN to the plasma membrane. A similar effect on trafficking was observed with a phosphatase mutation in the closely related copper ATPase, ATP7B, affected in Wilson disease. These findings suggest that the copper-induced trafficking of the Menkes and Wilson disease copper ATPases is associated with the phosphorylated intermediate that is formed during the catalysis of these pumps. Our findings describe a novel mechanism for regulating the subcellular location of a transport protein involving the recognition of intermediate conformations during catalysis.  相似文献   

11.
The Menkes protein (ATP7A; MNK) is a ubiquitous human copper-translocating P-type ATPase and it has a key role in regulating copper homeostasis. Previously we characterised fundamental steps in the catalytic cycle of the Menkes protein. In this study we analysed the role of several conserved regions of the Menkes protein, particularly within the putative cytosolic ATP-binding domain. The results of catalytic studies have indicated an important role of 1086His in catalysis. Our findings provide a biochemical explanation for the most common Wilson disease-causing mutation (H1069Q in the homologous Wilson copper-translocating P-type ATPase). Furthermore, we have identified a unique role of 1230Asp, within the DxxK motif, in coupling ATP binding and acylphosphorylation with copper translocation. Finally, we found that the Menkes protein mutants with significantly reduced catalytic activity can still undergo copper-regulated exocytosis, suggesting that only the complete loss of catalytic activity prevents copper-regulated trafficking of the Menkes protein.  相似文献   

12.
J Okkeri  T Haltia 《Biochemistry》1999,38(42):14109-14116
Cation-transporting P-type ATPases comprise a major membrane protein family, the members of which are found in eukaryotes, eubacteria, and archaea. A phylogenetically old branch of the P-type ATPase family is involved in the transport of heavy-metal ions such as copper, silver, cadmium, and zinc. In humans, two homologous P-type ATPases transport copper. Mutations in the human proteins cause disorders of copper metabolism known as Wilson and Menkes diseases. E. coli possesses two genes for heavy-metal translocating P-type ATPases. We have constructed an expression system for one of them, ZntA, which encodes a 732 amino acid residue protein capable of transporting Zn(2+). A vanadate-sensitive, Zn(2+)-dependent ATPase activity is present in the membrane fraction of our expression strain. In addition to Zn(2+), the heavy-metal ions Cd(2+), Pb(2+), and Ag(+) activate the ATPase. Incubation of membranes from the expression strain with [gamma-(33)P]ATP in the presence of Zn(2+), Cd(2+), or Pb(2+) brings about phosphorylation of two membrane proteins with molecular masses of approximately 90 and 190 kDa, most likely representing the ZntA monomer and dimer, respectively. Although Cu(2+) can stimulate phosphorylation by [gamma-(33)P]ATP, it does not activate the ATPase. Cu(2+) also prevents the Zn(2+) activation of the ATPase when present in 2-fold excess over Zn(2+). Ag(+) and Cu(+) appear not to promote phosphorylation of the enzyme. To study the effects of Wilson disease mutations, we have constructed two site-directed mutants of ZntA, His475Gln and Glu470Ala, the human counterparts of which cause Wilson disease. Both mutants show a reduced metal ion stimulated ATPase activity (about 30-40% of the wild-type activity) and are phosphorylated much less efficiently by [gamma-(33)P]ATP than the wild type. In comparison to the wild type, the Glu470Ala mutant is phosphorylated more strongly by [(33)P]P(i), whereas the His475Gln mutant is phosphorylated more weakly. These results suggest that the mutation His475Gln affects the reaction with ATP and P(i) and stabilizes the enzyme in a dephosphorylated state. The Glu470Ala mutant seems to favor the E2 state. We conclude that His475 and Glu470 play important roles in the transport cycles of both the Wilson disease ATPase and ZntA.  相似文献   

13.
The yeast plasma membrane H+-ATPase isolation procedure was improved; a highly pure enzyme (90-95%) was obtained after centrifugation on a trehalose concentration gradient. H+-ATPase kinetics was slightly cooperative: Hill number = 1.5, S0.5 = 800 microM ATP, and turnover number = 36 s-1. In contrast to those of other P-type ATPases, H+-ATPase fluorescence was highly sensitive to nucleotide binding; the fluorescence decreased 60% in the presence of both 5 mM ADP and AMP-PNP. Fluorescence titration with nucleotides allowed calculation of dissociation constants (Kd) from the binding site; Kd values for ATP and ADP were 700 and 800 microM, respectively. On the basis of amino acid sequence and homology model analysis, we propose that binding of the nucleotide to the N-domain is coupled to the movement of a loop beta structure and to the exposure of the Trp505 residue located in the loop. The recombinant N-domain also displayed a large hyperbolic fluorescence quenching when ATP binds; however, it displayed a higher affinity for ATP (Kd = 100 microM). We propose for P-type ATPases that structural movements during nucleotide binding could be followed if a Trp residue is properly located in the N-domain. Further, we propose the use of trehalose in enzyme purification protocols to increase the purity and quality of the isolated protein and to perform structural studies.  相似文献   

14.
P-type ATPases are involved in the active transport of ions across biological membranes. The KdpFABC complex (P-type ATPase) of Escherichia coli is a high-affinity K+ uptake system that operates only when the cell experiences osmotic stress or K+ limitation. Here, we present the solution structure of the nucleotide binding domain of KdpB (backbone RMSD 0.17 A) and a model of the AMP-PNP binding mode based on intermolecular distance restraints. The calculated AMP-PNP binding mode shows the purine ring of the nucleotide to be "clipped" into the binding pocket via a pi-pi-interaction to F377 on one side and a cation-pi-interaction to K395 on the other. This binding mechanism seems to be conserved in all P-type ATPases, except the heavy metal transporting ATPases (type IB). Thus, we conclude that the Kdp-ATPase (currently type IA) is misgrouped and has more similarities to type III ATPases. The KdpB N-domain is the smallest and simplest known for a P-type ATPase, and represents a minimal example of this functional unit. No evidence of significant conformational changes was observed within the N-domain upon nucleotide binding, thus ruling out a role for ATP-induced conformational changes in the reaction cycle.  相似文献   

15.
Heavy metal P1B-type ATPases play a critical role in cell survival by maintaining appropriate intracellular metal concentrations. Archaeoglobus fulgidus CopB is a member of this family that transports Cu(II) from the cytoplasm to the exterior of the cell using ATP as energy source. CopB has a 264 amino acid ATPBD (ATP-binding domain) that is essential for ATP binding and hydrolysis as well as ultimately transducing the energy to the transmembrane metal-binding site for metal occlusion and export. The relevant conformations of this domain during the different steps of the catalytic cycle are still under discussion. Through crystal structures of the apo- and phosphate-bound ATPBDs, with limited proteolysis and fluorescence studies of the apo- and substrate-bound states, we show that the isolated ATPBD of CopB cycles from an open conformation in the apo-state to a closed conformation in the substrate-bound state, then returns to an open conformation suitable for product release. The present work is the first structural report of an ATPBD with its physiologically relevant product (phosphate) bound. The solution studies we have performed help resolve questions on the potential influence of crystal packing on domain conformation. These results explain how phosphate is co-ordinated in ATPase transporters and give an insight into the physiologically relevant conformation of the ATPBD at different steps of the catalytic cycle.  相似文献   

16.
Arabidopsis thaliana HMA2 is a Zn2+ transporting P1B-type ATPase required for maintaining plant metal homeostasis. HMA2 and all eukaryote Zn2+-ATPases have unique conserved N- and C-terminal sequences that differentiate them from other P1B-type ATPases. Homology modeling and structural comparison by circular dichroism indicate that the 75 amino acid long HMA2 N-terminus shares the betaalphabetabetaalpha folding present in most P1B-type ATPase N-terminal metal binding domains (N-MBDs). However, the characteristic metal binding sequence CysXXCys is replaced by Cys17CysXXGlu21, a sequence present in all plant Zn2+-ATPases. The isolated HMA2 N-MBD fragment binds a single Zn2+ (Kd 0.18 microM), Cd2+ (Kd 0.27 microM), or, with less affinity, Cu+ (Kd 13 microM). Mutagenesis studies indicate that Cys17, Cys18, and Glu21 participate in Zn2+ and Cd2+ coordination, while Cys17 and Glu21, but not Cys18, are required for Cu+ binding. Interestingly, the Glu21Cys mutation that generates a CysCysXXCys site is unable to bind Zn2+ or Cd2+ but it binds Cu+ with affinity (Kd 1 microM) higher than wild type N-MBD. Truncated HMA2 lacking the N-MBD showed reduced ATPase activity without significant changes in metal binding to transmembrane metal binding sites. Likewise, ATPase activity of HMA2 carrying mutations Cys17Ala, Cys18Ala, and Glu21Ala/Cys was also reduced but showed a metal dependence similar to the wild type enzyme. These observations suggest that plant Zn2+-ATPase N-MBDs have a folding and function similar to Cu+-ATPase N-MBDs. However, the unique Zn2+ coordination via two thiols and a carboxyl group provides selective binding of the activating metals to these regulatory domains. Metal binding through these side chains, although found in different sequences, appears as a common feature of both bacterial and eukaryotic Zn2+-ATPase N-MBDs.  相似文献   

17.
Recombinant and purified Thermotoga maritima CopA sustains ATPase velocity of 1.78-2.73 micromol/mg/min in the presence of Cu+ (pH 6, 60 degrees C) and 0.03-0.08 micromol/mg/min in the absence of Cu+. High levels of enzyme phosphorylation are obtained by utilization of [gamma-32P]ATP in the absence of Cu+. This phosphoenzyme decays at a much slower rate than observed with Cu.E1 approximately P. In fact, the phosphoenzyme is reduced to much lower steady state levels upon addition of Cu+, due to rapid hydrolytic cleavage. Negligible ATPase turnover is sustained by CopA following deletion of its N-metal binding domain (DeltaNMBD) or mutation of NMBD cysteines (CXXC). Nevertheless, high levels of phosphoenzyme are obtained by utilization of [gamma-3)P]ATP by the DeltaNMBD and CXXC mutants, with no effect of Cu+ either on its formation or hydrolytic cleavage. Phosphoenzyme formation (E2P) can also be obtained by utilization of Pi, and this reaction is inhibited by Cu+ (E2 to E1 transition) even in the DeltaNMBD mutant, evidently due to Cu+ binding at a (transport) site other than the NMBD. E2P undergoes hydrolytic cleavage faster in DeltaNMBD and slower in CXXC mutant. We propose that Cu+ binding to the NMBD is required to produce an "active" conformation of CopA, whereby additional Cu+ bound to an alternate (transmembrane transport) site initiates faster cycles including formation of Cu.E1 approximately P, followed by the E1 approximately P to E2-P conformational transition and hydrolytic cleavage of phosphate. An H479Q mutation (analogous to one found in Wilson disease) renders CopA unable to utilize ATP, whereas phosphorylation by Pi is retained.  相似文献   

18.
Wilson and Menkes diseases are genetic disorders of copper metabolism caused by mutations in the Wilson (WND) and Menkes (MNK) copper-transporting P1B-type ATPases. The N termini of these ATPases consist of six metal binding domains (MBDs). The MBDs interact with the copper chaperone Atox1 and are believed to play roles in catalysis and in copper-mediated cellular relocalization of WND and MNK. Although all six MBDs have similar folds and bind one Cu(I) ion via a conserved CXXC motif, biochemical and genetic data suggest that they have distinct functions. Most studies aimed at characterizing the MBDs have employed smaller polypeptides consisting of one or two domains. The role of each MBD is probably defined by its environment within the six-domain N terminus, however. To study the properties of the individual domains within the context of the intact Wilson N terminus (N-WND), a series of variants in which five of the six metal binding CXXC motifs are mutated to SXXS was generated. For each variant, the Cu(I) binding affinity and the ability to exchange Cu(I) with Atox1 were investigated. The results indicate that Atox1 can deliver Cu(I) to and remove Cu(I) from each MBD, that each MBD has stronger Cu(I) retention properties than Atox1, and that all of the MBDs as well as Atox1 have similar K(Cu) values of (2.2-6.3) x 10(10) m(-1). Therefore, the specific role of each MBD is not conferred by its position within the intact N-WND but may be related to interactions with other domains and partner proteins.  相似文献   

19.
Dutta SJ  Liu J  Hou Z  Mitra B 《Biochemistry》2006,45(18):5923-5931
ZntA from Escherichia coli is a member of the P1B-type ATPase family that confers resistance specifically to Pb2+, Zn2+, and Cd2 salts by active efflux across the cytoplasmic membrane. P1B-type ATPases are important for homeostasis of metal ions such as Cu+, Ag+, Pb2+, Zn2+, Cd2+ Cu2+, and Co2+, with different subgroups showing specificity for different metal ions. Sequence alignments of P1B-type ATPases show that ZntA and close homologues have a strictly conserved Asp714 in the eighth transmembrane domain that is not conserved in other subgroups of P1B-type ATPases. However, in the sarcoplasmic reticulum Ca2+-ATPase, a structurally characterized P-type ATPase, the residue corresponding to Asp714 is a metal-binding residue. Four site-specific mutants at Asp714, D714E, D714H, D714A, and D714P, were characterized. A comparison of their metal-binding affinity with that of wtZntA revealed that Asp714 is a ligand for the metal ion in the transmembrane site. Thus, Asp714 is one of the residues that determine metal ion specificity in ZntA homologues. All four substitutions at Asp714 in ZntA resulted in complete loss of in vivo resistance activity and complete or large reductions in ATPase activity, though D714E and D714H retained the ability to bind metal ions with high affinity at the transmembrane site. Thus, the ability to bind metal ions with high affinity did not correlate with high activity. The metal-binding affinity of the N-terminal site remained unchanged in all four mutants. The affinities of the two metal-binding sites in wtZntA determined in this study are similar to values reported previously for the individual sites in isolated ZntA fragments.  相似文献   

20.
The Menkes protein is a transmembrane copper translocating P-type ATPase. Mutations in the Menkes gene that affect the function of the Menkes protein may cause Menkes disease in humans, which is associated with severe systemic copper deficiency. The catalytic mechanism of the Menkes protein, including the formation of transient acylphosphate, is poorly understood. We transfected and overexpressed wild-type and targeted mutant Menkes protein in yeast and investigated its transient acyl phosphorylation. We demonstrated that the Menkes protein is transiently phosphorylated by ATP in a copper-specific and copper-dependent manner and appears to undergo conformational changes in accordance with the classical P-type ATPase model. Our data suggest that the catalytic cycle of the Menkes protein begins with the binding of copper to high affinity binding sites in the transmembrane channel, followed by ATP binding and transient phosphorylation. We propose that putative copper-binding sites at the N-terminal domain of the Menkes protein are important as sensors of low concentrations of copper but are not essential for the overall catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号