首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The regulation of hexose transport under glucose-starvation conditions was studied in cultured human skin fibroblasts. Glucose starvation enhanced the transport of 2-DG and 3-O-methyl-D-glucose (3-OMG) but not of L-glucose. Glucose-starvation enhanced transport was inhibited by cytochalasin B (10 μM). The starvation-induced change in 2-DG transport was due to an increase in the Vmax of both the high and low affinity transport sites (2.8- and 2.4-fold, respectively) with no effect on their Kms. The presence of 5.55 mM galactose, fructose, or L-glucose in the medium resulted in transport increases similar to those seen in glucose-starved cells, while the presence of 5.55 mM glucose, mannose, or 3-OMG repressed 2-DG transport. Glucose-starvation enhancement of 2-DG transport was blocked by cycloheximide (20 μg/ml) but not by actinomycin D (0.03 μg/ml) or α-amanitin (3.5 μM). Readdition of glucose (5.55 mM) for six hours to glucose-starved cells led to a rapid decrease in hexose transport that could be blocked by cycloheximide but not actinomycin D. Although readdition of 3-OMG to glucose-starved cells had little effect on reversing the transport increases, glucose plus 3-OMG were more effective than glucose alone. Serum containing cultures (10% v/v) of glucose-fed or glucose-starved cells exhibited rapid decreases in 2-DG transport when exposed to glucose-containing serum-free medium. These decreases were prevented by employing glucose-free, serum-free medium. The data indicate that hexose transport regulation in cultured human fibrob asts involves protein synthesis of hexose carriers balanced by interactions of glucose with a regulatory protein(s) and glucose metabolism as they affect the regulation and/or turnover of the carrier molecules.  相似文献   

2.
In denuded mouse oocytes, neither 3 nor 5 hours of preincubation in dbcAMP (1 mM) and cycloheximide (10 micrograms/ml), followed by further 3 hours in cycloheximide only, lowered the rate of GVBD (93% and 92%, respectively). It means that 3 and 5 hours preincubation in cycloheximide did not impair the ability of mouse oocytes to resume meiosis in medium with the protein synthesis inhibitor. To test the combined effects of inhibition of protein phosphorylation and protein synthesis, oocytes were cultured for 3, 4, or 5 hours in 2 mM of 6-DMAP and subsequently for 3 hours in 10 micrograms/ml cycloheximide. The incubation in 6-DAMP for 4 or 5 hours diminished (63% or 35% of GVBD, respectively) the ability of mouse oocytes to resume meiosis when subsequent protein synthesis was blocked by cycloheximide. However, the highly condensed bivalents were always visible in GVs. Thus the above treatment did not prevent chromatin condensation although GVBD was blocked.  相似文献   

3.
Glucose transport activity was found to increase over 5 h in rat epitrochlearis muscle in response to a moderate concentration (50-100 microunits/ml) of insulin. This process was examined using 3-methylglucose. The increase in permeability to 3-methylglucose was 2- to 4-fold greater after 5 h than after 1 h in muscles incubated with 50 microunits/ml of insulin and 1 or 8 mM glucose. The increase in permeability to 3-methylglucose during the period between 1 and 5 h of exposure to 50 microunits/ml of insulin and 1 mM glucose was due to an increase in the apparent Vmax of sugar transport. There were two components to this activation of glucose transport. One, which was not influenced by inhibition of protein synthesis, resulted in activation of sugar transport to the same extent by 50 microunits/ml as by 20,000 microunits/ml of insulin; however, this activation took approximately 20 times longer with 50 microunits/ml insulin. The other, which was blocked by cycloheximide, resulted in a further activation of sugar transport to a level higher than that attained in response to 20,000 microunits/ml of insulin. Glucose had no effect on activation of sugar transport during the first hour, but a high concentration (20-36 mM) of glucose prevented the further activation of glucose transport during prolonged treatment with 50 microunits/ml of insulin. It appears from these results that prolonged exposure to a moderate concentration of insulin has previously unrecognized effects that include: a progressive activation of glucose transport over a long time that eventually results in as great a response as a "supramaximal" insulin concentration, and in the presence of low glucose concentration, further activation of glucose transport by an additional, protein synthesis-dependent mechanism. The results also show that a high concentration of glucose can, under some conditions, inhibit stimulation of its own transport.  相似文献   

4.
5.
We have investigated the effect of various inhibitors of protein synthesis on hexose transport in human skin fibroblasts using 2-deoxy-D-glucose (2-DG) and 3-0-methyl-D-glucose (3-OMG) to measure hexose transport. Exposure of glucose-fed, serum-free cultures to cycloheximide (CHX) (50 micrograms/ml) for 6 h resulted in increased 2-DG transport (3.81 +/- .53 vs. 6.62 +/- .88 nmoles/mg protein/2 min; n = 9) and 3-OMG transport (1.36 +/- .66 vs. 3.18 +/- .83 nmoles/mg protein/30 sec; n = 4) in the CHX exposed group. Under these conditions inhibition of protein synthesis was greater than 90%. This CHX induced transport increase was time dependent (approaching maximum within 1 h of exposure to CHX) and related to an increase in the Vmax of hexose transport in the CHX exposed group (18.4 +/- 2.4 vs. 4.8 +/- 1.1 nmoles 2-DG/mg protein/min) with no difference in the transport Km (1.55 +/- .63 vs. 2.92 +/- .59 mM). Further, the CHX induced increase in hexose transport was reversible. Exposure of human fibroblasts to inhibitors of protein synthesis with different mechanisms of action (e.g., puromycin, pactamycin, or CHX) all generated hexose transport increases in a concentration-dependent fashion correlating with their increasing inhibitory effects on protein synthesis. Nucleotidase enriched (i.e., plasma membrane) fractions of control and CHX-exposed cells showed no differences in D-glucose inhibitable cytochalasin B binding activity. Further, quantitative Western analysis of nucleotidase enriched fractions indicated CHX exposure resulted in no significant increase in glucose transporter mass compared with control plasma membrane fractions. Glucose deprived cells, however, which exhibited increased sugar transport comparable to the CHX-exposed group, did show increased glucose transporter mass in the plasma membrane fraction. The data indicate that inhibitors of protein synthesis can cause a significant elevation in hexose transport and that the hexose transporter mass in the isolated plasma membrane fractions did not reflect the whole cell transport change. It is suggested that a mechanism other than glucose transporter translocation to the plasma membrane may be involved in causing this sugar transport increase.  相似文献   

6.
Papaverine, cycloheximide, 2,4-dinitrophenol (DNP) and actinomycin D at low concentration have been shown to suppress selectively rRNA synthesis in Ehrlich ascite carcinoma cells. rRNA synthesis in isolated nuclei is not sensible to wide range of concentration of papaverine (0,005-0,1 mM), cycloheximide (0,5-100 micrograms/ml) and DNP (5-500 microM). Actinomycin D at low concentration does not act on the rRNA synthesis in vitro either. To suppress rRNA synthesis in this system much higher concentration of this agent (10 micrograms/ml) producing inhibition of all classes of rRNA synthesis in intact cells is required. Selective sensitivity of rRNA synthesis in the cells to papaverine, cycloheximide, DNP and low concentration of actinomycin D does not connect with their direct action on the apparatus of rRNA synthesis.  相似文献   

7.
The transport of [3H]2-deoxy-D-glucose (2DG) and [3H]3-O-methyl-D-glucose (3-OMG) was elevated in a respiration deficient (NADH coenzyme Q [Co Q] reductase deficient) Chinese hamster lung fibroblast cell line (G14). This sugar transport increase was related to an increased Vmax for 2DG transport, 26.9 +/- 4.2 nmoles 2DG/mg protein/30 sec in the G14 cell line vs 9.5 +/- 0.6 nmoles 2DG/mg protein/30 sec in the parental V79 cell line. No differences were observed in their respective Km values for 2DG transport (3.9 +/- .6 vs. 3.0 +/- .13 mM). Factors which increase sugar transport (e.g., glucose deprivation, serum or insulin exposure) or decrease sugar transport (e.g., serum deprivation) in the parental V79 cell line had little effect on sugar transport in the G14 respiration deficient cell lines. Amino acid transport, specific 125I-insulin binding to cells, and insulin-stimulated DNA synthesis, however, were similar in both cell lines. Exposure of both cell lines to varying concentrations of cycloheximide (0.1-50 micrograms/ml) for 4 h resulted in differential effects on 2DG transport. In the parental cell line (V79) low cycloheximide concentrations resulted in decreased 2DG transport, while higher concentrations (greater than or equal to 1 microgram/ml) resulted in elevated 2DG transport. In the G14 cell line, 2DG transport decreased at all concentrations of cycloheximide (up to 50 micrograms/ml). The data indicate that the G14 mutant has been significantly and specifically affected in the expression of sugar transport activity and in the regulatory controls affecting sugar transport activity.  相似文献   

8.
Effect of cycloheximide on nuclear maturation of pig and mouse oocytes   总被引:4,自引:0,他引:4  
Culture of mouse oocytes in medium with 1 or 100 micrograms cycloheximide/ml did not prevent germinal vesicle breakdown (GVBD). In contrast, GVBD in pig oocytes was absolutely blocked at concentrations of 1, 5, 10, 50 and 100 micrograms cycloheximide/ml, respectively. The inhibition of GVBD was not influenced by the presence or absence of cumulus cells and it was fully reversible. When cycloheximide treatment (5 micrograms/ml) was given after preincubation for 6, 12 and 16 h, GVBD occurred in 15, 46 and 75% of oocytes, respectively. It is concluded that proteins important for GVBD of pig oocytes were present in sufficient amounts at about 12 h of culture. The fusion of pig oocytes in metaphase I to oocytes with an intact germinal vesicle revealed that cycloheximide did not inhibit GVBD induced by maturing ooplasm. Therefore, induction of prematurely condensed chromosomes by the maturing ooplasm did not require protein synthesis. However, continuous protein synthesis was necessary to maintain metaphase I and prematurely condensed chromosomes in a typical configuration.  相似文献   

9.
Substance P (SP), the widely distributed undecapeptide, is synthesized in cell bodies of vagal sensory ganglia and transported bidirectionally toward the CNS and thoracic and abdominal viscera. In explants of the guinea pig inferior (nodose) vagal sensory ganglion and attached 2 cm of distal vagus nerve, SP is synthesized within the ganglion and transported predominantly distally. The quantity of distal transport is similar to that observed in vivo and provides an index of ongoing synthesis within the ganglion. In this report, the model is further characterized. Double ligation of the explant distal to the ganglion demonstrates that all the transported peptide is derived from the ganglion; there is no evidence of intraaxonal processing of peptide precursor. Approximately 50% of the peptide is in a rapid transport vs. an apparent stationary compartment. Not only transport, but also synthesis, of SP was blocked by 20 mM colchicine. Ongoing SP biosynthesis is dependent on a nutrient medium [medium 199 (M-199)] and is partially inhibited with added fetal bovine serum (FBS; 10%): total explant content in M-199/FBS vs. M-199, 1,785 +/- 101 (n = 8) vs. 2,254 +/- 123 pg (n = 9); p less than 0.02. Addition of 2-deoxyglucose (2-DG) decreased both total SP synthesis and transport (total explant content for 2-DG vs. control, 986 +/- 94 vs. 1,391 +/- 111; p less than 0.05). Medium supplemented with glucose to a final concentration of 600 mg/100 ml or with glucose (300 mg/100 ml) with or without insulin (50 ng/ml) did not alter explant SP content or transport. Veratridine (5 X 10(-6) M) inhibited both SP synthesis and transport; ouabain (10(-4) M) also inhibited synthesis, but less so transport. Tetrodotoxin reversed the effects of veratridine. These studies demonstrate the usefulness of this model, which can examine factors regulating both synthesis and transport of sensory neuropeptides in vitro. The results suggest that SP synthesis/transport may be under tonic inhibition, perhaps by both neural and humoral mechanisms.  相似文献   

10.
Prolonged exposure (90–180 min) to cycloheximide (0.2 mg/ml), puromycin (0.2 mg/ml) or chloramphenicol (0.1 mg/ml) did not affect 125I-insulin binding by rat soleus muscle. Chloramphenicol (2 mg/ml) depressed insulin binding and insulin-stimulated xylose uptake; these effects were attributed to the “toxic” effect of chloramphenicol on muscle ATP levels. Cycloheximide and puromycin inhibited insulin-stimulated xylose uptake without affecting ATP. Puromycin and chloramphenicol, but not cycloheximide, also inhibited basal sugar transport. This difference, and the rapid onset of all these inhibitory effects, suggest that they are not due to the inhibition of protein synthesis, but rather to some more direct effect on sugar transport itself.  相似文献   

11.
The effects of two different protein synthesis inhibitors (cycloheximide and puromycin) on the ovulatory process were examined in vitro using a perfused rat ovary model. Ovaries of PMSG (20 i.u.)-primed rats were perfused for 21 h. Release of cyclic adenosine 3',5'-monophosphate (cAMP) and steroids (progesterone, testosterone, and oestradiol) was measured and the number of ovulations was estimated by counting released oocytes. Unstimulated control ovaries did not ovulate whereas addition of LH (0.1 microgram/ml) plus 3-isobutyl-1-methylxanthine (IBMX; 0.2 mM) resulted in 16.7 +/- 3.5 ovulations per treated ovary. Cycloheximide (5 micrograms/ml) totally inhibited the ovulatory effect of LH + IBMX when present from the beginning of the perfusions and also when added 8 h after LH + IBMX. No inhibition was seen when cycloheximide was added 10 h after LH + IBMX (1-1.5 h before the first ovulation; 15.2 +/- 4.4 ovulations per treated ovary). Puromycin (200 micrograms/ml) completely blocked ovulation when present from the beginning of the perfusions and the inhibition was congruent to 60% (6.5 +/- 2.2 ovulations per treated ovary) when the compound was added 8 h after LH + IBMX. Both inhibitors increased LH + IBMX-stimulated cAMP release substantially, but decreased the release of progesterone, testosterone and oestradiol. These results indicate that de-novo protein synthesis is important late in the ovulatory process for follicular rupture to occur.  相似文献   

12.
Hexose transport in glucose-starved human fibroblasts was readily reversed by glucose refeeding. This hexose transport reversal was not inhibited by tunicamycin (1.5 microgram/ml) but was blocked by cycloheximide (20 micrograms/ml). The ability of insulin (100 mU/ml) to stimulate hexose transport was returned by glucose refeeding and this was not affected by tunicamycin. Cycloheximide which blocked the glucose refeeding effect on hexose transport, decreased the ability of insulin to stimulate hexose transport. Specific 125I-insulin binding was increased by glucose refeeding of glucose-starved cells and this change in binding was inhibited by tunicamycin and cycloheximide. Thus, it appears that under the conditions employed in human fibroblasts, the ability of insulin to stimulate hexose transport is differentially regulated more by factors affecting basal hexose transport than by those affecting changes in insulin binding.  相似文献   

13.
During 4 hr after puromycin (PUR: 20 micrograms/ml) treatment, the synthesis of three major heat shock protein families (HSPs: Mr = 110,000, 87,000, and 70,000) was enhanced 1.5-fold relative to that of untreated cells, as studied by one-dimensional gel electrophoresis. The increase of unique HSPs, if studied with two-dimensional gels, would probably be much greater. In parallel, thermotolerance was observed at 10(-3) isosurvival as a thermotolerance ratio (TTR) of either 2 or greater than 5 after heating at either 45.5 degrees C or 43 degrees C, respectively. However, thermotolerance was induced by only intermediate concentrations (3-30 micrograms/ml) of puromycin that inhibited protein synthesis by 15-80%; a high concentration of PUR (100 micrograms/ml) that inhibited protein synthesis by 95% did not induce either HSPs or thermotolerance. Also, thermotolerance was never induced by any concentration (0.01-10 micrograms/ml) of cycloheximide that inhibited protein synthesis by 5-94%. Furthermore, after PUR (20 micrograms/ml) treatment, the addition of cycloheximide (CHM: 10 micrograms/ml), at a concentration that reduces protein synthesis by 94%, inhibited both thermotolerance and synthesis of HSP families. Thus, thermotolerance induced by intermediate concentrations of PUR correlated with an increase in newly synthesized HSP families. This thermotolerance phenomenon was compared with another phenomenon termed heat resistance and observed when cells were heated at 43 degrees C in the presence of CHM or PUR immediately after a 2-hr pretreatment with CHM or PUR. Heat protection increased with inhibition of synthesis of both total protein and HSP families. Moreover, this heat protection decayed rapidly as the interval between pretreatment and heating increased to 1-2 hr, and did not have any obvious relationship to the synthesis of HSP families. Therefore, there are two distinctly different pathways for developing thermal resistance. The first is thermotolerance after intermediate concentrations of PUR treatment, and it requires incubation after treatment and apparently the synthesis of HSP families. The second is resistance to heat after CHM or PUR treatment immediately before and during heating at 43 degrees C, and it apparently does not require synthesis of HSP families. This second pathway not requiring the synthesis of HSP families also was observed by the increase in thermotolerance at 45.5 degrees C caused by heating at 43 degrees C after cells were incubated for 2-4 hr following pretreatment with an intermediate concentration of PUR.  相似文献   

14.
The effect of insulin on hexose transport in cultured human skin fibroblasts. Studies were carried out on cultures of human skin fibroblasts to explore the effect of insulin on hexose transport in serum-starved monolayers. Insulin (100 mU/ml) stimulated 2-deoxy-D-glucose transport (30% above control values) after 30 minutes exposure time, the response being similar up to four hours exposure to insulin. In several experiments (n = 22) employing three cell strains, insulin (100 mU/ml) exposure led to variable stimulation of 2-deoxy-D-glucose transport (an average of 37% above control values, with a range of 0 = 120%). The insulin-induced stimulation of 2-deoxy-D-glucose transport showed a dose dependency with increasing amounts of insulin, the response being maximal at an insulin concentration of 100 mU/ml. Kinetic analysis of 2-deoxy-D-glucose transport showed that insulin addition resulted in a slight change in the transport Km (3.13 to 4.06 mM) and a 1.8-fold increase in the transport Vmax (17.6 nanomoles/mg protein/min to 32.1 nanomoles/mg protein/min). Insulin also stimulated the transport of 3-0-methyl-D-glucose while the hexokinase activity of the cells was not affected. Further, this insulin-induced stimulation of sugar transport was not blocked by cycloheximide. The results indicate that insulin stimulated the stereospecific carrier-mediated of hexose transport in cultured human skin fibroblasts.  相似文献   

15.
The induction of alkaline phosphatase (ALP) by dibutyryl adenosine 3':5'-cyclic monophosphate (Bt2cAMP) was investigated in strain JTC-12 . P3 cells derived from monkey (Maccaca irus) kidney cortex. ALP activity was increased by Bt2cAMP in a dose-dependent manner, reaching a plateau at concentrations higher than 5 mM with the activity being about 4 times that of the controls. The concentration of Bt2cAMP required for half-maximal induction of ALP activity was about 0.8 mM. ALP activity was increased rapidly by Bt2cAMP for the first 5 days and then continued to increase gradually towards a plateau level. Removal of Bt2cAMP from the medium caused a rapid decrease in the activity, suggesting that the induction of ALP activity by Bt2cAMP is reversible. ALP activity was induced synergistically in the presence of 1 mM sodium butyrate together with Bt2cAMP at concentrations from 0.01 to 1 mM. It was also found that in the presence of 1 mM Bt2cAMP, sodium butyrate increased ALP activity in the same manner as Bt2cAMP did in the presence of 1 mM sodium butyrate. Although dexamethasone, a potent glucocorticoid, had no effect on ALP activity in control cells, the hormone suppressed the ALP activity induced by Bt2cAMP in a dose-dependent manner. At concentrations above 0.2 mM, two xanthine derivatives, theophylline and 3-isobutyl-1-methyl-xanthine (IBMX), also inhibited the induction of ALP activity by 1 mM Bt2cAMP. Inhibitors of protein synthesis, cycloheximide (1.5 micrograms/ml) and pactamycin (10 micrograms/ml), as well as inhibitors of RNA synthesis, actinomycin D (2 micrograms/ml) and alpha-amanitin (50 micrograms/ml), suppressed the induction of ALP activity.  相似文献   

16.
Transport regulation by different metabolizable and nonmetabolizable sugars was studied in human fibroblasts. Sugars were classed as glucose-like (D-mannose, 3-0-methyl-D-glucose, thio-D-glucose, and D-allose) and starvation-like (D-galactose, D-fructose, L-glucose, D-xylose, 6-deoxy-D-glucose and 2-deoxy-D-glucose) based on their competence in curbing glucose starvation enhanced transport. No significant correlation existed between the ability of a sugar to curb hexose transport and the KI of that sugar in inhibiting hexose transport. Independence of the transport curb from glucose metabolism was observed since nonmetabolizable analogs of D-glucose when substituted for D-glucose in the culture medium effected glucose [i.e. 3-0-methyl-D-glucose (3-OMG)] and starvation-like (i.e. 6- and 2-deoxy-D-glucose) effects. The KI of inhibition pf 2-deoxy-D-glucose transport for 3-OMG was 8.5 mM, similar to those obtained for 6-deoxyglucose and 2-deoxyglucose on 2-deoxyglycose transport (7.5 and 3.5 mM, respectively) and on 3-0-methylglucose transport (3.5 and 2.5 mM, respectively). An equimolar mixture of D-glucose and 3-OMG (5.55 mM each) was more effective than 11.1 mM D-glucose or 3-OMG alone in curbing hexose transport or reversing hexose starvation induced increases in transport. The effect of 3-OMG may be independent of glucose metabolism but it is possible that 3-OMG structurally mimics a metabolite of glucose that may interact with intracellular regulators of carrier degradation and or expression.  相似文献   

17.
The effect of p-chloromercuribenzoic acid (pCMB), either alone or in the presence of 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), on the 1 mM galactose absorption by in vivo perfused rat intestine has been studied. At 0.25 mM concentration, pCMB inhibits galactose absorption in about 32% but it does not modify the absorption of this sugar when the transport is blocked by 0.5 mM phlorizin, or that of the non-transportable monosaccharide derivative 2-deoxy-D-glucose. This shows that only the active transport component of galactose absorption is inhibited. A 2 min preexposure period is required for the inhibition to appear. The inhibition was not reversed by washing with saline solution even when it contained 0.5 mM dithioerythritol, 10 mM cysteine or 5 and 10 mM EDTA. The simultaneous exposure to 0.25 pCMB and 0.25 mM DTNB inhibits the total galactose entry in about 50%, an effect higher than the one exerted by each reagent separately and close to the one obtained with 0.5 mM phlorizin. Our results, in vivo, confirm the importance of the thiol groups in the cotransport of Na+ and sugar. As DTNB is an SH-reagent of lesser liposolubility than pCMB, the existence of two populations of sulfhydryl groups related to sugar transport which differ in their location within the brushborder membrane and in accessibility from the intestinal lumen, is suggested.  相似文献   

18.
The primary mechanism of cyanide (CN) intoxication is the inhibition of metabolism in the central nervous system. We determined the effects of CN on several biochemical processes in neuroblastoma x glioma hybrid NG108-15 cells, which possess numerous neuronal properties. These cells were not sensitive to a high concentration (1 mM) of NaCN, but became sensitive in the presence of the anaerobic glycolysis inhibitors sodium iodoacetate (IA) and 2-deoxyglucose (2-DG): cellular metabolic processes (e.g., DNA, RNA and protein synthesis) decreased, to about 40% of control due to treatment with 0.5 mM NaCN+0.05 mM IA and 0.1 mM NaCN+20 mM 2-DG. ATP in cells exposed to 0.01 or 0.1 mM NaCN+20 mM 2-DG was reduced 75% and 100%, respectively within one min. Pretreatment of cells with the CN antidote cobalt (II) chloride (CoCl2) (0.06–0.18 mM) for 5 min prevented the depression of both [3H]leucine incorporation and ATP synthesis due to 1 mM NaCN+20 mM 2-DG in a concentration-dependent manner. A proposed CN antidote alpha-ketoglutaric acid (disodium salt) also prevented the depression of cellular metabolism due to NaCN plus 2-DG. These results indicate that blocking anaerobic glycolysis makes NG108-15 cells sensitive to a low concentration of CN. Thus NG108-15 cells should be useful to study the mechanisms of neurotoxicity of CN and to test antidotes.  相似文献   

19.
Peritoneal-and pulmonary macrophages can be activated in vitro with lymphokines (LK) or IFN-gamma, without exogenous lipopolysaccharide, for fungicidal activity against several pathogenic fungi. However, neither the biochemical nor metabolic events of the activation process or of the effector phase have been defined. In the present work we sought to elucidate these events with time-course studies using inhibitors of protein synthesis as well as immunosuppressive agents. We found that protein synthesis inhibitors abrogated the activation process, because cycloheximide (CHX) (1-2 micrograms/ml) prevented activation of macrophages for fungicidal activity against Candida albicans, Blastomyces dermatitidis, and Paracoccidioides brasiliensis. Blocking of the activation process by CHX was not due to macrophage cytotoxicity, and CHX did not impair the ability of nonactivated macrophages to kill Candida parapsilosis. In kinetic studies we showed that activation of macrophages was induced in 4 hr of LK treatment and that CHX had no effect if added after this time. In contrast to CHX, therapeutic concentrations of hydrocortisone (HC), such as less than or equal to 5 micrograms/ml, or cyclosporin A (CsA), 5 micrograms/ml, did not significantly inhibit LK activation of macrophages for killing of fungi. In the effector phase, the fungicidal capacity of activated macrophages in short-term (less than or equal to 4 hr) killing assays could not be abrogated by CHX (5 micrograms/ml), HC (100 micrograms/ml), or CsA (10 micrograms/ml). These results demonstrate that the activation but not the effector mechanism of macrophages for fungicidal activity is blocked by inhibition of protein synthesis. In contrast, therapeutic concentrations of HC or CsA may not interfere with activation of macrophages or their killing mechanisms, thus providing a rationale for antifungal immunotherapy in certain clinical situations (e.g., infection in the immunosuppressed patient).  相似文献   

20.
1. The ADP plus Pi-stimulated oxidation of succinate by mitochondria from the insect trypanosomatid Crithidia fasciculata was maximally inhibited (64%) by suramin at a concentration (60 microM) which did not affect the electron transport uncoupled by FCCP. Inhibition of the latter required a considerably higher concentration of the drug, 50% inhibition being attained at about 0.8 mM. 2. ATP synthesis by mitochondrial particles was inhibited by suramin, 50% inhibition being attained at about 50 microM. This inhibition was strictly competitive towards ADP, but it was not linearly competitive, since a secondary plot of apparent Km values vs concentration of the drug was strongly concave upwards. 3. The FCCP-stimulated ATPase activity of the mitochondrial particles was completely abolished either by oligomycin (20 micrograms/ml) or by 200 microM suramin. 4. The results suggest that oxidative phosphorylation may be a primary target for the trypanocide effect of suramin on organisms having, like C. fasciculata, a well-developed respiratory chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号