首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of intracerebroventricular (i.c.v.) injection of synthetic thyrotropin-releasing hormone (TRH) and its analogue (gamma-butyrolactone-gamma-carbonyl-His-Pro-NH2) were tested in anesthetized rats fitted with pancreatic cannula. TRH injection induced dose-related increases in flow of pancreatic juice, protein output, and amylase output, each reaching a maximum within 10 min. Higher doses of TRH induced longer responses. Injection of the TRH analogue also caused dose-related secretory responses of the exocrine pancreas. The dose-related secretory responses to TRH and the TRH analogue were similar except that the responses to the highest dose of TRH analogue (1600 pmol/100 g b.w.) were significantly higher. Intravenous injection of TRH and the TRH analogue induced little, if any, secretory response of the exocrine pancreas. The effects of i.c.v. injection of TRH and the TRH analogue were completely abolished after bilateral subdiaphragmatic vagotomy. In addition to the secretory effects on the exocrine pancreas, i.c.v. injection of TRH and the analogue caused hyperglycemia, tachycardia, and tear secretion, but the intravenous injection of these peptides had no effect.  相似文献   

2.
Effects of pentobarbital, chlordiazepoxide and ethanol were studied alone and in combination with thyrotropin-releasing hormone (TRH), IM, on punished behavior. Key-peck responses of pigeons were maintained by food presentation under a fixed-interval 3-min schedule in which every 30th response produced shock. Moderate doses of pentobarbital, chlordiazepoxide and ethanol increased punished responding to 150-200% of control values while the higher doses of these drugs almost completely eliminated responding. TRH (0.01-1 mg/kg) had little effect on punished responding and 3 mg/kg produced 50% decreases. Although the lower doses of TRH were without effect when given alone, doses of 0.03 mg/kg and greater markedly potentiated the rate-increasing effects of pentobarbital, chlordiazepoxide and ethanol. Increases in punished responding of 350% were obtained with combinations of TRH and these drugs. The rate-decreasing effects of the sedative-hypnotic and anxiolytic compounds were not reversed by TRH. Potentiation of the behavioral effects of sedative-hypnotic and anxiolytic drugs by TRH suggests that TRH may play an important role in modulating the behavioral effects of these compounds and that combinations of neuroactive peptides with certain psychotherapeutic agents may be of some therapeutic value.  相似文献   

3.
This study investigated the effect of centrally and peripherally administered thyrotropin releasing hormone (TRH) on gastric contractile activity of rats 14, 21, 28 and adult (greater than or equal to 50) days (D) of age, and the effect of morphine pretreatment on that response. Rats were anesthetized with urethane, then a tension transducer was implanted on the anterior gastric corpus. Following baseline recording, rats were pretreated with intraperitoneal morphine (2 mg/kg). TRH (5 micrograms) in saline or saline alone (0.6 microliters) was then injected into the cisternum magnum. Additionally, dose response to TRH was examined in 14- and 50-day-old rats. Intracisternal TRH induced a dose-related increase in gastric contractile activity in both 14- and 50-day-old rats. Higher doses of TRH (10 and 30 micrograms) prolonged the response as compared to low doses. Peripheral morphine pretreatment blocked the TRH-induced increase in gastric contractile activity in all age groups although a higher morphine dose (10 mg/kg) was needed to block the effect in 28D rats. Intravenous TRH (5, 10, 30 micrograms) produced an increase in gastric contractile activity in 14D rats which was blocked by vagotomy.  相似文献   

4.
B Hine  I Sanghvi  S Gershon 《Life sciences》1973,13(12):1789-1797
Results from preliminary clinical reports have indicated that thyrotropin-releasing hormone (TRH) produces improvement in depressed patients. In the present study, doses of TRH at least 25 times greater than those reported as clinically effective on a mg/kg basis were evaluated for antidepressant activity in the conscious dog. Clinically effective antidepressants, such as MAO inhibitors and tricyclics like imipramine, potentiate certain behavioral, autonomic, and cardiovascular responses produced by the indole alkaloid yohimbine, whereas general CNS stimulants such as amphetamine or cocaine do not potentiate these responses. Both 50 and 100 ug/kg doses of TRH failed to potentiate yohimbine effects. Certain gross similarities in effects produced by TRH and amphetamine observed in this study support the view that beneficial effects of TRH in depression may be related to general sympathetic activation produced by this hormone.  相似文献   

5.
The effects of alpha-neoendorphin, kyotorphin, melatonin or diphenylhydantoin (DPH) on thyrotropin-releasing hormone (TRH) and thyrotropin (TSH) release in rats were studied. alpha-neoendorphin (1.0 mg/kg), kyotorphin (1.0 mg/kg), melatonin (2.5 mg/kg) or DPH (75 mg/kg) was injected iv or ip, and the rats were serially decapitated. TRH, TSH and thyroid hormone were determined by radioimmunoassay. The hypothalamic immunoreactive (ir-TRH) contents decreased significantly after melatonin injection, but not after alpha-neoendorphin, kyotorphin or DPH. The plasma ir-TRH concentrations decreased significantly after DPH injection, but not after alpha-neoendorphin, kyotorphin or melatonin. The plasma TSH levels decreased significantly in a dose-related manner with a nadir at 10 min. after melatonin, at 30 min. after DPH and at 40 min. after alpha-neoendorphin or kyotorphin injection. The plasma thyroid hormone levels did not change significantly after these drugs injection. The plasma ir-TRH and TSH responses to cold were inhibited by these drugs, but the plasma TSH response to TRH was not influenced. In the L-DOPA- or 5-hydroxy-tryptophan (5-HTP)-pretreated group, the inhibitory effect of alpha-neoendorphin or kyotorphin on TSH levels was prevented, but not in the haloperidol- or para-chloprophenylalanine (PCPA)- pretreated group. In the haloperidol- or PCPA-pretreated group, the inhibitory effect of melatonin on TSH levels was prevented, but not in the L-DOPA- or 5-HTP-pretreated group. These drugs alone did not affect plasma TSH levels in terms of the dose used. The inactivation of TRH immunoreactivity by hypothalamus or plasma in vitro after these drugs injection did not differ from that of the control.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
After chronic administration of Phencyclidine (PCP) to rats, a high test dose (15 mg/kg) of PCP produced increases in stereotypic and ataxic behaviors, and a lower test dose of PCP (5 mg/kg) produced decreases in these behaviors, compared to behavioral responses of control rats. Rearing behavior in rats chronically administered PCP was increased at all test doses of the drug. Rats treated chronically with 15 mg/kg PCP for 9 days showed marked increases in most of these behaviors, whereas, rats receiving 5 mg/kg PCP for 9 days showed less change in several stereotypic and ataxic behaviors. Rats receiving 10 mg/kg PCP on a once-weekly schedule also exhibited more rearing and ataxic behavioral responses after the 3rd or 4th weekly PCP injection. Chronic PCP rats did not show more stereotypic or ataxic behavior after administration of apomorphine or amphetamine than control rats. These results suggest that chronic administration of PCP augments sensitivity to the stereotypic inducing effects of high doses, and decreases sensitivity to low doses of PCP.  相似文献   

7.
P D Butler  R J Bodnar 《Peptides》1987,8(2):299-307
In addition to short-acting analgesic actions by itself and modulation of analgesic responses induced by endogenous opioids and neurotensin, central administration of thyrotropin-releasing hormone (TRH) potentiates footshock analgesia. The present study evaluated the effects of TRH upon the neurohormonally-mediated though nonopioid analgesia induced by swims in rats. Intracerebroventricular TRH (10 and 50 micrograms) dose-dependently potentiated swim (21, 15, 2 degrees C baths) analgesia on the tail-flick test, an effect which was not due to the hypothermic or basal pain threshold changes. Intravenous (8 mg/kg) TRH potentiated swim (21 degrees C) analgesia; the 600:1 difference in potency between routes strongly suggests central sites of neuromodulatory action. Intracerebroventricular diketopiperazine (50 micrograms), a TRH metabolite, and RX77368 (50 micrograms), a TRH analogue, also potentiated swim (21 degrees C) analgesia, effects also independent of hypothermia and basal reactivity to pain. Finally, given the excitatory interaction between TRH and acetylcholine as well as the cholinergic involvement in swim analgesia, intracerebroventricular TRH potentiated pilocarpine (10 mg/kg, IP) analgesia.  相似文献   

8.
The effect of thyrotropin-releasing hormone (TRH) and lithium on myo-inositol metabolism has been assessed in rat cerebral cortex, cerebellar cortex, and sciatic nerves. Sprague-Dawley male rats were injected subcutaneously with 10 mEq/kg of LiCl and intraperitoneally with 10 mg/kg of TRH-tartrate, alone or in combination. Either lithium or TRH alone had little effect on the myo-inositol concentration in cerebellar cortex, whereas the combination of lithium and TRH significantly lowered the level. The myo-inositol level of cerebellar cortex reached its nadir (70% of values in untreated control rats) 30 min after addition of TRH and then returned to the control level at 90 min. In cerebral cortex, both lithium alone and lithium plus TRH significantly reduced the myo-inositol level. No effect was seen on the myo-inositol concentration in sciatic nerves with these regimens. These results suggested that the pharmacological dose of TRH activated phosphatidylinositol turnover in rat cerebellar cortex and subsequently reduced the myo-inositol level in the presence of lithium.  相似文献   

9.
In order to study the relationship between pentylenetetrazol (PTZ)-induced seizures and the thyrotropin-releasing hormone (TRH) neural system, immunoreactive TRH (IR-TRH) and TRH receptor binding activity were determined in discrete regions of the rat brain before as well as 40 s (immediately before seizures), 150 s (during seizures) and 24 h after an intraperitoneal injection of PTZ (75 mg/kg). IR-TRH markedly increased in the septum 40 and 150 s after the injection, and also in the hippocampus and the thalamus-midbrain region 40 and 150 s after the injection, respectively. However, no significant changes were observed in the TRH receptor binding before, during or after the seizures, suggesting that the increased IR-TRH was not released into the synaptic cleft. This speculation was supported by the dose-dependent inhibition of PTZ-induced generalized seizures by the pre-treatment with TRH or its analogue DN-1417 into the cerebral ventricle.  相似文献   

10.
The present series of experiments was conducted in an attempt to correlate previously reported dose-dependent and site-selective inhibitory effects of an antiestrogen, CI-628, on 17 beta-estradiol (E2)-receptor interactions in the anterior pituitary gland (AP) and hypothalamus with its effects on the preovulatory surges of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin. The effects of CI-628 on the response of the AP to luteinizing hormone-releasing hormone (LHRH) and thyrotropin-releasing hormone (TRH) also were examined. In the first study, rats exhibiting 4-day estrous cycles were injected with various doses (0.02, 0.20, 2.0, and 20 mg/kg) of CI-628 or vehicle at 0900 h on diestrus-2 and proestrus. The preovulatory LH surge and both preovulatory and secondary FSH surges were marginally affected by 0.02 mg/kg CI-628, but were completely abolished by higher doses. In contrast, a dose of 0.20 mg/kg only delayed the prolactin surge; however, higher doses were effective in extinguishing cyclic prolactin release. In a second experiment, CI-628 in rats treated on diestrus-2 and proestrus exerted a dose-dependent suppression of the AP LH response to an initial injection of LHRH on proestrous afternoon in rats whose endogenous LH surges were blocked by phenobarbital. However, AP LH responses to a second LHRH injection to assess the self-priming capacity of LHRH were attenuated only in rats given 0.20, 2.0, and 20 mg/kg CI-628. Contrastingly, the AP prolactin response to TRH was suppressed only in rats given 0.20 mg/kg CI-628.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effects of histamine (HA) and related compounds on thyrotropin-releasing hormone (TRH) and thyrotropin (TSH) secretion in rats were studied. Histidine (1.0 g/kg), HA (5.0 mg/kg) or histamine antagonists mepyramine (MP) (100 mg/kg) or famotidine (FA) (5.0 mg/kg) were injected intraperitoneally, and the rats were decapitated at various intervals after the injection. The hypothalamic immunoreactive TRH (ir-TRH) content increased significantly after histidine or HA injection, decreased significantly after FA injection, but was not changed by MP. The plasma ir-TRH concentration did not change significantly after injection of these drugs. The plasma TSH levels decreased significantly in a dose-related manner after histidine or HA injection and increased significantly in a dose-related manner after FA injection. The plasma thyroid hormone levels showed no changes. In the FA-pretreated group, the inhibitory effect of histidine or HA on TSH levels was prevented, but not in the MP-pretreated group. The plasma ir-TRH and TSH responses to cold were inhibited by histidine or HA and enhanced by FA. The plasma TSH response to TRH was inhibited by histidine or HA and enhanced by FA. The inactivation of TRH immunoreactivity by hypothalamus or plasma in vitro after histidine, HA, MP or FA was not different from that of the control. These findings suggest that histamine may act both on the hypothalamus and the pituitary to inhibit TRH and TSH release, and that its effects may be mediated via H2-receptor.  相似文献   

12.
Changes in gastric contractility induced by intracisternal (ic) injection of thyrotropin-releasing hormone (TRH) or a stable TRH analog, RX77368 [p-Glu-His-(3,3'-dimethyl)-Pro NH2] were investigated in 24 h fasted-conscious rats. Gastric contractility was monitored using chronically implanted extraluminal force transducers sutured to the corpus. Response elicited by a standard meal was used as a physiologic standard. Intracisternal injection of TRH (1 microgram) or RX77368 (100 ng), unlike saline, stimulated high amplitude gastric contractions. The stimulation of gastric contractions induced by ic RX77368 was dose dependent (3-100 ng), rapid in onset, long lasting and not mimicked by the intravenous route of administration. Atropine (0.1 mg/kg) partially antagonized and vagotomy totally blocked the RX77368 (100 ng, ic)-induced stimulation of gastric contractility. These results demonstrated that TRH or RX77368 acts within the brain to elicit potent contractions of the stomach; TRH action appears vagally mediated probably through cholinergic mechanism.  相似文献   

13.
1. Basal circulating growth hormone (GH) concentrations in sex-linked-dwarf (SLD) chickens were unaffected by the intracerebroventricular (icv) injection of 10, 50 or 100 micrograms somatostatin (SRIF). 2. The GH response to systemic thyrotropin-releasing hormone (TRH; 10 micrograms/kg, iv) was, however, 'paradoxically' enhanced 20 min after icv SRIF administration. 3. A lower dose (1.0 micrograms) of SRIF had no effect on basal or TRH-induced GH release. 4. High-titre SRIF antisera (4 microliters) also had no acute effect on basal plasma GH concentrations, but augmented the GH response to TRH challenge. 5. SRIF would appear to act at central sites to modulate stimulated GH secretion in SLD chickens.  相似文献   

14.
The effect of Freund's adjuvant injection on 24-hour variation of hypothalamic corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH), GH-releasing hormone (GRH) and somatostatin levels was examined in adult rats kept under light between 0800 and 2000 h daily. Groups of rats receiving Freund's complete adjuvant or its vehicle 3 days before sacrifice were killed at six different time intervals throughout a 24-hour cycle. In the median eminence, adjuvant vehicle-injected rats exhibited significant 24-hour variations for the four hormones examined, with maxima at noon. These 24-hour rhythms were inhibited or suppressed by Freund's adjuvant injection. In the anterior hypothalamus of adjuvant vehicle-treated rats, CRH content peaked at 1600 h, while two peaks were found for TRH and GRH levels, i.e., at 2400-0400 h and 1600 h. Freund's adjuvant injection suppressed 24-hour rhythm of anterior hypothalamic CRH, TRH and GRH content and uncovered a peak in anterior hypothalamic somatostatin levels at 0400 h. In the medial hypothalamus of adjuvant vehicle-treated rats, significant 24-hour variations were detectable for TRH (peaks at 1600 and 2400 h) and somatostatin (peak at 2400 h) which disappeared after Freund's adjuvant injection. In the posterior hypothalamus of adjuvant vehicle-treated rats, two peaks were apparent for CRH, TRH and somatostatin levels, i.e. at 1600 h and 2400-0400 h, this hormonal profile remaining unmodified after Freund's adjuvant administration. The administration of the immunosuppressant drug cyclosporine (5 mg/kg, 5 days) impaired the depressing effect of Freund's adjuvant injection on CRH, TRH and somatostatin content in median eminence, but not that on GRH. In the anterior hypothalamus, cyclosporine generally prevented the effect of immunization on hormone levels an revealed a second maximum in TRH at 0400 h. Cyclosporine also restored 24-hour variations in TRH and somatostatin levels of medial hypothalamus of Freund's adjuvant-injected rats but was unable to modify them in the posterior hypothalamus. The results further support the existence of a significant effect of immune-mediated inflammatory response at an early phase after Freund's adjuvant injection on hypothalamic levels which was partially sensitive to immunosuppression by cyclosporine.  相似文献   

15.
G Katsuura  K Yoshikawa  S Itoh  S Hsiao 《Peptides》1984,5(5):899-903
A low dose intracerebroventricular injection of thyrotropin releasing hormone (TRH, 100 ng) changed many behavioral responses in the rat. TRH increased locomotion, scratching, body shaking, piloerection, and rearing, but decreased sniffing, and resting. Ablation of frontal neocortex further enhanced the TRH effects on locomotion and resting. A dose effect of TRH (0, 5, 10, 50, 100 ng) to increase general activity was established and the effect was further enhanced by decortication. In our test situations decortication had no effect by itself. Since the TRH effects became much more pronounced without the frontal neocortex it appears that the cortex exerts a powerful inhibitory effect to moderate the TRH effects. The TRH effect does not depend upon the frontal cortex, actually a cortical function is to dampen the TRH effects on various behavioral responses.  相似文献   

16.
Injection of leukotriene D4 (LTD4, 20 μg/kg, i.a.) to conscious spontaneous hypertensive (SHR) rats produces a short-lasting pressor and tachycardic response followed by prolonged hypotension and bradycardia. Plasma norepinephrine and epinephrine were elevated at the peak pressor/tachycardic phase as well as at the hypotensive phase. Injection of thyrotropin-releasing hormone (TRH, 2 or 5 mg/kg) at the peak of the LTD4-induced hypotension resulted in prompt reversal of the hypotension and bradycardia in a dose-related manner. Naloxone (5 mg/kg) had no effect on blood pressure and heart rate LTD4- treated SHR rats. Pretreatment with TRH (5 mg/kg) did not prevent the depressor effect of LTD4, but attenuated the bradycardic effect of this leukotriene. In addition, TRH had no effect on LTD4-induced hypotension in the pithed SHR rat. These results suggest that TRH might exert beneficial effects in hypotensive states mediated by leukotrienes or other mediators of anaphylactic reactions.  相似文献   

17.
C X Zhu  J R Yu 《生理学报》1989,41(4):410-415
The effect of intracerebroventricular (ICV) injections of thyrotropin releasing hormone (TRH) on the propulsive motility of the gastrointestinal tract was examined in rats. The distance travelled by charcoal meal through the small intestine, measured in terms of percentage of its total length, was recorded as the index of propulsive motility. The results were as follows: (1) The propulsive distance of charcoal meal was significantly reduced in a dose-dependent manner after ICV injections of TRH (1 microgram/10 microliters, 5 micrograms/10 microliters or 10 micrograms/10 microliters) (P less than 0.01-0.001) The effects were abolished by injection of atropine (5 micrograms/10 microliters ICV). (2) The gastrointestinal propulsive motility decreased markedly (P less than 0.01) after injection of a larger dose of TRH (50 micrograms/100 g) into the hypodermis. The effects were not completely blocked by subcutaneous injections of propranolol (5 mg/kg). (3) No effects (P greater than 0.05) were found on the inhibition of gastrointestinal propulsive motility after ICV injections of regitine (2.5 mg/kg im, 50 micrograms/50 microliters ICV) or propranolol (5 mg/kg im, 50 micrograms/50 microliters ICV). The results indicate that TRH has an inhibitory effect on the propulsive motility of gastrointestinal tract, which may be mediated via the non-adrenergic inhibitory nerve of the vagal nerves.  相似文献   

18.
The effect of thyrotropin releasing hormone (TRH) alone and in combination with morphine on the gastrointestinal transit was investigated by using the charcoal meal test in mice. The intraperitoneal (IP) administration of TRH decreased the transit when given in a dose of 1.0 mg/kg 10 min prior to the meal. The intracerebroventricular (ICV) administration of TRH (10 μg/mouse) also inhibited the transit when given just prior to the charcoal meal. Subcutaneous (SC) administration of morphine (5, 10 and 20 mg/kg) inhibited gastrointestinal transit in a dose dependent manner. When TRH (1, 3 and 10 mg/kg, IP as well as 0.3 μg, ICV) which had no effect on the transit by itself was combined with morphine (10 mg/kg, SC), an enhancement in the inhibition of the transit was observed. TRH-induced inhibition of the transit was antagonized by naloxone (0.1 mg/kg, SC). It is concluded that TRH inhibits gastrointestinal transit in the mouse possibly via the opiate receptor system.  相似文献   

19.
Activation of gastric myenteric cells by intracisternal injection of the stable thyrotropin-releasing hormone (TRH) analog RX-77368, at a dose inducing near maximal vagal cholinergic stimulation of gastric functions, was investigated in conscious rats. Fos immunoreactivity was assessed in gastric longitudinal muscle-myenteric plexus whole mount preparations 90 min after intracisternal injection. Fos-immunoreactive cells were rare in controls (~1 cell/ganglion), whereas intracisternal RX-77368 (50 ng) increased the number to 24.8 +/- 1.8 and 26.8 +/- 2.2 cells/ganglion in the corpus and antrum, respectively. Hexamethonium (20 mg/kg sc) prevented Fos expression by 90%, whereas atropine (2 mg/kg sc) had no effect. The neuronal marker protein gene product 9.5 and the glial markers S-100 and glial fibrillary acidic proteins showed that RX-77368 induced Fos in both myenteric neurons and glia. Vesicular ACh transporter and calretinin were detected around the activated myenteric neurons. These results indicated that central vagal efferent stimulation by intracisternal RX-77368 activates gastric myenteric neurons as well as glial cells mainly through nicotinic ACh receptors in conscious rats.  相似文献   

20.
C Okuda  T Mizobe  M Miyazaki 《Life sciences》1987,40(13):1293-1299
Intracerebroventricular (i.c.v.) administration of thyrotropin-releasing hormone (TRH) in a range from 0.1 to 100 micrograms induced a dose-related increase in blood pressure in conscious rats, whereas TRH-free acid (TRH-OH) and histidyl-proline diketopiperazine (His-Pro-DKP), metabolites of TRH, did not. The blood pressure responses to intravenous (i.v.) injection of 5 mg/Kg TRH were similar to those induced by TRH (i.c.v.). Pretreatment with atropine (50 micrograms, i.c.v.) significantly reduced the pressor effect of TRH administered through either route. Hemicholinium-3 (50 micrograms, i.c.v.), an inhibitor of choline uptake, also prevented the increase in blood pressure induced by TRH (10 micrograms, i.c.v.). These results indicate that both centrally and peripherally administered TRH have pressor effects that are mediated by central cholinergic mechanisms, probably by activating cholinergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号