首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Leptin, an adipocyte-derived hormone, acts directly on the brain to control food intake and energy expenditure. An important question is the identity of first-order neurons initiating leptin's anti-obesity effects. A widely held view is that most, if not all, of leptin's effects are mediated by neurons located in the arcuate nucleus of the hypothalamus. However, leptin receptors (LEPRs) are expressed in other sites as well, including the ventromedial hypothalamus (VMH). The possible role of leptin acting in "nonarcuate" sites has largely been ignored. In the present study, we show that leptin depolarizes and increases the firing rate of steroidogenic factor-1 (SF1)-positive neurons in the VMH. We also show, by generating mice that lack LEPRs on SF1-positive neurons, that leptin action at this site plays an important role in reducing body weight and, of note, in resisting diet-induced obesity. These results reveal a critical role for leptin action on VMH neurons.  相似文献   

2.
Neuroanatomical and electrophysiological studies have shown that hypothalamic POMC neurons are targets of the adipostatic hormone leptin. However, the physiological relevance of leptin signaling in these neurons has not yet been directly tested. Here, using the Cre/loxP system, we critically test the functional importance of leptin action on POMC neurons by deleting leptin receptors specifically from these cells in mice. Mice lacking leptin signaling in POMC neurons are mildly obese, hyperleptinemic, and have altered expression of hypothalamic neuropeptides. In summary, leptin receptors on POMC neurons are required but not solely responsible for leptin's regulation of body weight homeostasis.  相似文献   

3.
4.
Leptin regulates energy balance and glucose homeostasis, at least in part, via activation of receptors in the arcuate nucleus of the hypothalamus located in proopiomelanocortin (POMC) neurons. Females have greater sensitivity to central leptin than males, suggested by a greater anorectic effect of central leptin administration in females. We hypothesized that the regulation of energy balance and peripheral glucose homeostasis of female rodents would be affected to a greater extent than in males if the action of leptin in POMC neurons were disturbed. Male and female mice lacking leptin receptors only in POMC neurons gained significantly more body weight and accumulated more body fat. However, female mice gained disproportionately more visceral adiposity than males, and this appeared to be largely the result of differences in energy expenditure. When maintained on a high-fat diet (HFD), both male and female mutants had higher levels of insulin following exogenous glucose challenges. Chow- and HFD-fed males but not females had abnormal glucose disappearance curves following insulin administrations. Collectively, these data indicate that the action of leptin in POMC neurons is sexually different to influence the regulation of energy balance, fat distribution, and glucose homeostasis.  相似文献   

5.
Leptin plays a pivotal role in regulation of energy balance. Via unknown central pathways, leptin also affects peripheral glucose homeostasis and locomotor activity. We hypothesized that, specifically, pro-opiomelanocortin (POMC) neurons mediate those actions. To examine this possibility, we applied Cre-Lox technology to express leptin receptors (ObRb) exclusively in POMC neurons of the morbidly obese, profoundly diabetic, and severely hypoactive leptin receptor-deficient Leprdb/db mice. Here, we show that expression of ObRb only in POMC neurons leads to a marked decrease in energy intake and a modest reduction in body weight in Leprdb/db mice. Remarkably, blood glucose levels are entirely normalized. This normalization occurs independently of changes in food intake and body weight. In addition, physical activity is greatly increased despite profound obesity. Our results suggest that leptin signaling exclusively in POMC neurons is sufficient to stimulate locomotion and prevent diabetes in the severely hypoactive and hyperglycemic obese Leprdb/db mice.  相似文献   

6.
Leptin is well acknowledged as an anorexigenic hormone that plays an important role in feeding control. Hypothalamic GABA system plays a significant role in leptin regulation on feeding and metabolism control. However, the pharmacological relationship of leptin and GABA receptor is still obscure. Therefore, we investigated the effect of leptin or combined with baclofen on the food intake in fasted mice. We detected the changes in hypothalamic c‐Fos expression, hypothalamic TH, POMC and GAD67 expression, plasma insulin, POMC and GABA levels to demonstrate the mechanisms. We found that leptin inhibit fasting‐induced increased food intake and activated hypothalamic neurons. The inhibitory effect on food intake induced by leptin in fasted mice can be reversed by pretreatment with baclofen. Baclofen reversed leptin's inhibition on c‐Fos expression of PAMM in fasted mice. Therefore, these results indicate that leptin might inhibit fasting‐triggered activation of PVN neurons via presynaptic GABA synaptic functions which might be partially blocked by pharmacological activating GABA‐B. Our findings identify the role of leptin in the regulation of food intake.  相似文献   

7.
A role for dietary fat in leptin receptor, OB-Rb, function   总被引:4,自引:0,他引:4  
Heshka JT  Jones PJ 《Life sciences》2001,69(9):987-1003
  相似文献   

8.
Coordinated development of excitatory and inhibitory synapses is crucial for normal function of neuronal circuits. Using homo- and heterochronic cultures of hippocampal neurons, we compared the formation of glutamatergic and GABAergic synapses at different stages and asked whether the age of dendrites affects their ability to accept new glutamatergic and GABAergic synapses. Neurons were transfected with either CFP-actin as a dendritic marker or GFP-synaptophysin as a presynaptic marker. We found that GFP-synaptophysin clusters formed on CFP-actin-labeled dendrites at similar density regardless of pre- and postsynaptic cell type or the age of dendrites (0-2 weeks) upon co-culturing. Therefore, the age of mature dendrites does not affect their ability to accept new synapses. Because GABAergic transmission switches from depolarizing to hyperpolarizing during 1-2 weeks in these cultures, our observations also suggest that this developmental switch does not alter the formation of GABAergic synapses.  相似文献   

9.
The release of vasopressin and oxytocin from the supraoptic nucleus (SON) neurons is tonically regulated by excitatory glutamatergic and inhibitory GABAergic synaptic inputs. Acetylcholine is known to excite SON neurons and to elicit vasopressin release. Cholinergic receptors are located pre- and postsynaptically in the SON, but their functional significance in the regulation of SON neurons is not fully understood. In this study, we determined the role of presynaptic cholinergic receptors in regulation of the excitatory glutamatergic inputs to the SON neurons. The magnocellular neurons in the rat hypothalamic slices were identified microscopically, and the spontaneous miniature excitatory postsynaptic currents (mEPSCs) were recorded using the whole cell voltage-clamp technique. The mEPSCs were abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM). Acetylcholine (100 microM) significantly increased the frequency of mEPSCs of 38 SON neurons from 1.87 +/- 0.36 to 3.42 +/- 0.54 Hz but did not alter the amplitude (from 19.61 +/- 0.90 to 19.34 +/- 0.84 pA) and the decay time constant of mEPSCs. Furthermore, the nicotinic receptor antagonist mecamylamine (10 microM, n = 16), but not the muscarinic receptor antagonist atropine (100 microM, n = 12), abolished the excitatory effect of acetylcholine on the frequency of mEPSCs. These data provide new information that the excitatory effect of acetylcholine on the SON neurons is mediated, at least in part, by its effect on presynaptic glutamate release. Activation of presynaptic nicotinic, but not muscarinic, receptors located in the glutamatergic terminals increases the excitatory synaptic input to the SON neurons of the hypothalamus.  相似文献   

10.
Serotonin 2C receptors (5-HT(2C)Rs) expressed by pro-opiomelanocortin (POMC) neurons of hypothalamic arcuate nucleus regulate food intake, energy homeostasis and glucose metabolism. However, the cellular mechanisms underlying the effects of 5-HT to regulate POMC neuronal activity via 5-HT(2C)Rs have not yet been identified. In the present study, we found the putative transient receptor potential C (TRPC) channels mediate the activation of a subpopulation of POMC neurons by mCPP (a?5-HT(2C)R agonist). Interestingly, mCPP-activated POMC neurons were found to be a distinct population from those activated by leptin. Together, our data suggest that 5-HT(2C)R and leptin receptors are expressed by distinct subpopulations of arcuate POMC neurons and that both 5-HT and leptin exert their actions in POMC neurons via TRPC channels. VIDEO ABSTRACT:  相似文献   

11.
A major paradigm in the field of obesity research is the existence of an adipose tissue-brain endocrine axis for the regulation of body weight. Leptin, the peptide mediator of this axis, is secreted by adipose cells. It lowers food intake and body weight by acting in the hypothalamus, a region expressing an abundance of leptin receptors and a variety of neuropeptides that influence food intake and energy balance. Among the most promising candidates for leptin-sensitive cells in the hypothalamus are arcuate nucleus neurons that co-express the anabolic neuropeptides, neuropeptide Y (NPY) and agouti-related peptide (AGRP), and those that express proopiomelanocortin (POMC), the precursor of the catabolic peptide, alphaMSH. These cell types contain mRNA encoding leptin receptors and show changes in neuropeptide gene expression in response to changes in food intake and circulating leptin levels. Decreased leptin signaling in the arcuate nucleus is hypothesized to increase the expression of NPY and AGRP. Levels of leptin receptor mRNA and leptin binding are increased in the arcuate nucleus during fasting, principally in NPY/AGRP neurons. These findings suggest that changes in leptin receptor expression in the arcuate nucleus are inversely associated with changes in leptin signaling, and that the arcuate nucleus is an important target of leptin action in the brain.  相似文献   

12.
The adipose tissue-derived hormone leptin regulates energy balance through catabolic effects on central circuits, including proopiomelanocortin (POMC) neurons. Leptin activation of POMC neurons increases thermogenesis and locomotor activity. Protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of leptin signaling. POMC neuron-specific deletion of PTP1B in mice results in reduced high-fat diet-induced body weight and adiposity gain due to increased energy expenditure and greater leptin sensitivity. Mice lacking the leptin gene (ob/ob mice) are hypothermic and cold intolerant, whereas leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT). Here, we examined whether POMC PTP1B mediates the thermoregulatory response of CNS leptin signaling by evaluating food intake, body weight, core temperature (T(C)), and spontaneous physical activity (SPA) in response to either exogenous leptin or 4-day cold exposure (4°C) in male POMC-Ptp1b-deficient mice compared with wild-type controls. POMC-Ptp1b(-/-) mice were hypersensitive to leptin-induced food intake and body weight suppression compared with wild types, yet they displayed similar leptin-induced increases in T(C). Interestingly, POMC-Ptp1b(-/-) mice had increased BAT weight and elevated plasma triiodothyronine (T(3)) levels in response to a 4-day cold challenge, as well as reduced SPA 24 h after cold exposure, relative to controls. These data show that PTP1B in POMC neurons plays a role in short-term cold-induced reduction of SPA and may influence cold-induced thermogenesis via enhanced activation of the thyroid axis.  相似文献   

13.
Wang JJ  Chen YH  Li KY  Sun FY 《生理学报》2005,57(6):761-765
谷氨酸能和GABA能支配是心迷走节前神经元(cardiac vagal neuron,CVN)的主要兴奋性和抑制性突触传入.在CVN的活动调节中,这两种支配是否有相互作用、以及如何相互作用目前尚不清楚.本研究用神经元逆行荧光染料标记法和电压膜片钳方法证明,谷氨酸NMDA型和非NMDA型受体拮抗剂AP5和CNQX在全脑片应用条件下,对疑核(nucleus ambiguus,NA)内CVN的GABA能突触前活动无明显影响,而对迷走神经运动背核(dorsal motor nucleus ofthe vagus,DMNX)内CVN的GABA能突触前活动有显著的抑制作用.这些观察结果提示支配迷走神经运动背核内CVN的GABA能神经元可能接受紧张性谷氨酸能支配,而支配疑核内CVN的GABA能神经元则没有这种紧张性谷氨酸能支配.疑核内和迷走神经运动背核内CVN的这种调节差异,是两个核团的CVN在心率和心功能调节中功能分工的可能机制之一.  相似文献   

14.
Synapse malformation underlies numerous neurodevelopmental illnesses, including autism spectrum disorders. Here we identify the lipid raft protein flotillin‐1 as a promoter of glutamatergic synapse formation. We cultured neurons from the hippocampus, a brain region important for learning and memory, and examined them at two weeks in vitro, a time period rich with synapse formation. Double‐label immunocytochemistry of native flot‐1 with glutamatergic and GABAergic synapse markers showed that flot‐1 was preferentially colocalized with the glutamatergic presynaptic marker vesicular glutamate transporter 1 (VGLUT1), compared to the GABAergic presynaptic marker glutamic acid decarboxylase‐65 (GAD‐65). Triple‐label immunocytochemistry of native flot‐1, VGLUT1, and NR1, the obligatory subunit of NMDA receptors, indicates that Flot‐1 was preferentially localized to synaptic rather than extrasynaptic NR1. Furthermore, electrophysiological results using whole‐cell patch clamp showed that Flot‐1 increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) but not miniature inhibitory postsynaptic currents (mIPSCs), whereas amplitude and decay kinetics of either type of synaptic current was not affected. Corresponding immunocytochemical data confirmed that the number of glutamatergic synapses increased with flot‐1 overexpression. Overall, our anatomical and physiological results show that flot‐1 enhances the formation of glutamatergic synapses but not GABAergic synapses, suggesting that the role of flot‐1 in neurodevelopmental disorders should be explored. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 875–883, 2010  相似文献   

15.
Liu T  Kong D  Shah BP  Ye C  Koda S  Saunders A  Ding JB  Yang Z  Sabatini BL  Lowell BB 《Neuron》2012,73(3):511-522
AgRP neuron activity drives feeding and weight gain whereas that of nearby POMC neurons does the opposite. However, the role of excitatory glutamatergic input in controlling these neurons is unknown. To?address this question, we generated mice lacking NMDA receptors (NMDARs) on either AgRP or POMC neurons. Deletion of NMDARs from AgRP neurons markedly reduced weight, body fat and food intake whereas deletion from POMC neurons had no effect. Activation of AgRP neurons by fasting, as assessed by c-Fos, Agrp and Npy mRNA expression, AMPA receptor-mediated EPSCs, depolarization and firing rates, required NMDARs. Furthermore, AgRP but not POMC neurons have dendritic spines and increased glutamatergic input onto AgRP neurons caused by fasting was paralleled by an increase in spines, suggesting fasting induced synaptogenesis and spinogenesis. Thus glutamatergic synaptic transmission and its modulation by NMDARs play key roles?in controlling AgRP neurons and determining the cellular and behavioral response to fasting.  相似文献   

16.
A deficient extinction of memory is particularly important in the regime of fear, where it limits the beneficial outcomes of treatments of anxiety disorders. Fear extinction is thought to involve inhibitory influences of the prefrontal cortex on the amygdala, although the detailed synaptic mechanisms remain unknown. Here, we report that neuropeptide S (NPS), a recently discovered transmitter of ascending brainstem neurons, evokes anxiolytic effects and facilitates extinction of conditioned fear responses when administered into the amygdala in mice. An NPS receptor antagonist exerts functionally opposing responses, indicating that endogenous NPS is involved in anxiety behavior and extinction. Cellularly, NPS increases glutamatergic transmission to intercalated GABAergic neurons in the amygdala via presynaptic NPS receptors on connected principal neurons. These results identify mechanisms of NPS in the brain, a key role of intercalated neurons in the amygdala for fear extinction, and a potential pharmacological avenue for treating anxiety disorders.  相似文献   

17.
Leptin, a product of the ob gene, decreases food intake and body weight in both Wistar and Zucker obese rats when administered centrally or peripherally. To examine whether these leptin effects might be mediated through a neuropeptide Y (NPY) signaling pathway in the medial part of the arcuate nucleus of the hypothalamus (vmARC), the effects of leptin on vmARC neurons in Wistar and Zucker obese rats were examined electrophysiologically using brain slice preparations. Bath application of leptin inhibited about 60% of the vmARC neurons recorded in slices from Wistar rats. Similar inhibitory effects of leptin on vmARC neurons were also observed under low-Ca2+, high-Mg2+ Ringer's solution. However, inhibitory effects were almost absent under Ringer's solution containing a protein kinase C inhibitor, chelerythrine chloride. In slices from Zucker obese rats, leptin inhibited only about 25% of the vmARC neurons recorded, and the proportion of neurons inhibited was significantly smaller for these rats than for Wistar rats. These results suggest that reductions in food intake and body weight induced by leptin in both Wistar and Zucker obese rats are partly mediated via inhibition of an NPY signaling pathway in the vmARC.  相似文献   

18.
Obesity-related leptin resistance manifests in loss of?leptin's ability to reduce appetite and increase energy expenditure. Obesity is also associated with increased activity of the endocannabinoid system, and CB(1) receptor (CB(1)R) inverse agonists reduce body weight and the associated metabolic complications, although adverse neuropsychiatric effects halted their therapeutic development. Here we show that in mice with diet-induced obesity (DIO), the peripherally restricted CB(1)R inverse agonist JD5037 is equieffective with its brain-penetrant parent compound in reducing appetite, body weight, hepatic steatosis, and insulin resistance, even though it does not occupy central CB(1)R or induce related behaviors. Appetite and weight reduction by JD5037 are mediated by resensitizing DIO mice to endogenous leptin through reversing the hyperleptinemia by decreasing leptin expression and secretion by adipocytes and increasing leptin clearance via the?kidney. Thus, inverse agonism at peripheral CB(1)R not only improves cardiometabolic risk in obesity but has antiobesity effects by reversing leptin resistance.  相似文献   

19.
20.
Backround: Leptin a cytokine protein secreted by adipose tissue raises considerable interest as a potential mediator of the protective effects of fat mass on bone tissue. After menopause heavier women conserve bone mass better than those with lower body weight. The protective effect of obesity on bone mass has been ascribed to a high body fat content. As Leptin levels reflect the body fat content it has emerged as a possible mediator of these protective effects. Methods: A search of the available literature focused on the role of leptin on bone tissue. Results: Both peripheral and central action of leptin on bone metabolism have been proposed. In vitro and in vivo evidence supports the hypothesis that leptin can act directly or indirectly on bone remodelling by modulating both osteoblast and osteoclast activities. However, studies in humans have not yet been able to confirm these actions possibly because of the shifting balance between stimulatory direct action and suppressive indirect action of leptin on bones via the hypothalamus. The effects of oestrogen decline and deficiency during natural or artificially induced menopause and administration of hormone replacement therapy has on leptin production remains controversial. Various studies have shown differences in leptin values in pre- and postmenopausal women. The existing clinical data on this issue are discordant. Conclusion: Larger clinical studies are necessary to clarify leptin's role in vivo and to assess the contribution of the central and peripheral role of leptin in the overall maintenance of bone turnover in human beings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号