首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3Beta-hydroxyolean-12-en-27-oic acid (1), a biologically active, pentacyclic triterpenoid isolated from the rhizomes of Astilbe chinensis, was found to be considerably more cytotoxic toward human colorectal carcinoma (COLO-205) and human cervical squamous carcinoma (HeLa) cells than its congener oleanolic acid (4). This suggests that the position of the COOH group significantly affects the cytotoxicity of oleanane-type pentacyclic triterpene carboxylic acids. To elucidate the underlying biological mechanism responsible for the cytotoxicity of 1, we investigated its growth-inhibitory effect on COLO-205 cells. Compound 1 induced a marked concentration- and time-dependent inhibition of cell proliferation, with the typical morphological characteristics of apoptosis, and under formation of DNA ladders in agarose-gel electrophoresis. Flow-cytometric analysis showed that the cell cycle of COLO-205 cells exposed to 1 was arrested in the G0/G1 phase. Also, 1 increased and decreased the expression of Bax and Bcl-2 proteins, respectively, and lowered the mitochondrial transmembrane potential (delta psi(m)). The peptidic caspase-3 inhibitor NH2-Asp-Glu-Val-Asp-CHO (at 1 microM) could increase the viability of COLO-205 cells previously treated with 1. These results indicate that 1 induces efficient cell apoptosis through down-regulating Bcl-2 expression, up-regulating Bax expression, lowering delta psi(m), and by activating the caspase-3 pathway.  相似文献   

2.
3beta-Hydroxy-12-oleanen-27-oic acid (ATA) was an antitumor active oleanane-type triterpenoid from the rhizomes of Astilbe chinensis. ATA was structurally very similar to oleanolic acid, with the only difference being interchange of the carboxyl and methyl group at the C-14 and C-17 positions. Oleanane-type triterpene with a carboxyl group at C-14 is present in a limited number of natural resources. ATA was found to exhibit more distinctive cytotoxicity toward human cervical squamous carcinoma HeLa cells than oleanolic acid, which suggested that the position of the carboxyl group significantly affects the cytotoxicity of oleanane-type pentacyclic triterpenes with a carboxyl group. The biological mechanism responsible for the cytotoxicity of ATA is not yet well understood. In this study, we investigated the induction of apoptosis in HeLa cells by ATA and the putative pathways of its actions. ATA induced a marked concentration- and time-dependent inhibition of HeLa cell proliferation, and reduced the protein content in HeLa cells. ATA-treated HeLa displayed typical morphological apoptotic characteristics and formation of DNA ladders in agarose gel electrophoresis. Flow cytometric analysis showed that the HeLa cell cycle was arrested in the G(0)/G(1) phase by ATA, and the apoptotic rate of HeLa cells treated with ATA 20 microg/mL for 48 h was 22.63 +/- 1.65%. Meanwhile, ATA increased the expression of Bax, decreased the expression of Bcl-2, and lowered the DeltaPsi(m). DEVD-CHO 2 microM could increase the viability of ATA-treated HeLa cells. These results indicate that ATA could significantly induce cell apoptosis through down-regulating Bcl-2 expression, up-regulating Bax expression, lowering DeltaPsi(m), and activating the caspase-3 pathway, and should be useful in the search for new potential anti-tumor agents and for developing semisynthetic oleanane-type triterpene derivatives with anti-tumor activity.  相似文献   

3.
The saponin ginsenoside Rd (1), isolated from Panax notoginseng, is used for the treatment of cardiovascular diseases, inflammation, different body pains, trauma, and internal and external bleeding due to injury. In this study, we report that 1 inhibits the cell growth of human cervical cancer (HeLa) cells in a concentration- and time-dependent manner, with an IC(50) value of 150.5+/-0.8 mcirog/ml after 48 h of incubation. The drug-treated cells displayed features of apoptosis, including typical morphological characteristics and formation of DNA ladders, as evident from agarose-gel electrophoresis. Flow-cytometric analysis showed that the cell-cycle distribution of HeLa cells exposed to 1 is characterized by a decrease of the G(0)/G(1)-phase and an increase of the S-phase cells, respectively, in a dose-dependent manner. The apoptotic rate of HeLa cells treated for 48 h with 210 microg/ml of 1 was 35.8%. Further, 1 was found to increase the expression of Bax and to decrease the expression of Bcl-2 proteins, respectively, and to lower the mitochondrial transmembrane potential of HeLa cells. The caspase-3 inhibitor DEVD-CHO (at 2 microM) increased the viability of HeLa cells treated with 1. Taken together, our study suggests that ginsenoside Rd (1) significantly inhibits HeLa cell proliferation, and induces cell apoptosis through down-regulating Bcl-2 expression, up-regulating Bax expression, lowering the mitochondrial transmembrane potential, and activating the caspase-3 pathway. Thus, 1 could serve as a lead to develop novel chemotherapeutic or chemopreventive agents against human cervical cancer.  相似文献   

4.
Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) is a major biological active component of Corni fructus that is known to induce apoptosis. However, the apoptotic mechanism of ursolic acid using primary malignant tumor (RC-58T/h/SA#4)-derived human prostate cells is not known. In the present study, ursolic acid significantly inhibited the growth of RC-58T/h/SA#4 cells in dose- and time-dependent manners. Ursolic acid induced cell death as evidenced by an increased proportion of cells in sub-G1 phase, the formation of apoptotic bodies, nuclear condensation, and DNA fragmentation. After ursolic acid treatment at concentrations above 40 μM, the activities of caspase-3, -8, and -9 were significantly increased compared that of control. Ursolic acid modulated the upregulation of Bax (pro-apoptotic) as well as the downregulation of Bcl-2 (anti-apoptotic). Ursolic acid also stimulated Bid cleavage, which indicates that the apoptotic action of caspase-8-mediated Bid cleavage leads to the activation of caspase-9. Thus, the apoptotic effect of ursolic acid was involved in extrinsic and intrinsic signaling pathways. In addition, ursolic acid increased the expression of the caspase-independent mitochondrial apoptosis factor (AIF) in RC-58T/h/SA#4 cells. The present results suggest that ursolic acid from Corni fructus activated apoptosis in RC-58T/h/SA#4 cells via both caspase-dependent and -independent pathways.  相似文献   

5.
A new quinone compound, p-hydroxymethoxybenzobijuglone (HMBBJ), isolated from Juglans mandshurica by bioassay-guided fractionation, showed cytotoxic activity against HeLa cell line. Its chemical structure was determined by NMR and HREIMS spectra. In this paper, its ability to induce apoptosis in HeLa cells was studied for the first time. After treated with HMBBJ, the growth of HeLa cells was inhibited and cells displayed typical morphological apoptotic characteristics. Data from flow cytometry analysis showed that the HeLa cell cycle was arrested in the G2/M phase by HMBBJ, and the apoptotic rate of HeLa cells increased in a dose-dependent manner. Meanwhile, HMBBJ increased the expression of caspase-8, -3 and Bax, decreased the expression of Bcl-2, and lowered the ΔΨm. These findings reveal that HMBBJ could efficiently induce HeLa cells apoptosis through mitochondria dependent pathway and activation of the caspase cascade, and it may be a potential chemotherapeutic candidate for the treatment of cancer.  相似文献   

6.
In this work, the effects of a pair of positional isomer of ganoderic acids (GAs), namely ganoderic acid Mf (GA-Mf) and ganoderic acid S (GA-S) purified from the fermented mycelia of Ganoderma lucidum, on induction of cell apoptosis and the apoptotic pathway in HeLa cells were investigated. The results demonstrate that both isomers decreased cell population growth on various human carcinoma cell lines by MTT assay, while GA-Mf had better selectivity between normal and cancer cells. The flow cytometry analysis indicated that treatment of HeLa cells with GA-S caused cell cycle arrest in the S phase, while GA-Mf caused cell cycle arrest in the G1 phase. Compared with GA-S, GA-Mf had more potent increase in the number of early and late apoptotic cells. Treatment of HeLa cells with each isomer decreased the mitochondria membrane potential and caused the release of cytochrome c from mitochondria into the cytosol. In addition, stimulation of caspase-3 and caspase-9 activity was observed. The Bax/Bcl-2 ratio was also increased in GA-treated HeLa cells. The results demonstrated that both isomers GA-Mf and GA-S induced apoptosis of human HeLa cells through a mitochondria mediated pathway, but they had the different cell cycle arrest specificity. The findings will be helpful to the development of useful cancer chemopreventive compounds from G. lucidum.  相似文献   

7.
Cervical cancer is one of the most common cancers affecting a woman's reproductive organs. Despite its frequency and recurrence, the death rate has been declining over the past 40 years, due to early detection and treatment. In a previous report [Shehata Marlene, Shehata Marian, Shehata Fady, Pater Alan. Apoptosis effects of Xrel3 c-Rel/Nuclear factor-kappa B homolog in human cervical cancer cells. Cell Biology International, in press], we studied the role of the NF-kappaB gene family in HeLa human cervical cancer cells, using the Xrel3 c-Rel homologue of Xenopus laevis. These results showed that the expression of Xrel3/c-Rel slowed cell growth, consistent with an upregulated expression of the cell cycle inhibitor p21 and the activated poly(ADP-ribose) polymerase (PARP) apoptosis effector. However, in this report, we examined more apoptotic and anti-apoptotic factors acting upstream and downstream in apoptosis pathways after cisplatin treatment of HeLa cervical cancer cells. After 1 microM cisplatin treatment, Xrel3 had an anti-apoptotic effect, based on significantly lower levels of apoptotic proteins, including caspase-8, caspase-3 and p21. Anti-apoptotic BAG-1 isoforms were upregulated. After 5 microM cisplatin treatment, expression of HeLa Xrel3 had an apoptotic effect, based on significantly increased expression of the cell cycle inhibitor p21 and apoptotic proteins, including cleaved PARP, caspase-8, and caspase-3. However, anti-apoptotic Bcl-2 and Bcl-X(L) were elevated and the cell cycle regulator cyclin D1 was slightly upregulated with both 1 and 5 microM cisplatin treatment. The HPV E6 oncoprotein showed no significant changes. These results support previous conclusions on the potential anti-apoptotic effects of c-Rel/NF-kappaB in mild stress environments, as opposed to the apoptotic effects associated with high stress conditions [Lake BB, Ford R, Kao KR. Xrel3 is required for head development in Xenopus laevis. Development 2001; 128(2), 263-73.]. Thus, c-Rel/NF-kappaB may potentially be of clinical significance in chemotherapy.  相似文献   

8.
Pierisin-1, a 98-kDa protein that induces apoptosis in mammalian cell lines, is capable of being incorporated into cells where it ADP-ribosylates guanine residues in DNA. To investigate the apoptotic pathway induced by this unique protein, the bcl-2 gene was transfected into HeLa cells. Cy2-fluorescent pierisin-1 was incorporated into the resultant cells expressing Bcl-2 protein and ADP-ribosylated dG was detected to almost the same extent as in parent cells. However, bcl-2-transfected HeLa cells did not display apoptotic morphological changes, PARP cleavage, and DNA fragmentation, indicating acquisition of resistance. In parent HeLa cells, activation of caspase-9 and release of cytochrome c were observed after 8h treatment with 0.5ng/ml pierisin-1. Caspase substrate assays revealed further cleavage of Ac-DEVD-pNA, Ac-VDVAD-pNA, and Ac-VEID-pNA, suggesting activation of caspase-2, -3, and -6 in pierisin-1-treated HeLa cells. The caspase-3 inhibitor, Ac-DEVD-CHO, was also found to inhibit apoptosis. In contrast, this caspase activation was not observed in bcl-2-transfected HeLa cells. Our results thus indicate that pierisin-1-induced apoptosis is mediated primarily via a mitochondrial pathway involving Bcl-2 and caspases.  相似文献   

9.
Naringenin (NGEN), a naturally occurring citrus flavonone, has shown cytotoxicity in various human cancer cell lines as well as inhibitory effects on tumor growth. It has been also shown to access the brain and there is an increasing interest in its therapeutic applications. The up-regulated expression of Cx43 leads to the suppression of tumorigenicity with promoted apoptotic events. In this study, we investigated the in vivo effect of NGEN in fostering apoptosis in cerebrally implanted C6 glioma cells rat model. We analysed the expression of Cx43, caspase-3, caspase-9, Cyt C, Bcl-2 and Bax in vivo by immunoblot analysis and the ultra structure of brain cells by transmission electron microscopy. Supplementation of NGEN to experimental animals modulated Bcl-2/Bax ratio and up-regulation of caspase-3 and 9. NGEN was also found to up-regulate the expression of Cx43. These findings provide evidence that NGEN’s apoptotic effect, modulation of Bcl-2/Bax ratio leads to release of Cyt C from mitochondria, thereby activation of caspase-3 and caspase-9 is mediated by enhanced expression of Cx43. These observations were well supported by the transmission electron microscopic results which showed the characteristic apoptotic features. In conclusion, our findings demonstrate that NGEN promotes apoptosis in rat C6 glioma model.  相似文献   

10.
摘要 目的:探讨Smac基因调控Caspase-3表达对紫杉醇耐药肺腺癌细胞株生物活性及经典凋亡信号通路的作用机制。方法:取构建好的耐药A549细胞,将其分为A549细胞(LC)组、A549细胞+Smac-NC(SN)组、A549细胞+Smac抑制剂(SI)组、A549细胞+Smac激动剂(SM)组、A549细胞+Caspase-3-NC(CN)组、A549细胞+Caspase-3抑制剂(CI)组、A549细胞+Caspase-3激动剂(CM)组、A549细胞+Smac激动剂+Caspase-3激动剂(MM)组;Real-time PCR法检测正常肺上皮细胞及4种肺腺癌细胞系中Smac、Caspase-3表达水平,将阴性对照、Smac、Caspase-3类似物转染至紫杉醇耐药肺腺癌细胞株,MTT法检测细胞增殖,流式细胞仪检测细胞凋亡,免疫印迹法检测经典凋亡信号通路表达,并分析Smac与Caspase-3的相关性。结果:肺腺癌细胞系中的Smac、Caspase-3 mRNA表达量显著低于正常肺上皮细胞系BEAS-2B(P<0.05),其中A549的Smac、Caspase-3 mRNA值最小(P<0.05),因此选取其作为此次实验细胞;LC组与SN组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与SN组相比,SI组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显降低(P<0.05),增殖率、Bcl-2表达明显升高(P<0.05),与SI组相比,SM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);LC组与CN组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与CN组相比,CI组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显降低(P<0.05),增殖率、Bcl-2表达明显升高(P<0.05),与CI组相比,CM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);SM组与CM组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与CM组相比,MM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);Smac与Caspase-3呈现正相关(r=0.470,P=0.002),组间具有显著差异。结论:Smac基因可显著改善紫杉醇耐药肺腺癌细胞株细胞生物活性,并激活经典凋亡信号通路,其作用机制可能与调控Caspase-3表达有关。  相似文献   

11.
12.
Cervical cancer is considered a common yet preventable cause of death in women. In this report, we studied the role of the NF-kappaB gene family in HeLa human cervical cancer cells, using the Xrel3 c-Rel homologue of Xenopus laevis. The expression of Xrel3/c-Rel slowed cell growth 6-fold, consistent with an upregulated expression of the cell cycle inhibitor p21. The activated PARP apoptosis effector was significantly increased (P<0.01). Based on cell viability assays Xrel3 provided an anti-apoptotic effect in 1 microM cisplatin, and this was associated with significantly lower levels of the apoptotic proteins Bax and MDM-2 (P<0.05). Furthermore, there was a 3-fold drop in the level of the tumor suppressor protein p53. In 5 microM cisplatin, expression of HeLa Xrel3 enhanced apoptosis by significantly increasing the expression of the apoptotic proteins Bax and MDM-2 (P<0.05). However, the tumor suppressor protein p53 showed a significant decrease (P<0.05) relative to the control. Thus, c-Rel/NF-kappaB may potentially be of clinical significance, especially in tumors exhibiting resistance to high-level chemotherapy.  相似文献   

13.
Over the recent few years rutin has gained wider attention in exhibiting inhibitory potential against several oncotargets for inducing apoptotic and antiproliferative activity in several human cancer cells. Several deregulated signaling pathways are implicated in cancer pathogenesis. Therefore we have inclined our research towards exploring the anticancerous efficacy of a very potent phytocompound for modulating the incontinent expression of these two crucial E6 and E7 oncogenes. Further, inhibitory efficacy of rutin against human papillomavirus (HPV)-E6 and E7 oncoproteins in cervical cancer has not been elucidated yet. This research addresses the growth inhibitory efficacy of rutin against E6 and E7 oncoproteins in HeLa cells, which is known to inactivate several tumor suppressor proteins such as p53 and pRB. Rutin treatment exhibited reduced cell viability with increased cell accumulation in G0/G1 phase of cell cycle in HeLa cell lines. Additionally, rutin treatment has also led to down-regulation of E6 and E7 expression associated with an increased expression of p53 and pRB levels. This has further resulted in enhanced Bax expression and decreased Bcl-2 expression releasing cytochrome c into cytosol followed by caspase cascade activation with cleavage of caspase-3, caspase-8 and caspase-9. Further, in silico studies have also supported our in vitro findings by exhibiting significant binding energy against selected target oncoproteins. Therefore, our research findings might recommend rutin as one of the potent drug candidate in cervical cancer management via targeting two crucial oncoproteins associated with viral progression.  相似文献   

14.
The present study examined kinetics of apoptosis and expression of apoptosis-related proteins Bcl-2, Bax, and caspase-3 in the CA3 hippocampus cells after diffuse brain injury (DBI) induced experimentally in rats. Percentage of apoptotic cells and expressions of above proteins were examined by flow cytometry and immunohistochemistry. Substantial neuronal apoptosis was documented in the CA3 hippocampus cells after DBI (22.26 ± 2.97 % at 72 h after DBI vs. 2.92 ± 0.88 % in sham-operated animals). Expression of Bc1-2 decreased, while expression of Bax and caspase-3 increased after DBI, with caspase-3 expression peaking after that of Bax (72 vs. 48 h, respectively). Further, the Bc1-2/Bax expression ratio decreased prior to increase of caspase-3 expression. In conclusion, cell apoptosis and altered expressions of Bcl-2, Bax, and caspase-3 are present in the CA3 region of hippocampus after experimental DBI. Changes in the Bc1-2/Bax expression ratio may facilitate activation of caspase-3 and aggravate neuronal apoptosis after brain injury.  相似文献   

15.
Tang W  Liu JW  Zhao WM  Wei DZ  Zhong JJ 《Life sciences》2006,80(3):205-211
Ganoderma lucidum is a well-known traditional Chinese medicinal herb containing many bioactive compounds. Ganoderic acid T (GA-T), which is a lanostane triterpenoid purified from methanol extract of G. lucidum mycelia, was found to exert cytotoxicity on various human carcinoma cell lines in a dose-dependent manner, while it was less toxic to normal human cell lines. Animal experiments in vivo also showed that GA-T suppressed the growth of human solid tumor in athymic mice. It markedly inhibited the proliferation of a highly metastatic lung cancer cell line (95-D) by apoptosis induction and cell cycle arrest at G(1) phase. Moreover, reduction of mitochondria membrane potential (Delta psi(m)) and release of cytochrome c were observed during the induced apoptosis. Our data further indicate that the expression of proteins p53 and Bax in 95-D cells was increased in a time-dependent manner, whereas the expression of Bcl-2 was not significantly changed; thus the ratio of Bcl-2/Bax was decreased. The results show that the apoptosis induction of GA-T was mediated by mitochondrial dysfunctions. Furthermore, stimulation of the activity of caspase-3 but not caspase-8 was observed during apoptosis. The experiments using inhibitors of caspases (Z-VAD-FMK, Z-DEVD-FMK and Z-IETD-FMK) confirmed that caspase-3 was involved in the apoptosis. All our findings demonstrate that GA-T induced apoptosis of metastatic lung tumor cells through intrinsic pathway related to mitochondrial dysfunction and p53 expression, and it may be a potentially useful chemotherapeutic agent.  相似文献   

16.
A new ursane-based compound, astilbotriterpenic acid (1), was isolated from the rhizomes of Astilbe chinensis. Its structure was determined on the basis of chemical evidence and extensive spectroscopic methods, including 1D- and 2D-NMR. The pentacyclic triterpenoid 1 was assayed for its in vitro cytotoxicity against Bcap37, HeLa, HepG2, HO-8910, K562, PAA, SGC7901, and P388 cancer cells, as well as for its apoptosis-inducing activity in HeLa cells. Compound 1 was found to strongly inhibit tumor-cell growth through induction of apoptosis and may, thus, be further evaluated as a novel chemotherapeutic agent.  相似文献   

17.
Aims Effects of insulin and ascorbic acid on expression of Bcl-2 family proteins and caspase-3 activity in hippocampus of diabetic rats were evaluated in this study. Methods Diabetes was induced in Wistar male rats by streptozotocin (STZ). Six weeks after verification of diabetes, the animals were treated for 2 weeks with insulin or/and ascorbic acid in separate groups. Hippocampi of rats were removed and evaluation of Bcl-2, Bcl-xL, and Bax proteins expression in frozen hippocampi tissues were done by SDS-PAGE electrophoresis and blotting. The Bcl-2, Bcl-xL, and Bax proteins bands were visualized after incubation with specific antibodies using enhanced chemiluminescences method. Caspase-3 activity was determined using the caspase-3/CPP32 Fluorometric Assay Kit. Results Diabetic rats showed increase in Bax protein expression and decrease in Bcl-2 and Bcl-xL proteins expression. The Bax/Bcl-2 and Bax/Bcl-xL ratios were found higher compared with non-diabetic control group. Treatments with insulin and/or ascorbic acid were resulted in decrease in Bax protein expression and increase in Bcl-2 and Bcl-xL proteins expression. The Bcl-2/Bax and Bcl-xL/Bax ratios were found higher in treated groups than untreated diabetic group. Caspase-3 activity level was found higher in diabetic group compared with non-diabetic group. Treatment with insulin and ascorbic acid did downregulated caspase-3 activity. Conclusions Our data provide supportive evidence to demonstrate the antiapoptotic effects of insulin and ascorbic acid on hippocampus of STZ-induced diabetic rats.  相似文献   

18.
Doxorubicin induces caspase-3 activation and apoptosis in Jurkat cells but inhibition of this enzyme did not prevent cell death, suggesting that another caspase(s) is critically implicated. Western blot analysis of cell extracts indicated that caspases 2, 3, 4, 6, 7, 8, 9, and 10 were activated by doxorubicin. Cotreatment of cells with the caspase inhibitors Ac-DEVD-CHO, Z-VDVAD-fmk, Z-IETD-fmk, and Z-LEHD-fmk alone or in combination, or overexpression of CrmA, prevented many morphological features of apoptosis but not loss of mitochondrial membrane potential (delta(psi)m), phospatidilserine exposure, and cell death. Western blot analysis of cells treated with doxorubicin in the presence of inhibitors allowed elucidation of the sequential order of caspase activation. Z-IETD-fmk or Z-LEHD-fmk, which inhibit caspase-9 activity, blocked the activation of all caspases studied, lamin B degradation, and the development of apoptotic morphology, but not cell death. All morphological and biochemical features of apoptosis, as well as cell death, were prevented by cotreatment of cells with the general caspase inhibitor Z-VAD-fmk or by overexpression of Bcl-2. Doxorubicin cytotoxicity was also blocked by the protein synthesis inhibitor cycloheximide. Delayed addition of Z-VAD-fmk after doxorubicin treatment, but prior to the appearance of cells displaying a low delta(psi)m, prevented cell death. These results, taken together, suggest that the key mediator of doxorubicin-induced apoptosis in Jurkat cells may be an inducible, Z-VAD-sensitive caspase (caspase-X), which would cause delta(psi)m loss, release of apoptogenic factors from mitochondria, and cell death.  相似文献   

19.
We previously showed (Gastroenterology 123: 206-216, 2002) that lysophosphatidic acid (LPA) protects and rescues rat intestinal epithelial cells (IEC-6) from apoptosis. Here, we provide evidence for the LPA-elicited inhibition of the mitochondrial apoptotic pathway leading to attenuation of caspase-3 activation. Pretreatment of IEC-6 cells with LPA inhibited campothecin-induced caspase-9 and caspase-3 activation and DNA fragmentation. A caspase-9 inhibitor peptide mimicked the LPA-elicited antiapoptotic activity. LPA elicited ERK1/ERK2 and PKB/Akt phosphorylation. The LPA-elicited antiapoptotic activity and inhibition of caspase-9 activity were abrogated by pertussis toxin, PD 98059, wortmannin, and LY 294002. LPA reduced cytochrome c release from mitochondria and prevented activation of caspase-9. LPA prevented translocation of Bax from cytosol to mitochondria and increased the expression of the antiapoptotic Bcl-2 mRNA and protein. LPA had no effect on Bcl-xl, Bad, and Bak mRNA or protein expression. These data indicate that LPA protects IEC-6 cells from camptothecin-induced apoptosis through G(i)-coupled inhibition of caspase-3 activation mediated by the attenuation of caspase-9 activation due to diminished cytochrome c release, involving upregulation of Bcl-2 protein expression and prevention of Bax translocation.  相似文献   

20.
Treatment of human promyelocytic leukemia HL-60 cells with apigeninidin could induce cytotoxicity (IC50 = ~80 μM), along with apoptotic sub-G1 cells, TUNEL-positive apoptotic DNA fragmentation, activation of the multidomain pro-apoptotic Bcl-2 proteins (Bak and Bax), mitochondrial membrane potential (Δψm) loss, release of mitochondrial cytochrome c and AIF into the cytoplasm, activation of caspase-9, -3, -8, and -7, and cleavage of PARP and lamin B. These induced apoptotic events were accompanied by decrease of Bcl-2 level and increase of Bak and Bax levels. Apigeninidin-induced sub-G1 cells and activation of Bak and Bax were also detected in human acute leukemia Jurkat T cells, but not in Jurkat T cells overexpressing Bcl-2. Pretreatment of HL-60 cells with the pan-caspase inhibitor z-VAD-fmk reduced significantly apigeninidin-induced sub-G1 cells and caspase cascade activation, whereas it failed to suppress Bak and Bax activations, Δψm loss, and release of mitochondrial cytochrome c and AIF. None of FADD and caspase-8 deficiencies affected the sensitivity of Jurkat T cells to apigeninidin-induced cytotoxicity. These results demonstrated that apigeninidin-induced apoptosis was mediated by activation of Bak and Bax, mitochondrial damage and resultant release of not only cytochrome c, causing caspase cascade activation, but also caspase-independent death effector AIF in HL-60 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号