首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Conformational energy computations were carried out on collagenlike triple-stranded conformations of several poly(tripeptide)s with the general structure CH3CO? (Gly? X? Y)3? NHCH3. The sequences considered had various amino acid residues in position X or Y of the central tripeptide, with either Pro or Ala as a neighbor, i.e., Gly-X-Pro, Gly-X-Ala, Gly-Pro-Y, and Gly-Ala-Y. Minimum-energy conformations were computed for the side chains, and their distributions were compared for the four sequences. The residues used were Abu (= α-aminobutyric acid), Leu, Phe, Ser, Asp, Asn, Val, Ile, and Thr. The conformational energy of a ? Ch2? CH3 side chain in Abu was mapped as a function of the dihedral angle χ1. Intrastrand interactions with neighboring residues do not affect the conformations of a side chain in position Y, and they have a minor effect on it in the X-Ala sequence, but they strongly restrict the conformational freedom of the side chain in the X-Pro sequence. Conversely, interstrand interactions do not affect side chains in position X, but they strongly restrict the conformational freedom of a side chain in position Y if there is a nearby Pro residue in a neighboring strand. Hydrogen bonds with the backbone can be formed in some conformations of long polar side chains, such as Asp, Asn, or Gln. All amino acid residues can be accommodated in collagen. Because of the interactions mentioned above, steric and energetic constraints can be correlated with observed preferences of certain amino acids for positions X or Y in collagen. Hence, these preferences may be explained, in part, in terms of differences in the conformational freedom of the side chains in the triple-stranded structure.  相似文献   

2.
We have determined the N- and C-capping preferences of all 20 amino acids by substituting residue X in the peptides NH2-XAKAAAAKAAAAKAAGY-CONH2 and in Ac-YGAAKAAAAKAAAAKAX-CO2H. Helix contents were measured by CD spectroscopy to obtain rank orders of capping preferences. The data were further analyzed by our modified Lifson-Roig helix-coil theory, which includes capping parameters (n and c), to find free energies of capping (-RT ln n and -RT ln c), relative to Ala. Results were obtained for charged and uncharged termini and for different charged states of titratable side chains. N-cap preferences varied from Asn (best) to Gln (worst). We find, as expected, that amino acids that can accept hydrogen bonds from otherwise free backbone NH groups, such as Asn, Asp, Ser, Thr, and Cys generally have the highest N-cap preference. Gly and acetyl group are favored, as are negative charges in side chains and at the N-terminus. Our N-cap preference scale agrees well with preferences in proteins. In contrast, we find little variation when changing the identity of the C-cap residue. We find no preference for Gly at the C-cap in contrast to the situation in proteins. Both N-cap and C-cap results for Tyr and Trp are inaccurate because their aromatic groups affect the CD spectrum. The data presented here are of value in rationalizing mutations at capping sites in proteins and in predicting the helix contents of peptides.  相似文献   

3.
Mean square optical anisotropies and molar Kerr constants were calculated for homopolypeptides of the 20 natural amino acids and of several enzymes and proteins in the random-coil state. The effect of hydration was taken into account in constructing the molecular potential that gives the conformational energies as a function of the rotational angles phi and psi of the backbone and chi(1) of the side chain. The Rotational Isomeric State model was used in calculated energies, the Valence Optical Scheme and the matrix calculus technique of Flory being employed in the evaluation of the optical properties. The results are compared with calculations for the same substances that were performed without taking into account the solvent, as well as with other similar studies. The Kerr constant is confirmed as being one of the most sensitive properties of a given polypeptide to the residue class and to the sequence of those residues.  相似文献   

4.
5.
The distribution of the chi(1), chi(2) dihedral angles in a dataset consisting of 12 unrelated 4-alpha-helical bundle proteins was determined and qualitatively compared with that observed in globular proteins. The analysis suggests that the 4-alpha-helical bundle motif could occasionally impose steric constraints on side chains: (i) the side-chain conformations are limited to only a subset of the conformations observed in globular proteins and for some amino acids they are sterically more constrained than those in helical regions of globular proteins; (ii) aspartic acid and asparagine occasionally adopt rotamers that have not been previously reported for globular or helical proteins; (iii) some rotamers of tyrosine and isoleucine are predominantly or exclusively associated with hydrophobic core positions (a, d); (iv) mutations in the hydrophobic core occur preferentially between residue types which among other physicochemical properties also share a predominant rotamer.  相似文献   

6.
Calculations of the dependence of the conformational energy and the rotational strength of the amide n–π* electronic transition (in a series of α-helical polyhel-α- amino acids with different side chains) on conformation have been carried out. The conformational energies were computed by procedures developed in this laboratory; the computation of rotational strengths was carried out by the method of Schellman and Oriel, with a slight modification. Polyamino acids with both nonpolar and polar side chains were considered; in the latter case, it was assumed that the only influence of the polar side chain was on the backbone conformation and on the electrostatic field which perturbs the amide chromophore of the backbone. Only conformations in the range of backbone dihedral angles of the right- and left-handed a-helices were considered, and the assumption of regularity (i.e., uniformity of dihedral angles in every residue) was made. The rotational strength per residue was found to vary markedly with chain length (in oligomers of up to 40 residues long); both the conformational energy per residue and the rotational strength per residue were found to vary significantly with the backbone conformation, which in turn depends on the nature of the side chain. The geometry of the hydrogen bond in the α-helical backbone is the most important factor which influences the dependence of the rotational strength on conformation. The implications of these results, for the interpretation of experimental circular dichroism and optical rotatory dispersion data, are discussed.  相似文献   

7.
Recognition of DNA sequences by the repressor of bacteriophage 434   总被引:2,自引:0,他引:2  
The structure of a complex between the DNA-binding domain of phage 434 repressor and a 14 base-pair synthetic DNA operator reveals the molecular interactions important for sequence-specific recognition. A set of contacts with DNA backbone, notably involving hydrogen bonds between peptide-NH groups and DNA phosphates, position the repressor and fix the DNA configuration. Direct interactions between amino acid side chains and DNA bases involve nonpolar van der Waals contacts as well as hydrogen bonds. The structures of the repressor domain and of the 434 cro protein are extremely similar. There appear to be no major conformational changes in the proteins when they bind to DNA.  相似文献   

8.
Conformational constraints of amino acid side chains in alpha-helices   总被引:3,自引:0,他引:3  
L Piela  G Nemethy  H A Scheraga 《Biopolymers》1987,26(8):1273-1286
The conformational freedom of amino acid side chains is strongly reduced when the side chains occur on an α-helix. A quantitative evaluation of this freedom has been carried out by means of conformational energy computations for all naturally occurring amino acids and for α-aminobutyric acid when they are placed in the middle of a right-handed poly(L-alanine) α-helix. One of the three possible rotameric states for rotation around the Cα ? Cβ bond (viz. g+) is excluded completely on the helix because of steric hindrance, and the relative populations of the other two rotamers (t and g?) are altered because of steric interactions and the reduction of hydrogen-bonding possibilities. The computed tendencies of the changes in distributions of rotamers, on going from an ensemble of all backbone conformations to the α-helix, agree with the observed tendencies in proteins. Minimum-energy side-chain conformations in an α-helix have been tabulated for use in conformational energy computations on polypeptides.  相似文献   

9.
The study of backbone and side-chain internal motions in proteins and peptides is crucial to having a better understanding of protein/peptide "structure" and to characterizing unfolded and partially folded states of proteins and peptides. To achieve this, however, requires establishing a baseline for internal motions and motional restrictions for all residues in the fully, solvent-exposed "unfolded state." GXG-based tripeptides are the simpliest peptides where residue X is fully solvent exposed in the context of an actual peptide. In this study, a series of GXG-based tripeptides has been synthesized with X being varied to include all twenty common amino acid residues. Proton-coupled and -decoupled (13)C-nmr relaxation measurements have been performed on these twenty tripeptides and various motional models (Lipari-Szabo model free approach, rotational anisotropic diffusion, rotational fluctuations within a potential well, rotational jump model) have been used to analyze relaxation data for derivation of angular variances and motional correlation times for backbone and side-chain chi(1) and chi(2) bonds and methyl group rotations. At 298 K, backbone motional correlation times range from about 50 to 85 ps, whereas side-chain motional correlation times show a much broader spread from about 18 to 80 ps. Angular variances for backbone phi,psi bond rotations range from 11 degrees to 23 degrees and those for side chains vary from 5 degrees to 24 degrees for chi(1) bond rotations and from 5 degrees to 27 degrees for chi(2) bond rotations. Even in these peptide models of the "unfolded state," side-chain angular variances can be as restricted as those for backbone and beta-branched (valine, threonine, and isoleucine) and aromatic side chains display the most restricted motions probably due to steric hinderence with backbone atoms. Comparison with motional data on residues in partially folded, beta-sheet-forming peptides indicates that side-chain motions of at least hydrophobic residues are less restricted in the partially folded state, suggesting that an increase in side-chain conformational entropy may help drive early-stage protein folding. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

10.
Various theoretical concepts, such as free energy potentials, electrostatic interaction potentials, atomic packing, solvent-exposed surface, and surface charge distribution, were tested for their ability to discriminate between native proteins and misfolded protein models. Misfolded models were constructed by introducing incorrect side chains onto polypeptide backbones: side chains of the alpha-helical hemerythrin were modeled on the beta-sheeted backbone of immunoglobulin VL domain, whereas those of the VL domain were similarly modeled on the hemerythrin backbone. CONGEN, a conformational space sampling program, was used to construct the side chains, in contrast to the previous work, where incorrect side chains were modeled in all trans conformations. Capability of the conformational search procedure to reproduce native conformations was gauged first by rebuilding (the correct) side chains in hemerythrin and the VL domain: constructs with r.m.s. differences from the x-ray side chains 2.2-2.4 A were produced, and many calculated conformations matched the native ones quite well. Incorrectly folded models were then constructed by the same conformational protocol applied to incorrect amino acid sequences. All CONGEN constructs, both correctly and incorrectly folded, were characterized by exceptionally small molecular surfaces and low potential energies. Surface charge density, atomic packing, and Coulomb formula-based electrostatic interactions of the misfolded structures and the correctly folded proteins were similar, and therefore of little interest for diagnosing incorrect folds. The following criteria clearly favored the native structures over the misfolded ones: 1) solvent-exposed side-chain nonpolar surface, 2) number of buried ionizable groups, and 3) empirical free energy functions that incorporate solvent effects.  相似文献   

11.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

12.
Using an information theoretic formalism, we optimize classes of amino acid substitution to be maximally indicative of local protein structure. Our statistically-derived classes are loosely identifiable with the heuristic constructions found in previously published work. However, while these other methods provide a more rigid idealization of physicochemically constrained residue substitution, our classes provide substantially more structural information with many fewer parameters. Moreover, these substitution classes are consistent with the paradigmatic view of the sequence-to-structure relationship in globular proteins which holds that the three-dimensional architecture is predominantly determined by the arrangement of hydrophobic and polar side chains with weak constraints on the actual amino acid identities. More specific constraints are imposed on the placement of prolines, glycines, and the charged residues. These substitution classes have been used in highly accurate predictions of residue solvent accessibility. They could also be used in the identification of homologous proteins, the construction and refinement of multiple sequence alignments, and as a means of condensing and codifying the information in multiple sequence alignments for secondary structure prediction and tertiary fold recognition. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The ability to alter protein structure by site-directed mutagenesis has revolutionized biochemical research. Controlled mutations at the DNA level, before protein translation, are now routine. These techniques allow specific, high fidelity interconversion largely between 20 natural, proteinogenic amino acids. Nonetheless, there is a need to incorporate other amino acids, both natural and unnatural, that are not accessible using standard site-directed mutagenesis and expression systems. Post-translational chemistry offers access to these side chains. Nearly half a century ago, the idea of a 'chemical mutation' was proposed and the interconversion between amino acid side chains was demonstrated on select proteins. In these isolated examples, a powerful proof-of-concept was demonstrated. Here, we revive the idea of chemical mutagenesis and discuss the prospect of its general application in protein science. In particular, we consider amino acids that are chemical precursors to a functional set of other side chains. Among these, dehydroalanine has much potential. There are multiple methods available for dehydroalanine incorporation into proteins and this residue is an acceptor for a variety of nucleophiles. When used in conjunction with standard genetic techniques, chemical mutagenesis may allow access to natural, modified, and unnatural amino residues on translated, folded proteins.  相似文献   

14.
Structural basis of the RNA-binding specificity of human U1A protein.   总被引:10,自引:1,他引:9       下载免费PDF全文
F H Allain  P W Howe  D Neuhaus    G Varani 《The EMBO journal》1997,16(18):5764-5772
The RNP domain is a very common eukaryotic protein domain involved in recognition of a wide range of RNA structures and sequences. Two structures of human U1A in complex with distinct RNA substrates have revealed important aspects of RNP-RNA recognition, but have also raised intriguing questions concerning the origin of binding specificity. The beta-sheet of the domain provides an extensive RNA-binding platform for packing aromatic RNA bases and hydrophobic protein side chains. However, many interactions between functional groups on the single-stranded nucleotides and residues on the beta-sheet surface are potentially common to RNP proteins with diverse specificity and therefore make only limited contribution to molecular discrimination. The refined structure of the U1A complex with the RNA polyadenylation inhibition element reported here clarifies the role of the RNP domain principal specificity determinants (the variable loops) in molecular recognition. The most variable region of RNP proteins, loop 3, plays a crucial role in defining the global geometry of the intermolecular interface. Electrostatic interactions with the RNA phosphodiester backbone involve protein side chains that are unique to U1A and are likely to be important for discrimination. This analysis provides a novel picture of RNA-protein recognition, much closer to our current understanding of protein-protein recognition than that of DNA-protein recognition.  相似文献   

15.
The distributions of side-chain conformations in 258 crystal structures of oligopeptides have been analyzed. The sample contains 321 residues having side chains that extend beyond the C beta atom. Statistically observed preferences of side-chain dihedral angles are summarized and correlated with stereochemical and energetic constraints. The distributions are compared with observed distributions in proteins of known X-ray structures and with computed minimum-energy conformations of amino acid derivatives. The distributions are similar in all three sets of data, and they appear to be governed primarily by intraresidue interactions. In side chains with no beta-branching, the most important interactions that determine chi 1 are those between the C gamma H2 group and atoms of the neighboring peptide groups. As a result, the g- conformation (chi 1 congruent to -60 degrees) occurs most frequently for rotation around the C alpha-C beta bond in oligopeptides, followed by the t conformation (chi 1 congruent to 180 degrees), while the g+ conformation (chi 1 congruent to 60 degrees) is least favored. In residues with beta-branching, steric repulsions between the C gamma H2 or C gamma H3 groups and backbone atoms govern the distribution of chi 1. The extended (t) conformation is highly favored for rotation around the C beta-C gamma and C gamma-C delta bonds in unbranched side chains, because the t conformer has a lower energy than the g+ and g- conformers in hydrocarbon chains. This study of the observed side-chain conformations has led to a refinement of one of the energy parameters used in empirical conformational energy computations.  相似文献   

16.
17.
The conformational profile of the eight stereoisomeric 2-amino-3-phenylnorbornane-2-carboxylic acids (2-amino-3-phenylbicyclo[2.2.1]heptane-2-carboxylic acids) has been assessed by computational methods. These molecules constitute a series of four enantiomeric pairs that can be considered as rigid analogues of either L- or D-phenylalanine. The conformational space of their N-acetyl methylamide derivatives has been explored within the molecular mechanics framework, using the parm94 set of parameters of the AMBER force field. Local minimum energy conformations have been further investigated at the ab initio level by means of the Hartree-Fock and second order Moller-Plesset perturbation energy calculations using a 6-31G(d) basis set. The results of the present work suggest that the bulky norbornane structure induces two kinds of conformational constraints on the residues. On one hand, those of a steric nature directly imposed by the bicycle on the peptide backbone and, on the other hand, those that limit the orientations attainable by the phenyl ring which, in turn, reduces further the flexibility of the peptide backbone. A comparative analysis of the conformational profile of the phenylnorbornane amino acids with that of the norbornane amino acids devoid of the beta-phenyl substituent suggests that the norbornane system hampers the residue to adopt extended conformations in favour of C7-like structures. However, the bicycle itself does not impart a clear preference for any of the two possible C7 minima. It is the aromatic side chain, which is forced to adopt an almost eclipsed orientation, that breaks this symmetry introducing a marked preference for a single region of the (phi, psi) conformational space in each of the phenylalanine norbornane analogues investigated.  相似文献   

18.
Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.  相似文献   

19.
20.
Structural uniqueness is characteristic of native proteins and is essential to express their biological functions. The major factors that bring about the uniqueness are specific interactions between hydrophobic residues and their unique packing in the protein core. To find the origin of the uniqueness in their amino acid sequences, we analyzed the distribution of the side chain rotational isomers (rotamers) of hydrophobic amino acids in protein tertiary structures and derived deltaS(contact), the conformational-entropy changes of side chains by residue-residue contacts in each secondary structure. The deltaS(contact) values indicate distinct tendencies of the residue pairs to restrict side chain conformation by inter-residue contacts. Of the hydrophobic residues in alpha-helices, aliphatic residues (Leu, Val, Ile) strongly restrict the side chain conformations of each other. In beta-sheets, Met is most strongly restricted by contact with Ile, whereas Leu, Val and Ile are less affected by other residues in contact than those in alpha-helices. In designed and native protein variants, deltaS(contact) was found to correlate with the folding-unfolding cooperativity. Thus, it can be used as a specificity parameter for designing artificial proteins with a unique structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号