首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In vitro effects of dihydroergotoxine, dihydroergosine, dihydroergotamine, alpha-dihydroergocriptine (ergot alkaloids), diazepam, methyl-beta-Carboline-3-carboxilate (beta-CCM), flumazenil (benzodiazepines), gamma-amino butyric acid (GABA) and thiopental (barbiturate) were studied on mouse brain (cerebrum minus cerebral cortex) benzodiazepine binding sites labeled with 3H-flunitrazepam. Specific, high affinity (affinity constant, Kd = 57.7 8.6 nM) binding sites for 3H-flunitrazepam on mouse brain membranes were identified. All benzodiazepine drugs inhibited 3H-flunitrazepam binding with nanomolar potencies. In contrast to benzodiazepines, all ergot drugs, GABA and thiopental produced an enhancement of 3H-flunitrazepam binding to its binding site at the GABAA receptor of the mouse brain. The rank order of potency was: neurotransmitter (GABA) > dihydroergotoxine > thiopental > alpha-dihydroergocriptine > dihydroergosine > dihydroergotamine. The results suggest that dihydrogenated ergot derivatives do not bind to the brain benzodiazepine binding sites labeled with 3H-flunitrazepam. However, an enhancement of 3H-flunitrazepam binding by all ergot drugs tested, clearly identifies an allosteric interaction with the benzodiazepine binding sites of GABAA receptors.  相似文献   

2.
We investigated the distribution of serotonin (5-HT) receptors of type 3 (5-HT3) in human brain areas, by means of the the specific binding of [3H]GR65630. The brains were obtained during autoptic sessions from 6 subjects. Human brain membranes and the binding of [3H]GR65630 were carried out according to standardized methods. The highest density (Bmax ± 6 SD, fmol/mg protein) of [3H]GR65630 binding sites was found in area postrema (13.1 ± 9.7), followed at a statistically lower level, by nucleus tractus solitarius (6.7 ± 3.4), nervus vagus (5.5 ± 2.1), striatum (4.8 ± 2.4) with a progressive decrease in amygdala, olivar nuclei, hippocampus, olfactory bulbus and prefrontal cortex, and then by the other cortical areas and the cerebellum, where no binding was detected. These observations extend previous findings on the distribution of 5-HT3 receptors and confirm interspecies variations that might explain the heterogeneous properties of 5-HT3 receptors in different animals.  相似文献   

3.
An asymmetric distribution of GABA binding sites was found in the cerebral cortex, hippocampus, cerebellar hemispheres, striatum, and thalamus. Higher levels of [3H]GABA binding were observed in the left-side of most brain areas and in a greater percentage of adult rats, but the opposite asymmetry was found in the thalamus. A similar left-right difference in cerebral hemispheres was also found in five day-old rats, suggesting the genetic predetermination of asymmetry.  相似文献   

4.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

5.
5-Hydroxytryptamine2A (5-HT2A) receptor kinetics was studied in cerebral cortex and brain stem of streptozotocin (STZ) induced diabetic rats. Scatchard analysis with [3H] (±) 2,3dimethoxyphenyl-1-[2-(4-piperidine)-methanol] ([3H]MDL100907) in cerebral cortex showed no significant change in maximal binding (Bmax) in diabetic rats compared to controls. Dissociation constant (Kd) of diabetic rats showed a significant decrease (p < 0.05) in cerebral cortex, which was reversed to normal by insulin treatment. Competition studies of [3H]MDL100907 binding in cerebral cortex with ketanserin showed the appearance of an additional low affinity site for 5-HT2A receptors in diabetic state, which was reversed to control pattern by insulin treatment. In brain stem, scatchard analysis showed a significant increase (p < 0.05) in Bmax accompanied by a significant increase (p < 0.05) in Kd. Competition analysis in brain stem also showed a shift in affinity towards a low affinity State for 5-HT2A receptors. All these parameters were reversed to control level by insulin treatment. These results show that in cerebral cortex there is an increase in affinity of 5-HT2A receptors without any change in its number and in the case of brain stem there is an increase in number of 5HT2A receptors accompanied by a decrease in its affinity during diabetes. Thus, from the results we suggest that the increase in affinity of 5-HT2A receptors in cerebral cortex and upregulation of 5-HT2A receptors in brain stem may lead to altered neuronal function in diabetes.  相似文献   

6.
Abstract: Previous studies have demonstrated species-specific differences in 5-hydroxytryptamine3 (5-HT3) receptors, but unequivocal evidence of 5-HT3 receptor subtypes, within a species, has not yet been obtained. The purpose of the current study was to test for heterogeneity in 5-HT3 receptors in murine tissues. 5-HT3 receptors in membranes derived from brain cerebral cortex of CD-1, C57BI/6, and Swiss Webster mice and ileum of CD-1 mice were labeled with the 5-HT3 receptor antagonist [3H]RS-42358–197. Structurally diverse competing ligands were then used to characterize the binding site. [3H]RS-42358-197 bound with similar affinity in each of the cortical tissues (mean KD= 0.14 nM; range, 0.06–0.32 nM) but bound with lower affinity in ileal tissue (2.5 nM). The density of sites labeled with [3H]RS-42358–197 ranged from 10.4 fmol/mg of protein in Swiss Webster mouse cortex to 44.2 fmol/mg of protein in Sprague-Dawley rat cortex. Displacing ligands produced a pharmacologic profile of the [3H]RS-42358–197 binding site consistent with it being a 5-HT3 receptor: (R)-YM060 > (S)-zacopride > (R)-zaco-pride > MDL 72222 > 2-methyl-5-HT. However, 10-fold differences in the affinity of certain ligands were found when comparing 5-HT3 binding sites in membranes from cerebral cortex of the different strains of mice and when comparing 5-HT3 binding sites in brain and ileal membranes prepared from the CD-1 mouse strain. Ligands demonstrating selectivity included RS-42358–197, (R)-za-copride, 1-(m-chlorophenyl) biguanide, (R)-YM060, and MDL 72222. These studies demonstrate tissue-and strain-dependent differences in murine 5-HT3 binding sites. This suggests that 5-HT3 receptors exist as multiple subtypes within species and that subtype-selective 5-HT3 ligands may be identified.  相似文献   

7.
This study aimed at comparing the binding characteristics of [3H]ketanserin, a high-affinity serotonin 2A (5-HT2A) receptor antagonist, in the prefrontal cortex, hippocampus and striatum of human brain post-mortem. The results indicated the presence of a single population of binding sites in all the regions investigated, with no statistical difference in maximum binding capacity (Bmax) or dissociation constant (Kd) values. The pharmacological profile of [3H]ketanserin binding was consistent with the labeling of the 5-HT2A receptor, since it revealed a competing drug potency ranking of ketanserin = spiperone > clozapine = haloperidol > methysergide > mesulergine > 5-HT. In conclusion, the 5-HT2A receptor, as labeled by [3H]ketanserin, would seem to consist of a homogenous population of binding sites and to be equally distributed in human prefronto-cortical, limbic and extrapyramidal structures.  相似文献   

8.
Subhash  M. N.  Jagadeesh  S. 《Neurochemical research》1997,22(9):1095-1099
The effect of chronic administration of Imipramine on [3H]Spiperone binding to 5-HT2 sites and inositoltrisphosphate (IP3) levels in rat cerebral cortex was studied. Our data shows that treatment with imipramine (5 mg/kg body weight, intraperitoneally) for 30 days significantly down regulates 5-HT2 receptors sites (262 ± 29 fmol/mg protein) in cerebral cortex (38%), compared to control rats (425 ± 60 fmol/mg protein., P < 0.001). However there was no significant change in the affinity of [3H]-Spiperone binding (kd) to 5-HT2 sites in cerebral cortex after exposure to imipramine (Kd = 0.84 ± 0.11 nM). It is also observed that imipramine treatment significantly reduces 5-HT stimulated [3H]IP3 formation in cerebral cortex (6,411 ± 708 dpm/mg protein), compared to the saline treated rats (12,238 ± 1,544 dpm/mg protein; P < 0.001), with concomitant decrease in Pdtlns-4–5-P2. This study suggests that the therapeutic action of imipramine in brain might be by reducing hypersensitivity of 5-HT2 receptors by down regulation, which leads to reduced levels of inositolphospholipids. This inturn reduces the levels of IP3. In conclusion, imipramine acts at presynaptic site by blocking the reuptake of serotonin and at post synaptic site it downregulates 5-HT2 sites with decreased IP3 levels after chronic exposure.  相似文献   

9.
Abstract: G protein activation mediated by serotonin 5-HT1A and 5-HT1B/D receptors in guinea pig brain was investigated by using quantitative autoradiography of agonist-stimulated [35S]GTPγS binding to brain sections. [35S]GTPγS binding was stimulated by the mixed 5-HT1A/5-HT1B/D agonist L694247 in brain structures enriched in 5-HT1A binding sites, i.e., hippocampus (+140 ± 14%), dorsal raphe (+70 ± 8%), lateral septum (+52 ± 12%), cingulate (+36 ± 8%), and entorhinal cortex (+34 ± 5%). L694247 caused little or no stimulation of [35S]GTPγS binding in brain regions with high densities of 5-HT1B/D binding sites (e.g., substantia nigra, striatum, central gray, and dorsal subiculum). The [35S]GTPγS binding response was antagonized by WAY100635 (10 µM) and methiothepin (10 µM). In contrast, the 5-HT1B inverse agonist SB224289 (10 µM) did not affect the L694247-mediated [35S]GTPγS binding response, and the mixed 5-HT1B/D antagonist GR127935 (10 µM) yielded a partial blockade. The distribution pattern of the [35S]GTPγS binding response and the antagonist profile suggest the L694247-mediated response in guinea pig brain to be mediated by 5-HT1A receptors. In addition to L694247, 8-hydroxy-2-(di-n-propylamino)tetralin, and flesinoxan also stimulated [35S]GTPγS binding; their maximal responses varied between 46 and 52% compared with L694247, irrespective of the brain structure being considered. Sumatriptan, rizatriptan, and zolmitriptan (10 µM) stimulated [35S]GTPγS binding in the hippocampus by 20–50%. Naratriptan, CP122638, and dihydroergotamine stimulated [35S]GTPγS binding to a similar level as L694247 in hippocampus, lateral septum, and dorsal raphe. It appears that under the present experimental conditions, G protein activation through 5-HT1A but not 5-HT1B/D receptors can be measured in guinea pig brain sections.  相似文献   

10.
The binding of tritiated 8-hydroxy-2-(di-n-propyl-amino)tetralin, or [3H]8-OH-DPAT, to membranes from rat cerebral cortex and hippocampus could be inhibited by serotonin (5-HT) and buspirone, and by the 5-HT antagonists propranolol, NAN-190, pindolol, pindobind-5-HT1A, WAY100135, spiperone and ritanserin. All competition curves, except for ritanserin, best fitted a two-site model. In vitro treatment of the membranes withN-ethylmaleimide (NEM), to alkylate sulfhydryl groups, caused dose-dependent decreases of binding; the inhibition curves were biphasic, and the effects irreversible. Reduction of disulfide bonds withl-dithiothreitol (L-DTT) also decreased binding, but in a monophasic way; these effects were fully reversible in cortex, but only partially reversible in hippocampus. In the latter region, but not in cerebral cortex, previous occupancy by [3H]8-OH-DPAT partially protected binding from the effects of bothL-DTT and NEM, suggesting that the thiol groups in the receptor recognition site(s) of this brain region are readily accessible. The binding characteristics were examined with the aid of saturation curves, carried out with increasing concentrations, up to 140 nM, of [3H]8-OH-DPAT. The saturation data were suggestive of a two-site receptor model incorporating a high-affinity site (Kh of 0.3–0.5 nM) corresponding to the 5-HT1A receptor, and a low-affinity site (Kl ofca 25 nM). After in vivo alkylations, carried out by treating rats withN-ethoxycarbonyl-2-ethoxy-1,2-dihydro-quinoline (EEDQ), the saturation curves from both control and EEDQ-treated rats were again best fitted to a two-site model. For EEDQ-treated animals, a drastic decrease of 5-HT1A receptor activity was noted; this loss was greater in hippocampus than in cerebral cortex. Since the decrease in 5-HT1A receptors was not associated with changes in low-affinity binding, the results suggest independent regulations of the two [3H]8-OH-DPAT binding proteins. Altogether, the present data further supports the notion that [3H]8-OH-DPAT, besides labelling 5-HT1A receptors, also binds to other structures in rat cerebral cortex and hippocampus. Special issue dedicated to Dr. Kinya Kuriyama  相似文献   

11.
Subhash  M. N.  Srinivas  B. N.  Vinod  K. Y.  Jagadeesh  S. 《Neurochemical research》1998,23(10):1321-1326
Inactivation of 5-HT1A and [3H]5-HT binding sites by N-Ethoxycarbonyl-2-ethoxy-1, 2-dihydro-quinoline (EEDQ) was studied in regions of rat brain. After exposure to EEDQ (4 mg/kg body wt.) for 7 days, it is observed that the density of 5-HT1 receptor sites was decreased by nearly 20% in both cortex and hippocampus. The decrease, however, in 5-HT1A sites was more significant (70%) in both the regions. The affinity of [3H]5-HT to 5-HT1 sites was decreased significantly in both cortex and hippocampus after exposure to EEDQ, without affecting the Kd of 5-HT1A sites. Displacement studies suggested that EEDQ has high affinity to 5-HT1 sites with a Ki of 42.9 ± 2.4 nM. After exposure neither basal nor 5-HT stimulated adenylyl cyclase activity was changed in cortex. The results of this study suggest that EEDQ decreases the density of 5-HT1 and 5-HT1A receptor sites but does not cause functional downregulation of these sites in rat brain.  相似文献   

12.
The 5-HT3 receptor is a ligand-gated ion channel activated by serotonin (5-HT). Although originally identified in the peripheral nervous system, the 5-HT3 receptor is also ubiquitously expressed in the central nervous system. Sites of expression include several brain stem nuclei and higher cortical areas such as the amygdala, hippocampus, and cortex. On the subcellular level, both presynaptic and postsynaptic 5-HT3 receptors can be found. Presynaptic 5-HT3 receptors are involved in mediating or modulating neurotransmitter release. Postsynaptic 5-HT3 receptors are preferentially expressed on interneurons. In view of this specific expression pattern and of the well-established role of 5-HT as a neurotransmitter shaping development, we speculate that 5-HT3 receptors play a role in the formation and function of cortical circuits.  相似文献   

13.
The muscarinic receptors in membranes prepared from guinea pig brain were studied using a radiolabeled antagonist, [3H]quinuclidinyl benzilate (QNB). The apparent dissociation constant of the QNB-receptor complex (K d ) was similar in all regions, but the concentration of receptors was highest in the striatum, cerebral cortex, and hippocampus and lowest in the cerebellum. Similar distributions have been reported for other species, although the concentration of receptors in guinea pig brain is higher than in other species. Acetylcholine inhibited QNB binding with a Hill coefficient of 0.4–0.6. The concentration of acetylcholine required to inhibit binding by 50% (I50) was lowest in the brain stem and more than 10 times higher in the hippocampus. Similar results have been reported for mouse brain. The activity of acetylcholinesterase was highest in the striatum, where the concentration of muscarinic receptors is highest, but did not vary greatly in other brain regions.RMD was seconded to the University of Melbourne to undertake this study.  相似文献   

14.
Hepatic coma was induced in rats chronically treated with CCl4, by means of a single injection of ammonium acetate. The activities of glutamate decarboxylase (GAD) and GABA transaminase (GABA-T), as well as the synaptosomal uptake and release of [3H]GABA, were measured in the following brain areas of the comatose rats: cortex, striatum, hypothalamus, hippocampus, midbrain and cerebellum. Hepatic coma was associated with a general decrease of GAD activity, whereas GABA-T activity was diminished only in the hypothalamus, striatum and midbrain. During hepatic coma, the K+-stimulated [3H]GABA release was notably diminished in the striatum and cerebellum, whereas a significant increase was observed in the hippocampus. [3H]GABA uptake increased in most regions after CCl4 treatment, independently of the presence of coma. The results indicate that GABAergic transmission seems to be decreased in most cerebral regions during hepatic coma.  相似文献   

15.
A diaryltriazine, LY81067, effectively protects against pentylenetetrazole- and picrotoxin-induced convulsions in mice, with ED50 values of 5.7 and 5.8 mg/kg i.p., respectively. LY81067 enhances the binding of both 3H-GABA and 3H-flunitrazepam to specific sites in rat brain membranes. The degree of enhancement by LY81067 varies from one brain region to another and is different for the binding of 3H-GABA and 3H-flunitrazepam. In cortical membranes, LY81067 increases the affinity of 3H-GABA for both high and low affinity sites and increases the number of sites. LY81067 increases the affinity of 3H-flunitrazepam for its binding sites without greatly increasing the number of sites. Like the pyrazolopyridines, the enhancement of 3H-flunitrazepam binding by LY81067 is dependent on chloride or related anions and is reversed by picrotoxin, suggesting that LY81067 exerts its anticonvulsant effects by binding to or near picrotoxin binding sites. The differential effects of LY81067 on the enhancements of 3H-GABA and 3H-flunitrazepam binding in several brain regions suggest extensive multiplicity of GABA/benzodiazepine/picrotoxin/anioin receptor complexes.  相似文献   

16.
We aimed at comparing the binding characteristics of adenosine A1 and A2A receptors (A1Rs and A2ARs) in high-expressing cerebral areas, the cortex and striatum respectively, of human, bovine and rat brain. Adenosine A3 receptor (A3R) binding was studied in rat and bovine testis. Results confirmed species differences in AR saturation-displacement binding parameters. To investigate A3Rs in CNS, we carried out immunoblot in human brain, resolving two signals, a 52 KDa band with the highest density in hippocampus and a 48 KDa one, slightly more expressed in cortex. Subsequently, A3R binding was performed by [125I]-4-aminobenzyl-5′-N-methylcarboxamidoadenosine ([125I]-AB-MECA) in human hippocampus, revealing an high affinity population of sites and another non saturable component. [125I]-AB-MECA first site displacement by N6 (3-iodobenzyl)adenosine-5′-N-methyluronamide (IB-MECA) and 1,3-dipropyl-8-cyclopenthyl-xanthine (DPCPX) distinguished two affinity sites, being only in part identified as A3Rs. Therefore, A3Rs result clearly expressed by Western blot in human brain, but their full CNS characterization needs further investigation.  相似文献   

17.
Abstract: Muscarinic and nicotinic cholinergic receptors and choline acetyltransferase activity were studied in postmortem brain tissue from patients with histopathologically confirmed Parkinson's disease and matched control subjects. Using washed membrane homogenates from the frontal cortex, hippocampus, caudate nucleus, and putamen, saturation analysis of specific receptor binding was performed for the total number of muscarinic receptors with [3H]quinuclidinyl benzilate, for muscarinic M1 receptors with [3H]pirenzepine, for muscarinic M2 receptors with [3H]oxotremorine-M, and for nicotinic receptors with (–)-[3H]nicotine. In comparison with control tissues, choline acetyltransferase activity was reduced in the frontal cortex and hippocampus and unchanged in the caudate nucleus and putamen of parkinsonian patients. In Parkinson's disease the maximal binding site density for [3H]quinuclidinyl benzilate was increased in the frontal cortex and unaltered in the hippocampus, caudate nucleus, and putamen. Specific [3H]pirenzepine binding was increased in the frontal cortex, unaltered in the hippocampus, and decreased in the caudate nucleus and putamen. In parkinsonian patients Bmax values for specific [3H]oxotremorine-M binding were reduced in the cortex and unchanged in the hippocampus and striatum compared with controls. Maximal (–)-[3H]nicotine binding was reduced in both the cortex and hippocampus and unaltered in both the caudate nucleus and putamen. Alterations of the equilibrium dissociation constant were not observed for any ligand in any of the brain areas examined. The present results suggest that both the innominatocortical and the septohippocampal cholinergic systems degenerate in Parkinson's disease. The reduction of cortical [3H]oxotremorine-M and (–)-[3H]nicotine binding is compatible with the concept that significant numbers of the binding sites labelled by these ligands are located on presynaptic cholinergic nerve terminals, whereas the increased [3H]pirenzepine binding in the cortex may reflect postsynaptic denervation supersensitivity.  相似文献   

18.
Low levels of docosahexaenoic acid (DHA) have been linked to a number of mental illnesses such as memory loss, depression and schizophrenia. While supplementation of DHA is beneficial in improving memory and cognition, the influence of dietary fats on the neurotransmitters and receptors involved in cognitive function is still not known. The aim of this study was to investigate serotonin receptor (5-HT1A and 5-HT2A), cannabinoid receptor (CB1) and gamma-aminobutyric acid type A (GABAA) receptor binding densities in the brain of male rats fed a high-saturated-fat (HF) diet, as well as the effect of DHA supplementation on HF diet. Alterations of these receptors in the post-mortem rat brain were detected by [3H]-WAY-100635, [3H]-ketanserin, [3H]-CP-55,940 and [3H]-muscimol binding autoradiography, respectively. In the hippocampus, the 5-HT1A, CB1 and GABAA receptor binding densities significantly increased in response to an HF diet, while in the hypothalamus, 5-HT1A and CB1 binding densities significantly increased in HF-fed rats. Importantly, DHA supplementation prevented the HF-induced increase of receptors binding density in the hippocampus and hypothalamus. Furthermore, DHA supplementation attenuated 5-HT2A receptor binding density in the caudate putamen, anterior cingulate cortex and medial mammillary nucleus, which was also increased in HF group. This study showed that an HF diet increased 5-HT1A, 5-HT2A, CB1 and GABAA receptor binding densities in the brain regions involved in cognitive function and that dietary DHA can attenuate such alterations. These findings provide insight into the mechanism by which DHA supplementation ameliorates reduced cognitive function associated with an HF diet.  相似文献   

19.
Trifluoperazine dihydrochloride (2.8–4.0 mg/kg/day) was administered continuously to rats in drinking water for six months. Animals killed at this time exhibited an increase in the number of dopamine receptors in the striatum and mesolimbic area, with a corresponding decrease in affinity (increase in the dissociation constant) for 3H-spiperone binding. In frontal cortex, 3H-spiperone binding to 5-HT receptors indicated no apparent change in numbers of receptors, but a slight increase in the dissociation constant. There was no obvious alteration in 3H-apomorphine binding in the striatum and mesolimbic area, but the individual results were very variable. The number and binding affinity of muscarinic receptors in striatum, mesolimbic area and cerebral cortex as identified by 3H-dexetemide were unchanged. Nor was there any alternation in the number or binding affinity of H-1 receptors identified by 3H-mepyramine, or of α-noradrenergic receptors identified by 3H-WB 4101, in cerebral cortex. The number and binding affinity of GABA receptors in the cerebellum identified by 3H-muscimol also was not altered.Chronic neuroleptic administration to rats appears to alter specifically the number of cerebral dopamine receptors.  相似文献   

20.
The levels of the neurotransmitter amino acids glutamate, aspartate, and GABA were determined in different brain regions during ischemia and post-ischemic recirculation periods using the unilateral carotid artery occlusion model of stroke in gerbils. The levels of glutamate, aspartate and GABA in ischemic hemisphere were increased significantly by 10 min of ischemia and later declined with time. Reperfusion for 30 min following 10 min. of ischemia further enhanced the levels of glutamate and aspartate. Increase in GABA levels were found during early periods of reperfusion. Regional variations in the changes of amino acids' levels were noticed following ischemia. Hippocampus showed the highest increase in glutamate levels followed by striatum and cerebral cortex. Aspartate levels in striatum and hippocampus increased during 10 min ischemia (46% and 30%) and recirculation (70% and 79%), whereas in cerebral cortex the levels were doubled only during recirculation. Ischemia induced elevations of GABA levels were observed in cerebral cortex (68%) and in hippocampus (30%), and the levels were normalized during recirculation. No changes in GABA levels were found in striatum. It is suggested that the large increase in the levels of excitatory neurotransmitter amino acids in brain regions specially in hippocampus during ischemia and recirculation may be one of the causal factors for ischemic brain damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号