首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Summary The same basic ultrastructural features of interphase and mitotic nuclei were found for both the haploid Colonia and the diploid wild type strains of the myxomycete,Physarum polycephalum. Differences in nuclear size and chromocenter numbers were observed, but the nucleolar cycle and the intranuclear and acentriolar type of mitosis characteristic of the plasmodial stage of the diploid is present in haploid plasmodia, ruling out any relation between ploidy level and type of mitotic figure.  相似文献   

2.
In growing plasmodia of the myxomycete Physarum polycephalum (G2-phase), three distinct classes of nuclei with a relative DNA content of 1x, 2x, and 4x are observed in the presumed haploid strain CL. The 2x and 4x species comprise up to 35% and 5% of the nuclei. Quantitative cytofluorometric studies of nuclei isolated in either G2- or S-phase or after FUDR treatment (G1 arrest) show that the three nuclear populations undergo a synchronous mitotic cycle and that the relative DNA content of the nuclear fractions in G-2 phase reflects the 2c, 4c, and 8c state. The heterogeneity of the nuclear population does, however, seem to be restricted to the growth phase. During a starvation period of 4 days that always preceeds sporulation (and also meiosis), the 4c nuclear population is reduced to 7%, 8c nuclei are no longer detected. These results suggest that a mechanism exists in Physarum for the selective detection and elimination of polyploid nuclei.  相似文献   

3.
Ploidy is a fundamental genetic trait with important physiological and genomic implications. We applied complementary molecular tools to highlight differences in genome size and ploidy between Zygosaccharomyces rouxii strain CBS 732T and other related wild strains (ATCC 42981, ABT 301, and ABT 601). The cell cycle analysis by flow cytometry revealed a genome size of 12.7+/-0.2 Mb for strain CBS 732T, 21.9+/-0.2 Mb for ATCC 42981, 28.1+/-1.3 Mb for ABT 301, and 39.00+/-0.3 Mb for ABT 601. Moreover, karyotyping analysis showed a high variability, with wild strains having a higher number of chromosomal bands than CBS 732T. The ploidy level was assessed comparing genome size from flow cytometry with the average haploid size from electrophoretic karyotyping. Strain CBS 732T showed an haploid DNA content, whereas the wild strains a diploid DNA content. In addition gene probe-chromosome hybridization targeted to ZSOD genes showed that wild strains with a diploid DNA content have two ZSOD copies located on different chromosomes.  相似文献   

4.
The cells of haploid Aspergillus niger strains contain, on the average, 7-9 nuclei, a fragment of a thin hypha 100 me long comprising 11-19 nuclei. The cells of a diploid strain are 1.5-2.6 times larger in volume. The diploid cells contain less nuclei and more cytoplasm per nucleus as compared to the haploid strains. The primary sterigmae of Aspergillus niger comprise 3-13 nuclei, the secondary sterigmae and conidia, one nucleus. The conidia of the diploid strains are 1.8-2.0 times larger in volume and contain twice as much DNA as compared to the haploid strains.  相似文献   

5.
Diploid cells of Tetrahymena thermophila were crossed to strain A*V, whose micronucleus is defective, to induce the unilateral transfer of gametic nuclei from the diploid cells to the A*V cells (round I of genomic exclusion). These haploid nuclei presumably undergo one endomitotic cycle and then become diploid with a G1 (2C) DNA content. However, further DNA replication from 2C to 4C was transiently arrested until the pairs separated. When endomitosis was blocked by treatment with cycloheximide during 6-8 hours of conjugation, the exconjugants of round I of genomic exclusion remained haploid. Competence for diploidization is apparently limited to some period of time after nuclear transfer. Blocking of diploidization during round I of genomic exclusion can be used as an efficient way to induce haploid strains in Tetrahymena.  相似文献   

6.
The synchronous macroplasmodial growth phase of the slime mould Physarum polycephalum was used to study the in vivo replication of large chromosomal DNA segments. Newly replicated DNA was isolated at various points in S-phase by its preferential association with the nuclear matrix. This DNA was then used to probe cosmid clones of the Physarum genome. The results indicate that certain dispersed repetitive sequences in the genome are coordinately replicated. The observed pattern of replication may be due either to the presence of a replication origin within each repetitive sequence or to the systematic arrangement of these sequences around a replication origin. The latter appears more likely since the repetitive sequences are probably not randomly scattered within the genome.  相似文献   

7.
The amounts of DNA in haploid and diploid cells of Drosophila melanogaster have been determined by DNA-Feulgen cytophotometry, using Xenopus laevis erythrocyte nuclei as a reference standard. The haploid male genome is estimated to be 0.18 pg DNA and the haploid female genome, 0.20 pg DNA.  相似文献   

8.
药物诱导玉米孤雌生殖植株的倍性变异   总被引:16,自引:0,他引:16  
谷明光  颜春洪 《遗传学报》1995,22(5):406-412
实验结果表明,孤雌生殖植株根尖体细胞以二倍体细胞最多,占68.9%,其次为非整倍体细胞,占28.7%,其他异倍体和单倍体细胞极少(2.4%)。Pa1植株可分为二倍体和混倍体两类,以二倍体细胞占绝对多数的混倍体植株最多,为83.5%,这些植株生长发育和结实均正常。在花粉母细胞中正常二倍体频率比根尖体细胞明显提高,提高频率为35.3一59.6%,不同材料之间趋势一致。讨论了体细胞染色体变异的来源及其能否延续到生殖细胞。  相似文献   

9.
The genome size, complexity, and ploidy of the dimorphic pathogenic fungus Histoplasma capsulatum was determined by using DNA renaturation kinetics, genomic reconstruction, and flow cytometry. Nuclear DNA was isolated from two strains, G186AS and Downs, and analyzed by renaturation kinetics and genomic reconstruction with three putative single-copy genes (calmodulin, α-tubulin, and β-tubulin). G186AS was found to have a genome of approximately 2.3 × 107 bp with less than 0.5% repetitive sequences. The Downs strain, however, was found to have a genome approximately 40% larger with more than 16 times more repetitive DNA. The Downs genome was determined to be 3.2 × 107 bp with approximately 8% repetitive DNA. To determine ploidy, the DNA mass per cell measured by flow cytometry was compared with the 1n genome estimate to yield a DNA index (DNA per cell/1n genome size). Strain G186AS was found to have a DNA index of 0.96, and Downs had a DNA index of 0.94, indicating that both strains are haploid. Genomic reconstruction and Southern blot data obtained with α- and β-tubulin probes indicated that some genetic duplication has occurred in the Downs strain, which may be aneuploid or partially diploid.  相似文献   

10.
Summary The amounts of DNA in haploid and diploid cells of Drosophila melanogaster have been determined by DNA-Feulgen cytophotometry, using Xenopus laevis erythrocyte nuclei as a reference standard. The haploid male genome is estimated to be 0.18 pg DNA and the haploid female genome, 0.20 pg DNA.  相似文献   

11.
1. About 15% of nucleolar DNA (1.712 g/cm3) from Physarum polycephalum displaying maximum hybridization to ribosomal RNA, is composed of circular DNA of 3.9 +/- 0.2 mum contour length or multiples thereof. 2. A portion of these circular molecules (25%) contained linear DNA pieces longer than circumference length. In a small fraction of circular DNA linear pieces, shorter than the unit length, were observed. 3. Most nucleolar DNA, [3H]thymidine-labeled or hybridizable to ribosomal RNA was separable from chromosomal DNA during G2 phase, mitosis and S phase of the cell cycle. 4. Ribosomal DNA content was not amplified during the cell cycle, was unchanged during exponential or stationary growth phase and amounted to about 0.11 -- 0.21% of nuclear DNA in diploid and hexaploid strains of Physarum or 100--200 ribosomal genes per diploid genome.  相似文献   

12.
13.
The genome size, complexity, and ploidy of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was determined using flow cytometry, reassociation kinetics, and genomic reconstruction. Nuclei of G. intraradices from in vitro culture, were analyzed by flow cytometry. The estimated average length of DNA per nucleus was 14.07+/-3.52 Mb. Reassociation kinetics on G. intraradices DNA indicated a haploid genome size of approximately 16.54 Mb, comprising 88.36% single copy DNA, 1.59% repetitive DNA, and 10.05% fold-back DNA. To determine ploidy, the DNA content per nucleus measured by flow cytometry was compared with the genome estimate of reassociation kinetics. G. intraradices was found to have a DNA index (DNA per nucleus per haploid genome size) of approximately 0.9, indicating that it is haploid. Genomic DNA of G. intraradices was also analyzed by genomic reconstruction using four genes (Malate synthase, RecA, Rad32, and Hsp88). Because we used flow cytometry and reassociation kinetics to reveal the genome size of G. intraradices and show that it is haploid, then a similar value for genome size should be found when using genomic reconstruction as long as the genes studied are single copy. The average genome size estimate was 15.74+/-1.69 Mb indicating that these four genes are single copy per haploid genome and per nucleus of G. intraradices. Our results show that the genome size of G. intraradices is much smaller than estimates of other AMF and that the unusually high within-spore genetic variation that is seen in this fungus cannot be due to high ploidy.  相似文献   

14.
Amoebae of Physarum polycephalum carrying the mth mating-type allele may differentiate into plasmodia in the absence of mating. Such plasmodia are haploid and, upon sporulation, produce mainly inviable spores. We have asked whether the viable spores arise from meiotic or mitotic divisions. Using a microfluorometric measurement of the deoxyribonucleic acid content of individual nuclei, we found the fraction of viable spores to be correlated with the proportion of rare, diploid nuclei containing in the generally haploid plasmodium. When homozygous diploid plasmodia were created by heat shocking, spore viability increased dramatically. We suggest that viable spores are produced via meiosis in mth plasmodia, that the mth allele has no effect on sporulation per se, and that the normal source of viable haploid spores is a small fraction of diploid nuclei ubiquitous in haploid plasmodia.  相似文献   

15.
DNA repair and cell survival in haploid and its diploid derivative strains ofSaccharomyces cerevisiae were studied after 100 krad X-ray irradiation. The cells were in theG 1 stage of the cell cycle, where haploid cells had only one copy of genetic material per genome and diploid had two copies. It was found that diploid could repair double-strand breaks in its DNA after 48 hr of liquid holding which was accompanied by a four-fold rise in survival. In contrast a haploid strain failed to repair its DNA and showed no increase in survival after liquid holding. It is concluded that (1) repair of DNA double-strand breaks requires the availability of two homologous DNA duplexes, (2) restoration of cell viability during liquid holding is connected with repair of DNA double-strand breaks and (3) this repair is a slow process possibly associated with slow finding and conjugation of homologous chromosomes.  相似文献   

16.
Macroplasmodia of the acellular slime mold Physarum polycephalum were treated with pulses of cycloheximide (10 micrograms/ml medium, for 3 h), initiated 10-20 min before metaphase in the synchronous nuclear division cycle. This treatment interfered with normal division of the nuclei, but permitted DNA synthesis in the next S phase. This interpretation is supported by measurements of the DNA content per nucleus in cycloheximide-treated cultures as compared to control cultures, which show that some nuclei after cycloheximide treatment are polyploid. By this method we can produce polyploid strains of Physarum, but the elevated nuclear DNA content is not stable, and after several months the strains have reverted to the normal diploid DNA content.  相似文献   

17.
The nuclear DNA content of the whitefly Bemisia tabaci (Gennnadius) was estimated using flow cytometry. Male and female nuclei were stained with propidium iodide and their DNA content was estimated using chicken red blood cells and Arabidopsis thaliana L. (Brassicaceae) as external standards. The estimated nuclear DNA content of male and female B. tabaci was 1.04 and 2.06 pg, respectively. These results corroborated previous reports based on chromosome counting, which showed that B. tabaci males are haploid and females are diploid. Conversion between DNA content and genome size (1 pg DNA=980 Mbp) indicate that the haploid genome size of B. tabaci is 1020 Mbp, which is approximately five times the size of the genome of the fruitfly Drosophila melanogaster Meigen. These results provide an important baseline that will facilitate genomics-based research for the B. tabaci complex.  相似文献   

18.
Summary In order to determine the ploidy of individual embryo-like structures (ELSs) following chromosome doubling treatments, a method was developed to determine the DNA content (ploidy level) of nuclei from single ELSs weighing as little as 1 mg using flow cytometry. About half (53%) of the ELSs which formed during anther culture of the maize inbred line used in control medium were haploid, 27% mixoploid and 20% diploid. Gibberellic acid (GA3) increased the diploid percentage to 52% without affecting the mixoploid frequency (26%). A four day treatment with the chromosome doubling agent colchicine (50M) increased chromosome doubling while oryzalin eliminated the diploidy and mixoploidy. When regenerable callus cultures were initiated from the ELSs none were found to be mixoploid but the haploid and diploid proportions were similar to that of the ELSs analyzed. Regenerable cultures could not be initiated from the colchicine treated ELSs, however. These studies show that with the genotype used here, GA3 and colchicine increased the amount of chromosome doubling of the ELSs while oryzalin and pronamide did not. The mixoploidy which existed in about 25% of the ELSs was never observed in calli apparently because these structures do not initiate callus or cells of only one ploidy level grew.Abbreviations ELS embryo-like structure - GA3 gibberellin A3  相似文献   

19.
Nuclei in G2 phase of the slime mold Physarum polycephalum, when transplanted, by plasmodial coalescence, into an S-phase plasmodium, failed to start another round of DNA synthesis. In the reciprocal combination, S-phase nuclei in a G2-phase host continued DNA synthesis for several hours without appreciable decrease in rate. It is suggested that the beginning of DNA replication is determined by an event, either during or shortly after mitosis, which renders the chromosomes structurally competent for DNA replication.  相似文献   

20.
The solution to the cytological paradox of isomorphy   总被引:3,自引:0,他引:3       下载免费PDF全文
Cells with polyploid nuclei are generally larger than cells of the same organism or species with nonpolyploid nuclei. However, no such change of cell size with ploidy level is observed in those red algae which alternate isomorphic haploid with diploid generations. The results of this investigation reveal the explanation. Nuclear DNA content and other parameters were measured in cells of the filamentous red alga Griffithsia pacifica. Nuclei of the diploid generation contain twice the DNA content of those of the haploid generation. However, all cells except newly formed reproductive cells are multinucleate. The nuclei are arranged in a nearly perfect hexagonal array just beneath the cell surface. When homologous cells of the two generations are compared, although the cell size is nearly identical, each nucleus of the diploid cell is surrounded by a region of cytoplasm (a "domain") nearly twice that surrounding a haploid nucleus. Cytoplasmic domains associated with a diploid nucleus contain twice the number of plastids, and consequently twice the amount of plastid DNA, than is associated with the domain of a haploid nucleus. Thus, doubling of ploidy is reflected in doubling of the size and organelle content of the domain associated with each nucleus. However, cell size does not differ between homologous cells of the two generations, because total nuclear DNA (sum of the DNA in all nuclei in a cell) per cell does not differ. This is the solution to the cytological paradox of isomorphy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号