首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Determining the causes of range size variation in the distributions of alien species is important for understanding the spread of invasive species. Factors influencing alien range size have been explored for some species at a regional level, but to date there has been no global analysis of an entire class. Here, we present such an analysis for birds, testing for the effects of introduction event, location and species‐level variables on alien range sizes. Location Global. Methods We used a novel dataset on the global distributions of alien bird species to test for relationships between alien range size and colonization pressure, residence time, extent of the global climatic niche, native range size, body mass and specialization, using a statistical approach based on phylogenetic generalized least squares models. We performed this analysis globally, and for separate biogeographical realms. Results Approximately half of the variation in alien bird range size is explained by colonization pressure in univariate analysis. We identified consistent effects of higher colonization pressure at global and realm levels, as well as support for effects of native range size and residence time. We found less support for effects of body mass, specialization or extent of the global climatic niche on alien range size. Main conclusions Alien bird range sizes are generally small relative to their native range sizes, and many are continuing to expand. Nevertheless, current variation is predictable, most strongly by the event‐level factor of colonization pressure. Whether a species is widespread is a better predictor of alien range size than whether a species could be widespread (estimated by global climatic niche extent), while we also find effects of residence time on alien range size. These relationships may help to identify those alien species that are more likely to spread and hence have greater environmental and economic impacts where they have been introduced.  相似文献   

2.
BackgroundInternational wildlife trade is the largest emerging source of vertebrate invasive alien species. In order to prevent invasions, it is essential to understand the mechanics of trade and, in particular, which traded species are most likely to be released or escape into the wild. A species’ economic value is a key factor, because we expect cheaper species to be less assiduously secured against escaping, and more likely to be deliberately released. Here, we investigate determinants of the price of species in the Taiwanese bird trade. Taiwan is an international hub for bird trade, and several native species are threatened by alien bird species.MethodologyWe investigated the relationship between the traded species sale price in Taiwan and the species availability for trade (the number of birds for sale, geographic range size and their origin, conservation and CITES status) and traits (body size, coloration, song attractiveness). We used phylogenetic generalized least squares models, with multi-model inference, to assess the variables that are best related to the price of birds in the Taiwanese pet trade.

Principal Findings / Conclusions

We found that species available for sale in larger numbers, native to Taiwan, not globally endangered, and small-bodied are all relatively cheaper, as too are species lacking yellow coloration and without attractive songs. Our models of price revealed high levels of phylogenetic correlation, and hence that closely related species tended to be sold for similar prices. We suggest that, on the basis of price, native species are more likely to be deliberately or accidentally released than alien species. Nevertheless, our survey of bird shops recorded 160 species alien to Taiwan (7,631 individuals), several of which are for sale cheaply and in large numbers. Alien bird species in trade therefore present an ongoing, non-trivial invasion risk on the island.  相似文献   

3.
Alien spider introductions to Europe supported by global trade   总被引:1,自引:1,他引:0  
Global trade is permanently ongoing and increases its volume every year. In this study, the occurrence of 87 unintentionally introduced spider species alien to Europe is analysed. The analysis includes (1) the introduction potential of six different origin areas of the world according to trade volume, area size, and geographical distance; (2) the body size of native and alien species; and (3) occurrence in or at buildings (synanthropic) or in natural habitats. We found the eastern Palearctic as the most influencing origin area with 44 introduced spider species to Europe. The eastern Palearctic and the Indomalayan provided a significantly higher number of introductions than expected, whereas the Nearctic, Neotropical, and Afrotropical provided a significantly lower number of introduced species than expected. This can be explained with their lower trade volume, smaller area, larger geographical distance to Europe, and stronger climate differences to Europe. Comparing the body size of introduced and native European spider species of the same family, we found for Theridiidae significantly larger alien spiders and for all other tested families a trend to a larger body size of alien species compared to the native spiders. The family affiliation of alien spiders is the most important factor for synanthropic occurrence in Europe. On the base of a very conservative estimation of spider species introductions to Europe combined with possible effects of climate change, we predict for the near future a permanent increase in the number of alien spider species in Europe.  相似文献   

4.
Native bird species show latitudinal gradients in body size across species (Bergmann's rule), but whether or not such gradients are recapitulated in the alien distributions of bird species are unknown. Here, we test for the existence of Bergmann's rule in alien bird species worldwide, and investigate the causes of the observed patterns. Published databases were used to obtain the worldwide distributions of established alien bird populations, the locations of alien bird introductions, and bird body masses. Randomisation tests and linear models were used to assess latitudinal patterns in the body masses of introduced and established alien bird populations. Established alien bird species exhibit Bergmann's rule, but this is largely explained by where alien bird species have been introduced: latitudinal variation in the body masses of established alien bird species simply reflects latitudinal variation in the body masses of introduced species. There is some evidence that body mass is implicated in whether or not established species’ alien ranges spread towards or contract away from the Equator following establishment. However, most alien bird ranges are encompassed by the latitudinal band(s) to which the species was introduced. Bergmann's rule in alien birds is therefore a consequence of where humans have introduced different species, rather than of natural processes operating after population introduction.  相似文献   

5.
Aim Since ecological and evolutionary context changes when a plant species is introduced to a new area, it can be assumed that responses of alien plants to changing conditions along environmental gradients differ from those in their native range. Even if seed availability is not limited, the distribution of alien plants along such a gradient might still be restricted by their ability to germinate and establish as seedlings. In the present study, we aim at testing what factors promote or limit plant invasions during early establishment by using altitude as a model gradient. Location Altitudinal gradients in the Wallowa Mountains (Oregon, USA) and the Swiss Alps (Valais, Switzerland). Methods In transplant experiments along altitudinal gradients, we investigated the early establishment success of eight invasive alien Asteraceae species in their native and introduced ranges in the Wallowa Mountains and the Swiss Alps. Results Seedling recruitment was not restricted to relatively lower altitudes in the introduced range. In addition, we found no evidence for genetic adaptation along the altitudinal gradient in the introduced range, highlighting the importance of phenotypic flexibility for invasions. Furthermore, seedling recruitment was only enhanced by disturbance in the native range where vegetation was comparably dense but not in the introduced range. However, plant development was strongly delayed in the introduced range, probably due to low seasonal water availability. Main Conclusions We conclude that introduced plants, due to their ability to tolerate a wide range of environmental conditions, are not necessarily more restricted in their altitudinal limits than they are in their native range. Furthermore, due to other interacting factors (e.g. different competition situations among ranges), attempts to predict distributions of alien plants in the introduced range that are based on their distributions in the native range may be misleading.  相似文献   

6.
Both the size of founding populations (propagule size) and environmental suitability are known to influence whether a species newly introduced to a location will establish a self-sustaining population. However, these two factors do not operate independently: it is the interaction between propagule size and environmental suitability that determines the probability an introduced population will establish. Here I use the example of dung beetle introductions to Australia to illustrate the importance of this interaction. I first describe equations that model establishment success jointly as a function of propagule size and environmental suitability. I then show how these equations provide insight into the different outcomes observed in two dung beetle species widely introduced to Australia. In one species, variation in propagule size had relatively little influence on establishment success due to large variation in environmental suitability, leading to an essentially bimodal outcome: sites were either very suitable for establishment and introductions succeeded, or sites were unsuitable and introductions failed regardless of propagule size. For the second species, there was much less variation among locations in environmental suitability, leading to propagule size having a strong influence on establishment success. These examples highlight how the interplay between environmental suitability and founding population size is central to determining the probability an introduced species will establish.  相似文献   

7.
The spatial distribution of alien species richness often correlates positively with native species richness, and reflects the role of human density and activity, and primary productivity and habitat heterogeneity, in facilitating the establishment and spread of alien species. Here, we investigate the relationship between the spatial distribution of alien bird species, human density, and anthropogenic and natural environmental conditions. Next, we examined the relationship between the spatial distribution of alien bird species and native bird species richness. We examined alien species richness as a response variable, using correlative analyses that take spatial autocorrelation into account. Further, each alien bird species was examined as a response variable, using logistic regression procedures based on binary presence–absence data. A combination of human density and natural habitat heterogeneity best explained the spatial distribution of alien species richness. This contrasts with the results for individual alien species and with previous studies on other non-native taxa showing the importance of primary productivity and anthropogenic habitat modification as explanatory variables. In general, native species richness is an important correlate of the spatial distribution of alien species richness and individual alien species, with alien species being more similar to common species than to rare species.  相似文献   

8.
The identities of bird species introduced to areas beyond the limits of their native geographic ranges have historically depended on a combination of societal demands for species with certain characteristics, and the availability of species for capture, transport and release. However, both societal demands and availability have changed over time, which should also change the characteristics of species more recently added to the list of introduced birds. Here, we quantify temporal changes in selectivity of introduced bird species by comparing the characteristics of 423 species listed in the seminal catalogue of introduced birds (Long, J. L. 1981 . Introduced birds of the world. – David and Charles, London) with those of 122 species that have been introduced but are not listed in Long (1981) . We demonstrate differences between these two groups of species in the frequencies with which different taxa are represented, in the geographic range sizes of species, and in their biogeographic regions of origin, but not in body mass. Both groups also differ from bird species in general in terms of geographic range sizes, body masses, and taxonomic composition. We relate the observed differences in the characteristics of species listed or unlisted in Long (1981) to changes in the changes in attitudes, legislation and vectors of transport relating to exotic species. We conclude by noting that the utility of published catalogues of introduced bird species is increasingly being eroded by the continued liberation and establishment of bird species.  相似文献   

9.
We examined data comprising 1,028 successful and 967 failed introduction records for 596 species of alien reptiles and amphibians around the world to test for factors influencing establishment success. We found significant variations between families and between genera. The number of jurisdictions where a species was introduced was a significant predictor of the probability the species had established in at least one jurisdiction. All species that had been introduced to more than 10 jurisdictions (34 species) had established at least one alien population. We also conducted more detailed quantitative comparisons for successful (69 species) and failed (116 species) introductions to three jurisdictions (Great Britain, California and Florida) to test for associations with climate match, geographic range size, and history of establishment success elsewhere. Relative to failed species, successful species had better climate matches between the jurisdiction where they were introduced and their geographic range elsewhere in the world. Successful species were also more likely to have high establishment success rates elsewhere in the world. Cross-validations indicated our full model correctly categorized establishment success with 78–80% accuracy. Our findings may guide risk assessments for the import of live alien reptiles and amphibians to reduce the rate new species establish in the wild.  相似文献   

10.
The current avifauna of New Zealand comprises species with two distinct origins: those that evolved in New Zealand or colonized naturally from neighbouring landmasses, and those that were deliberately introduced to the islands by European settlers. Elsewhere, it has been shown that for species introduced to New Zealand from Britain there is a positive interspecific correlation between the geographical range sizes attained in both countries. Since positive relationships between abundance, measured either as population size or density, and geographical range size are a near ubiquitous feature of assemblages of closely related animal species, this suggests that species’ abundances may also be so correlated between the two countries. Here, data for 12 passerine bird species introduced to New Zealand from Britain are used to compare population densities and density–range size relationships in their native and alien ranges. In addition, the density–range size relationship for 12 passerine bird species that can be considered native to New Zealand is compared to that for the introduced species. The geographical range size and the mean and maximum densities of introduced species in New Zealand were significantly positively correlated with those values for the same species in Britain. However, in no case was the relationship between mean density and range size significant. While not statistically significant, density–range size relationships for introduced species are similar in New Zealand and Britain, but those for introduced and native species in New Zealand are quite different. Implications of these patterns are discussed.  相似文献   

11.

Aim

Darwin's naturalization hypothesis states that dissimilarity to native species may benefit alien species establishment due to empty niches and reduced competition. We here add a new dimension to large‐scale tests of community invasibility, investigating the role that previously established alien species play in facilitating or hindering new invasions in plant communities.

Location

Permanent grasslands across France (including mainland and Corsica), as a receding ecosystem of great conservation importance.

Methods

Focusing on 121 alien plant species occurring in 7,215 vegetation plots, we quantified biotic similarity between new invaders and resident alien species (i.e., alien species with longer residence times) based on phylogenetic and trait distances. Additionally, we calculated distances to native species for each alien species and plot. Using multispecies distribution models, we analysed the influence of these biotic similarity measures and additional covariates on establishment success (presence/absence) of new invaders.

Results

We found that biotic similarity to resident alien species consistently increased establishment success of more recently introduced species. Phylogenetic relatedness to previous invaders had an equally strong positive effect as relatedness to native species. Conversely, trait similarity to natives hindered alien establishment as predicted by Darwin's naturalization hypothesis. These results highlight that various mechanisms may act simultaneously to determine alien establishment success.

Main conclusions

Our results suggest that, with greater similarity among alien species, invasion success increases. Such a pattern may arise either due to actual facilitation among invaders or as a result of weaker competitive interactions among invaders than between native and alien species, leading to an indirect facilitative effect. Alternatively, recent environmental changes (e.g., eutrophication, climate change) may have added new environmental filters. Determining how initial invasions might pave the road for subsequent invasions is crucial for effective multispecies management decisions and contributes a new aspect to our understanding of community assembly.
  相似文献   

12.
Are alien fish a reliable indicator of river health?   总被引:10,自引:0,他引:10  
1. The ability of many introduced fish species to thrive in degraded aquatic habitats and their potential to impact on aquatic ecosystem structure and function suggest that introduced fish may represent both a symptom and a cause of decline in river health and the integrity of native aquatic communities. 2. The varying sensitivities of many commonly introduced fish species to degraded stream conditions, the mechanism and reason for their introduction and the differential susceptibility of local stream habitats to invasion because of the environmental and biological characteristics of the receiving water body, are all confounding factors that may obscure the interpretation of patterns of introduced fish species distribution and abundance and therefore their reliability as indicators of river health. 3. In the present study, we address the question of whether alien fish (i.e. those species introduced from other countries) are a reliable indicator of the health of streams and rivers in south‐eastern Queensland, Australia. We examine the relationships of alien fish species distributions and indices of abundance and biomass with the natural environmental features, the biotic characteristics of the local native fish assemblages and indicators of anthropogenic disturbance at a large number of sites subject to varying sources and intensities of human impact. 4. Alien fish species were found to be widespread and often abundant in south‐eastern Queensland rivers and streams, and the five species collected were considered to be relatively tolerant to river degradation, making them good candidate indicators of river health. Variation in alien species indices was unrelated to the size of the study sites, the sampling effort expended or natural environmental gradients. The biological resistance of the native fish fauna was not concluded to be an important factor mediating invasion success by alien species. Variation in alien fish indices was, however, strongly related to indicators of disturbance intensity describing local in‐stream habitat and riparian degradation, water quality and surrounding land use, particularly the amount of urban development in the catchment. 5. Potential confounding factors that may influence the likelihood of introduction and successful establishment of an alien species and the implications of these factors for river bioassessment are discussed. We conclude that the potentially strong impact that many alien fish species can have on the biological integrity of natural aquatic ecosystems, together with their potential to be used as an initial basis to find out other forms of human disturbance impacts, suggest that some alien species (particularly species from the family Poeciliidae) can represent a reliable ‘first cut’ indicator of river health.  相似文献   

13.
Shifts between native and alien climatic niches pose a major challenge for predicting biological invasions. This is particularly true for insular species because geophysical barriers could constrain the realization of their fundamental niches, which may lead to underestimates of their invasion potential. To investigate this idea, we estimated the frequency of shifts between native and alien climatic niches and the magnitude of climatic mismatches using 80,148 alien occurrences of 46 endemic insular amphibian, reptile, and bird species. Then, we assessed the influence of nine potential predictors on climatic mismatches across taxa, based on species' characteristics, native range physical characteristics, and alien range properties. We found that climatic mismatch is common during invasions of endemic insular birds and reptiles: 78.3% and 55.1% of their respective alien records occurred outside of the environmental space of species' native climatic niche. In comparison, climatic mismatch was evident for only 16.2% of the amphibian invasions analyzed. Several predictors significantly explained climatic mismatch, and these varied among taxonomic groups. For amphibians, only native range size was associated with climatic mismatch. For reptiles, the magnitude of climatic mismatch was higher for species with narrow native altitudinal ranges, occurring in topographically complex or less remote islands, as well as for species with larger distances between their native and alien ranges. For birds, climatic mismatch was significantly larger for invasions on continents with higher phylogenetic diversity of the recipient community, and when the invader was more evolutionarily distinct. Our findings highlight that apparently common niche shifts of insular species may jeopardize our ability to forecast their potential invasions using correlative methods based on climatic variables. Also, we show which factors provide additional insights on the actual invasion potential of insular endemic amphibians, reptiles, and birds.  相似文献   

14.
The invasion pathway is composed of a sequential series of stages that need to be quantified separately in order properly to understand the invasion process. Here, we examine the composition and characteristics of bird species being sold in the pet bird market in Taiwan. The bird trade in Taiwan is of high volume and financially lucrative. The identity of species in this trade is vital for informing later stages (introduction, establishment, spread) of the invasion pathway. We conducted interviews and surveys of 72 outlets selling pet birds from seven cities across Taiwan, from which we identified 247 bird species (within 34 families) for sale. Of these, 170 bird species (from 27 families) are exotic to Taiwan. Using randomization tests, we show that nine families are significantly over-represented in the pet trade (Psittacidae, Muscicapidae, Timaliidae, Sturnidae, Turdidae, Estrildidae, Chloropseidae, Zosteropidae and Fringillidae), and three after sequential Bonferroni correction (Psittacidae, Muscicapidae and Sturnidae). Species that have been identified in Taiwanese pet shops tend to have a larger native geographic range, originate further from the equator, are smaller-bodied, and have more aesthetically-pleasing songs than expected by chance. The native ranges of pet shop species are more likely to be situated in the Indo-Malay and Palearctic biogeographic realms, while fewer species than expected derive from the Neotropic, Afrotropic and Nearctic realms. Our results show that bird species for sale in Taiwan are determined by the interaction of species availability and societal demands.  相似文献   

15.
Urban areas suffer high pressure of introductions of alien species compared to other habitats due to intensive human activities. As trading globally continues to rise, more species will likely be introduced into urban areas. To determine whether this increase in introduction pressure will lead to increased alien species richness in urban areas, or whether other processes would act to impose an upper limit on species richness, we examined how the shape of the relationship between alien species richness and the number of introduced species over time (i.e. introduction pressure) varies along gradients of urbanization. We collected species composition data from urban bird surveys worldwide and used a global database of alien bird introductions to quantify how many species have been introduced over time at different sites. We found that urbanization gradually modified the shape of the studied relationship from linear to asymptotic. Only communities in extremely urbanized environments were associated with an asymptotic relationship, suggesting that alien bird richness has likely not reached its ecological limit in most urban areas. Our results show that urbanization can reduce the importance of introduction pressure in determining alien species richness. Additionally, the results predict that alien species richness will increase at finer spatial scales, especially if the introduced species can survive in urban areas outside of their native range.  相似文献   

16.
Abstract Introduced birds are a pervasive and dominant element of urban ecosystems. We examined the richness and relative abundance of introduced bird species in small (1–5 ha) medium (6–15 ha) and large (>15 ha) remnants of native vegetation within an urban matrix. Transects were surveyed during breeding and non‐breeding seasons. There was a significant relationship between introduced species richness and remnant size with larger remnants supporting more introduced species. There was no significant difference in relative abundance of introduced species in remnants of different sizes. Introduced species, as a proportion of the relative abundance of the total avifauna (native and introduced species), did not vary significantly between remnants of differing sizes. There were significant differences in the composition of introduced bird species between the different remnant sizes, with large remnants supporting significantly different assemblages than medium and small remnants. Other variables also have substantial effects on the abundance of introduced bird species. The lack of significant differences in abundance between remnant sizes suggests they were all equally susceptible to invasion. No patches in the urban matrix are likely to be unaffected by introduced species. The effective long‐term control of introduced bird species is difficult and resources may be better spent managing habitat in a way which renders it less suitable for introduced species (e.g. reducing areas of disturbed ground and weed dominated areas).  相似文献   

17.
We quantify the contribution of alien species to the total breeding population numbers, biomass and energy use of an entire taxonomic assemblage at a large spatial scale, using data on British birds from 1997 and 2013. A total of 216 native and 16 alien bird species were recorded as breeding in Great Britain across the two census years. Only 2.8–3.7% of British breeding bird individuals were alien, but alien species co-opted 11.9–13.8% of the energy used by the assemblage, and contributed 19.1–21.1% of assemblage biomass. Neither the population sizes nor biomasses of native and alien species differed, on average, in either census, but alien species biomass is higher than native species biomass for a given population size. Species richness underestimates the potential effects of alien bird species in Britain, which have disproportionately high overall biomass and population energy use. The main driver of these effects is the ring-necked pheasant (Phasianus colchicus), which comprised 74–81% of alien biomass, yet the breeding population of this species is still only a small fraction of the estimated 35 million birds released in the UK in autumn. The biomass of this release exceeds that of the entire breeding avifauna, and suggests that the pheasant should have an important role in structuring the communities in which it is embedded.  相似文献   

18.
In this study we provide the first comprehensive assessment of the environmental and anthropogenic factors driving bryophyte invasions worldwide. We compiled data of alien bryophyte distributions from 82 regions on five continents and oceanic islands and region specific variables. For each species, we collected data on its region‐specific invasion stage, i.e. casual (ephemeral) vs naturalized (persistent) occurrences, and we differentiated between known aliens and those which are likely to be alien (cryptogenic). We used these data to test how species attributes, environmental and socio‐economic conditions of the study areas as well as introduction effort affect invasion probabilities at different invasion stages and of known alien vs cryptogenic species. We collected information on species’ attributes (native range size and location, niche breadth, habitat affiliation), and calculated variables characterising the environmental, biogeographic and socio‐economic features of the native and recepient regions. Subsequently, we related the probability of alien occurrence across different invasion stages with these species‐ and region‐wise predictor variables using generalized linear mixed effects models. Greater native range size raised the likelihood that a species becomes alien or cryptogenic. Islands are more invaded by alien (and cryptogenic) bryophytes than continental regions. Native range size and socio‐economic activity increase the likelihood that a species becomes alien or cryptogenic elsewhere. Interestingly, among alien bryophytes naturalizations occur more frequently in regions of the complementary hemisphere than in regions of their native hemisphere. In general, regions in the Southern Hemisphere have higher numbers of naturalized bryophytes. We conclude that there is a conspicuous change in factors determining bryophyte invasions at different invasion stages. Whereas alien and cryptogenic bryophyte species occurrences are more frequent on islands and depend on native range size, and hence probably propagule pressure, naturalized bryophytes are more frequent in areas which are biogeographically separated but climatically similar to the native ranges.  相似文献   

19.
Introduced species often seem to perform better than conspecifics in their native range. This is apparent in the high densities they may achieve or the larger individual sizes they attain. A prominent hypothesis explaining the success of introduced terrestrial species is that they are typically free of or are less affected by the natural enemies (competitors, predators, and parasites) they encounter in their introduced range compared to their native range. To test this hypothesis in a marine system, we conducted a global assessment of the effect of parasitism and predation on the ecological performance of European green crab populations. In Europe, where the green crab is native, crab body size and biomass were negatively associated with the prevalence of parasitic castrators. When we compared native crab populations with those from introduced regions, limb loss (an estimator of predation) was not significantly lower in introduced regions, parasites infected introduced populations substantially less and crabs in introduced regions were larger and exhibited a greater biomass. Our results are consistent with the general prediction that introduced species suffer less from parasites compared to populations where they are native. This may partly explain why the green crab is such a successful invader and, subsequently, why it is a pest in so many places.  相似文献   

20.
Patterns of bird invasion are consistent with environmental filtering   总被引:1,自引:0,他引:1  
Predicting invasion potential has global significance for managing ecosystems as well as important theoretical implications for understanding community assembly. Phylogenetic relationships of introduced species to the extant community may be predictive of establishment success because of the opposing forces of competition/shared enemies (which should limit invasions by close relatives) versus environmental filtering (which should allow invasions by close relatives). We examine here the association between establishment success of introduced birds and their phylogenetic relatedness to the extant avifauna within three highly invaded regions (Florida, New Zealand, and Hawaii). Published information on both successful and failed introductions, as well as native species, was compiled for all three regions. We created a phylogeny for each avifauna including all native and introduced bird species. From the estimated branch lengths on these phylogenies, we calculated multiple measurements of relatedness between each introduced species and the extant avifauna. We used generalized linear models to test for an association between relatedness and establishment success. We found that close relatedness to the extant avifauna was significantly associated with increased establishment success for exotic birds both at the regional (Florida, Hawaii, New Zealand) and sub‐regional (islands within Hawaii) levels. Our results suggest that habitat filtering may be more important than interspecific competition in avian communities assembled under high rates of anthropogenic species introductions. This work also supports the utility of community phylogenetic methods in the study of vertebrate invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号