首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Activities of DNA polymerases and RNA polymerases were studied by autoradiographic methods in growing and differentiating root cortex cells of Zea mays - a species in which endomitosis occurs - and Tulipa kaufmanniana - in which this process does not occur. In Tulipa kaufmanniana, the highest activity of DNA polymerase appears in the nuclei of meristematic zone during the S phase of the cell cycle. In Zea mays, endomitotic replication of DNA occurs in all growth and differentiation zones and the activity of DNA polymerase in the nuclei is similar to that in the meristematic zone. In both species, nuclear RNA synthesis, measured with 3H uridine incorporation, is highest in the meristematic zone and declines steadily with development. Activity of nuclear RNA polymerase is present in all developmental zones in both species and is similar to that in the meristematic zone. 3H uridine incorporation into nucleoli decreases markedly in both species, whereas the activity of nucleolar RNA polymerase remains at a high level in all root segments in Zea mays and decreases slightly in Tulipa kaufmanniana. It is argued that the differences between the incorporation of 3H uridine and that or 3H UMP may be caused by a reduction of the pool of endogenous ribonucleoside triphosphates. Marked activities of DNA polymerase and RNA polymerase in cytoplasm are possibly related to the growth and division of plastids and mitochondria.  相似文献   

2.
Summary Using cytophotometric procedures, we measured the nuclear and nucleolar protein content of successive zones of growth and differentiation in consecutive (1–7 mm) root segments obtained from eight species of the Angiospermae after staining the preparations with Feulgen-Naphthol Yellow S (F-NYS). In meristematic cells the nuclear and nucleolar protein content was found to double during the cell cycle. In species in which differentiation occurs at the same time as nuclear DNA endoreplication, i.e. Vicia faba subsp. minor, V. faba subsp. major, Pisum sativum, Hordeum vulgare and Amaryllis belladonna, the pool of nuclear proteins observed during the G2 phase of the cell cycle was seen in the differentiated zone in nuclei containing 8C DNA. Species in which differentiation is not accompanied by the process of nuclear DNA endoreplication, i.e. Levisticum officinale, Tulipa kaufmanniana and Haemanthus katharinae, exhibited the highest nuclear proteins content during the G2 phase of the cell cycle; comparably high values were not found in the differentiated zone. A decrease in nucleolar protein content was observed during the process of differentiation, this tendency being more evident in the studied species that do not exhibit endoreplication.This work was supported by the Polish Academy of Sciences as a part of project no 09.7.1.4.5  相似文献   

3.
RNA and protein synthesis in sperm cells isolated from Zea mays L. pollen   总被引:1,自引:1,他引:0  
Summary Sperm cells are thought to be quiescent in pollen and activated upon pollen germination. To test this hypothesis, protein, RNA and DNA synthesis were assessed in Zea mays sperm cells at different times after isolation from pollen. Protein synthesis changed with time; while some proteins were found to be constitutive in both 0 and 24 h cells, others were synthesized and some disappeared. Overall, the number of proteins detected at 24 h doubled compared with freshly isolated cells. Incorporation of [3H]leucine in 24 h cells was about 50 times that in freshly isolated cells, and that of [5, 6-3H]uridine, about 7 times. Very low incorporation of [6-3H]thymidine into the cells was detected; there was no difference between freshly isolated and 24 h cells. It is possible that the differences in synthetic activity between freshly isolated and 24-h-old cells might correspond to sperm cell activation during pollen tube growth. If so, these metabolic changes may play an important role in fertilization.Supported by funds from a Strategic Grant (D.D.C.) and an Operating Grant (D.J.G.) from the Natural Sciences and Engineering Research Council of Canada  相似文献   

4.
Summary Cortex cells of the root meristem of Cucurbita pepo (0.0–0.5 mm from the cap junction), in the 3–4, 5–6 and 7–8 mm segments above the root tip, and the cells of the first three layers of lateral part of root cap were the object of the present study. The volume of cortex cells increases more than 20 times in the 7–8 mm segment as compared with meristematic cells, and the volume of cytoplasm about sevenfold. The largest increment of the cytoplasmic volume occurs between 0.5–6.0 mm. In consecutive root segments the sustained increase of the volume of nuclei takes place. By applying autoradiography the following processess have been investigated: DNA synthesis (3H thymidine uptake), template activity of DNA (3H actinomycin D(3H AMD)-binding), RNA synthesis (3H uridine incorporation), and protein synthesis (3H leucine). In the root cap cells and in segments where meristematic activity is over, DNA is replicated by endomitosis. On the basis of nuclear labelling it appears that nuclei in the 3–4 mm segment reach 4C ploidy state, but in the 7–8 mm segment half of the nuclei reach the 8C ploidy state. Most of the root cap cells are 4C, the remaining cells are 8C. Considering the uptake of 3H thymidine into nucleoli one may suppose that in the root cap cells nucleolar DNA is underreplicated, and to a lesser degree in 5–6 and 7–8 mm segments, while in 3–4 mm segment DNA is overreplicated as compared to meristem cells. Measurements of nucleolar volume, 3H uridine uptake, 3H AMD binding and quantity of granular component, indicate that the most noticeable nucleolar activity takes place in meristematic zone and in root parts showing the highest increase of cytoplasmic volume (3–4 and 5–6 mm segments). 3H leucine is still incorporated intensely into 7–8 mm segment, in which the concentration of ribosomes is low, however they are present in the form of polysomes. Comparison of 3H thymidine uptake into nuclear DNA with 3H AMD binding and 3H uridine incorporation into nuclei indicates that endomitotic DNA replication results in an increase of DNA template activity in root cap cells as well as in 3–4 and 5–6 mm segments; in the 7–8 mm segment binding of 3H AMD slightly decreases, while 3H uridine incorporation is considerably reduced. Divergence between the ploidy state, 3H AMD binding and 3H uridine incorporation can be due to the increment of the condensed chromatin area in differentiated cells. Plastids and mitochondria reach full maturity in 3–4 mm segment. The increasing volume density of ER and diminishing volume density of Golgi structures is accompanied by differentiation of cortex cells.This work was partly supported by Polish Academy of Sciences, Botanical Committee, Grant 217/II  相似文献   

5.
A continuing theme of our laboraory, has been the understanding of human DNA polymerases at the structural level. We have purified DNA polymerases delta, epsilon and alpha from human placenta. Monoclonal antibodies to these polymerases were isolated and used as tools to study their immunochemical relationships. These studies have shown that while DNA polymerases delta, epsilon and alpha are discrete protiens, they must share common structural features by virtue of the ability of several of our monoclonal antibodies to exhibit cross-reactivity. A second approach we have taken is the molecular cloning of human DNA polymerase delta and epsilon. We have cloned the DNA polymerase delta cDNA, and this has allowed us to compare its primary structure to those of human polymerase alpha and other members of this polymerase family. Multiple sequence alignments have revealed that human DNA polymerase delta is also closely related to the herpes virus family of DNA polymerases. In situ hybridization has shown that the human DNA polymerase delta gene is localized to chromosome 19 q13.3–q13.4. In order to further determine the functional regions of the DNA polymerase δ structure we are currently expressing human pol δ inE. coli and baculovirus systems. Other work in our laboratory is directed toward examining the expression of DNA polymerase δ during the cell cycle.  相似文献   

6.
3′-deoxyadenosine triphosphate inhibited invitro [3H]UMP incorporation by RNA-dependent RNA polymerases from tobacco and cowpea plants. The inhibition of [3H]UMP incorporation could be reversed by simultaneous addition of higher ATP concentrations but not with increasing concentrations of UTP or when excess ATP was added 10 min after the inhibitor. These results suggest 3′-deoxyadenosine triphosphate competes specifically with ATP in reaction mixtures and results in premature termination of RNA synthesis invitro by RNA-dependent RNA polymerase.  相似文献   

7.

Background  

The DNA-dependent RNA polymerase from T7 bacteriophage (T7 RNAP) has been extensively characterized, and like other phage RNA polymerases it is highly specific for its promoter. A combined in vitro / in vivo selection method has been developed for the evolution of T7 RNA polymerases with altered promoter specificities. Large (103 – 106) polymerase libraries were made and cloned downstream of variant promoters. Those polymerase variants that can recognize variant promoters self-amplify both themselves and their attendent mRNAs in vivo. Following RT / PCR amplification in vitro, the most numerous polymerase genes are preferentially cloned and carried into subsequent rounds of selection.  相似文献   

8.
In preparation for the isolation and biochemical characterization of putative RNA polymerase mutants, DNA-dependent RNA polymerases of Drosophila melanogaster adults were isolated and partially characterized. Approximately 70% of the female adult RNA polymerase is located in ovaries. Multiple forms of ovarian RNA polymerases I and II are separable by DEAE-Sephadex chromatography. The two forms of RNA polymerase II differ in ammonium sulfate optima. RNA polymerase IIA is more active with double-stranded DNA as template, whereas RNA polymerase IIB transcribes single-stranded DNA most efficiently. Rechromatography of RNA polymerase IIA on DEAE-Sephadex results in the loss of ability of this form to transcribed double-stranded DNA most efficiently. Ovariectomized carcasses have two forms of RNA polymerase I and one form of RNA polymerase II and each transcribes single-stranded DNA most efficiently. As judged by gel filtration chromatography, female adult extracts have forms of RNA polymerase II that differ in molecular weight and template preference.Supported by Grants GM23456 from the NIH and 11259 from the City University Research Foundation.  相似文献   

9.
10.
Oxidized RNA precursors formed in the nucleotide pool may be incorporated into RNA. In this study, the incorporation of 8-hydroxyguanosine 5′-triphosphate (8-OH-GTP; 8-oxo-7,8-dihydroguanosine 5′-triphosphate) into RNA by Escherichia coli RNA polymerase was examined in vitro, using a primer RNA and a template DNA with defined sequences. 8-OH-GTP was incorporated opposite C and A in the template DNA. Surprisingly, 8-OH-GTP was quite efficiently incorporated by the bacterial RNA polymerase, in contrast to the incorporation of the 2′-deoxyribo counterpart by DNA polymerases, as indicated by the kinetic parameters. The primer was further extended by the addition of a ribonucleotide complementary to the nucleobase adjacent to C or A (the nucleobase opposite which 8-OH-GTP was inserted). Thus, the incorporation of 8-OH-GTP did not completely inhibit further RNA chain elongation. 8-OH-GTP was also incorporated opposite C and A by human RNA polymerase II. These results suggest that 8-OH-GTP in the nucleotide pool can cause the formation of oxidized RNA and disturb the transmittance of genetic information.  相似文献   

11.
Family D DNA polymerase (PolD) is the essential replicative DNA polymerase for duplication of most archaeal genomes. PolD contains a unique two-barrel catalytic core absent from all other DNA polymerase families but found in RNA polymerases (RNAPs). While PolD has an ancestral RNA polymerase catalytic core, its active site has evolved the ability to discriminate against ribonucleotides. Until now, the mechanism evolved by PolD to prevent ribonucleotide incorporation was unknown. In all other DNA polymerase families, an active site steric gate residue prevents ribonucleotide incorporation. In this work, we identify two consensus active site acidic (a) and basic (b) motifs shared across the entire two-barrel nucleotide polymerase superfamily, and a nucleotide selectivity (s) motif specific to PolD versus RNAPs. A novel steric gate histidine residue (H931 in Thermococcus sp. 9°N PolD) in the PolD s-motif both prevents ribonucleotide incorporation and promotes efficient dNTP incorporation. Further, a PolD H931A steric gate mutant abolishes ribonucleotide discrimination and readily incorporates a variety of 2′ modified nucleotides. Taken together, we construct the first putative nucleotide bound PolD active site model and provide structural and functional evidence for the emergence of DNA replication through the evolution of an ancestral RNAP two-barrel catalytic core.  相似文献   

12.
13.
Ribonucleic acid (RNA) polymerases of Histoplasma capsulatum (yeast phase) were fractionated by phosphocellulose chromatography and partially characterized. Three distinct, active fractions were seen. The major RNA polymerase species was inhibited strongly by α-amanitin, whereas the other two were resistant. When either slightly purified (HSE) extract or the major active component was assayed at 37 C, the incorporation of tritiated uridine monophosphate into RNA stopped after 10 to 15 min. In contrast, the synthesis continued for at least 1 h at 23 C. The other two RNA polymerase species exhibited higher rates of incorporation when tested at 37 C, and continued to synthesize RNA even after 60 min. However, by that time the levels of incorporation at 23 C were higher than at 37 C for all three enzymes. The temperature sensitivity was not affected by changing substrate concentration or employing either native or denatured calf thymus deoxyribonucleic acid as a template. These results are compared with the data obtained with RNA polymerases from different fungi and other organisms. A possible involvement of RNA polymerase(s) in morphological differentiation of H. capsulatum is discussed.  相似文献   

14.
Summary Rabbit antibodies against Artemia RNA polymerase II have been raised and utilized to study the immunological relationships between the subunits from RNA polymerases I, II and III from this organism and RNA polymerase II from other eukaryotes. We describe here for the first time the subunit structure of Artemia RNA polymerases I and III. These enzymes have 9 and 13 subunits respectively. The anti-RNA polymerase II antibodies recognize two subunits of 19.4 and 18 kDa common to the three enzymes, and another subunit of 25.6 kDa common to RNA polymerases II and III. The antibodies against Artemia RNA polymerase II also react with the subunits of high molecular weight and with subunits of around 25 and 33 kDa of RNA polymerase II from other eukaryotes (Drosophila melanogaster, Chironomus thummi, triticum (wheat) and Rattus (rat)). This interspecies relatedness is a common feature of eukaryotic RNA polymerases.Abbreviations RNAp RNA polymerase - DPT diazophenylthioether - SDS sodium dodecylsulfate  相似文献   

15.
16.
Abstract: We have investigated the mechanism of inhibition of RNA synthesis by methyl mercury (MeHg) in isolated neonatal rat cerebellar cells. Each of the three component steps involved in the incorporation of exogenous [3H]uridine into cellular RNA was examined separately in whole-cell and/or subcellular preparations. Nuclear RNA polymerase activity was measured in preparations containing both free nuclei and whole cells. Incorporation of [3H]UTP into nuclear RNA was found to be unimpaired at concentrations of MeHg that inhibited whole-cell incorporation of [3H]uridine by > 75%. Cellular uptake of [3H]uridine was assayed in cerebellar cells treated with KCN to deplete ATP levels and block subsequent phosphorylation reactions of transported uridine. Uptake activity under these conditions was unaffected by MeHg. Measurement of intracellular phosphorylation of [3H]uridine indicated that inhibition of this activity closely paralleled that of RNA synthesis. Quantitation of individual uridine nucleotides by polyethyleneimine-cellulose TLC revealed reduced levels of UTP and UDP whereas levels of UMP were elevated, suggesting that impairment of phosphorylation was not the result of cellular ATP depletion but, more likely, a direct effect on phosphouridine kinase enzymes. This mechanism of MeHg-induced inhibition of RNA synthesis was confirmed by assays of uridine phosphorylation using cell-free extracts in which exogenous ATP was supplied.  相似文献   

17.
18.
In maize (Zea mays F, XL 640 A, DEKALB) coleoptiles, cordycepin (3′-deoxyadenosine) is very active in preventing the cell elongation. H+ extrusion and K+ uptake induced by IAA and, to a much lesser degree, the same phenomena induced by fusicoccin (FC). Cordycepin, while depressing uridine incorporation into RNA, does not decrease the ATP level or significantly influence the pyruvate level and leucine incorporation into proteins in this material. These results support the hypothesis that one or more proteins. whose synthesis is dependent upon short half-life mRNAs, are essential for a full response to IAA. while this requirement is only partial in FC-stimulation of growth. They also confirm the view that auxin- or FC-induced activation of H+/K+ exchange plays an important role in mediating the effects of these compounds on cell enlargement.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号