首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We aimed to describe 3D scapular kinematics and scapulohumeral rhythm (SHR) in glenohumeral (GH) osteoarthritis shoulders compared to unaffected shoulders and to compare the abnormal scapular kinematic schema for GH osteoarthritis with that for frozen shoulder. Thirty-two patients with stiff shoulder (16 with GH osteoarthritis and 16 with frozen shoulder) performed maximal arm elevation in two planes, sagittal and frontal. Scapular rotations and humeral elevation of the affected and unaffected shoulders were measured by the Polhemus Fastrak electromagnetic system. Patients with GH osteoarthritis were older, had longer disease duration (p<0.001) and less restricted humeral elevation in the frontal plane (p=0.01). Protraction was significantly lower for the affected shoulders except for arm elevation in the frontal plane in the GH osteoarthritis group. Furthermore, protraction was lower with frozen shoulder than GH osteoarthritis during arm elevation in the frontal plane. Scapular lateral rotation and SHR were significantly higher for the affected shoulders in both groups whatever the plane of elevation. SHR showed a fair to moderate negative correlation with maximal humeral elevation in both groups and appears to be higher with frozen shoulder than GH osteoarthritis. In addition, SHR of the affected shoulder showed a fair to moderate correlation with disease duration only with GH osteoarthritis. Scapular tilt did not differ between affected and unaffected sides and was not influenced by type of disease. In conclusion, the increased scapular lateral rotation described in frozen shoulder is also observed in GH osteoarthritis. SHR of the affected shoulder is inversely related to severity of limitation of shoulder range of motion, which suggests a compensatory pattern.  相似文献   

2.
The aim of this study is to determine the errors of scapular localisation due to skin relative to bone motion with an optoelectronic tracking system. We compared three-dimensional (3D) scapular positions obtained with skin markers to those obtained through palpation of three scapular anatomical landmarks. The scapular kinematics of nine subjects were collected. Static positions of the scapula were recorded with the right arm elevated at 0°, 40°, 80°, 120° and 160° in the sagittal plane. Palpation and subsequent digitisation of anatomical landmarks on scapula and thorax were done at the same positions. Scapular 3D orientation was also computed during 10 repeated movements of arm elevation between 0° and 180°. Significant differences in scapular kinematics were seen between static positions and palpation when considering anterior/posterior tilt and upward/downward rotation at angles over 120° of humeral elevation and only at 120° for internal/external rotation. There was no significant difference between positions computed during static positions and during the movement for the three scapular orientations. A rotation correction model is presented in order to reduce the errors between static position and palpation measurement.  相似文献   

3.
Scapula motion is significant for support of the arm and stability of the shoulder. The effect of the humeral elevation on scapular kinematics has been well investigated for normal subjects, but there are limited published studies investigating adaptations after shoulder arthroplasty. Scapula kinematics was measured on 10 shoulders (eight subjects) with a reverse total joint replacement. The measurements were performed using an instrumented palpating technique. Every subject performed three simple tasks: abduction, elevation in scapula plane and forward flexion. Results indicate that, lateral scapula rotation was significantly increased (average of 24.42% over the normal rhythm) but the change was variable. Despite the variability, there is a clear trend correlating humeral performance with increased rotation (R2 0.829). There is clearly an adaptation in lateral scapula rotation in patients with shoulder joint replacement. The reason for this is unclear and may be related to joint pathology or to muscle adaptation following arthroplasty.  相似文献   

4.
Trunk rotation often accompanies humeral elevation, during daily activities as well as sports activities. Earlier studies have demonstrated that changes in spinal posture contribute to scapular motion during humeral elevation. However, the effect of trunk rotation on scapular kinematics during humeral elevation has received scant attention. This study aimed to clarify how trunk rotation affects scapular kinematics and muscle activities during humeral elevation. Electromagnetic motion capture and electromyography were used to assess scapular and clavicular motion and muscle activity in the right and left sides of 12 healthy young men. The subjects were seated and instructed to elevate both arms with the trunk in neutral, ipsilaterally rotated, or contralaterally rotated position. Ipsilaterally rotated trunk position decreased the internal rotation (by 5°, relative to neutral trunk position) and increased the upward rotation (by 4°, relative to neutral trunk position) of the scapula. Trunk position did not affect clavicular motion during humeral movement. Electromyography showed that contralaterally rotated trunk position increased the activity of the upper trapezius and serratus anterior muscles and decreased the activity of the lower trapezius. Therapists should consider the importance of trunk rotation, which may be the key to developing more efficient rehabilitation programs.  相似文献   

5.
This study determined the ratio between glenohumeral and three-dimensional scapular motion during arm elevation and lowering in 91 individuals without shoulder pain. Scapular kinematics were assessed using an electromagnetic tracking device. Individuals performed 3 repetitions of elevation and lowering of the arm in the sagittal plane. Two-way ANOVAs (interval: 30–60°, 60–90°, 90–120° x phase: elevation and lowering) and paired t-tests were used for data analysis. For scapular internal/external rotation, lesser scapular internal rotation contribution was found during the 60–90° interval as compared to the 90–60° interval. Lesser scapular external rotation was identified in the 60–30° interval of arm lowering. The ratio was greater during arm elevation (1.89) compared to lowering (1.74) across the entire motion arc. For scapular upward rotation, greater upward rotation contribution was observed during arm elevation at the 30–60° interval, and less scapular downward rotation contribution in the final range of arm lowering. For scapular tilt, lesser scapular posterior tilt contribution during arm elevation was observed compared to arm lowering. The ratios between glenohumeral elevation/lowering and each individual scapulothoracic motion showed either differences between intervals and/or between elevation and lowering during specific intervals in healthy individuals.  相似文献   

6.
Scapula and humerus motion associated with common manual wheelchair tasks is hypothesized to reduce the subacromial space. However, previous work relied on either marker-based motion capture for kinematic measures, which is prone to skin-motion artifact; or ultrasound imaging for arthrokinematic measures, which are 2D and acquired in statically-held positions. The aim of this study was to use a fluoroscopy-based approach to accurately quantify glenohumeral kinematics during manual wheelchair use, and compare tasks for a subset of parameters theorized to be associated with mechanical impingement. Biplane images of the dominant shoulder were acquired during scapular plane elevation, propulsion, sideways lean, and weight-relief raise in ten manual wheelchair users with spinal cord injury. A computed tomography scan of the shoulder was obtained, and model-based tracking was used to quantify six-degree-of-freedom glenohumeral kinematics. Axial rotation and superior/inferior and anterior/posterior humeral head positions were characterized for full activity cycles and compared between tasks. The change in the subacromial space was also determined for the period of each task defined by maximal change in the aforementioned parameters. Propulsion, sideways lean, and weight-relief raise, but not scapular plane elevation, were marked by mean internal rotation (8.1°, 10.8°, 14.7°, −49.2° respectively). On average, the humeral head was most superiorly positioned during the weight-relief raise (1.6 ± 0.9 mm), but not significantly different from the sideways lean (0.8 ± 1.1 mm) (p = 0.191), and much of the task was characterized by inferior translation. Scaption was the only task without a defined period of superior translation on average. Pairwise comparisons revealed no significant differences between tasks for anterior/posterior position (task means range: 0.1–1.7 mm), but each task exhibited defined periods of anterior translation. There was not a consistent trend across tasks between internal rotation, superior translation, and anterior translation with reductions in the subacromial space. Further research is warranted to determine the likelihood of mechanical impingement during these tasks based on the measured task kinematics and reductions in the subacromial space.  相似文献   

7.
Scapular kinematics in healthy adults is well described in the literature but little is known on typical children. This study aimed to compare the three-dimensional (3-D) scapular kinematics and scapulohumeral rhythm during the elevation and lowering of the arm in the scapular plane in typical children and healthy adults. Twenty-six healthy adults (35.34 ± 11.65 years, 1.70 ± 0.10 m, 70.00 ± 12.30 kg) and 33 typical children (9.12 ± 1.51 years, 1.40 ± 0.10 m, 35.40 ± 10.45 kg) participated in this study. 3-D scapular kinematics were obtained using an electromagnetic tracking device. The subjects were asked to elevate and lower their arm in the scapular plane. Children showed less scapular protraction compared to adults at 120° during arm elevation, more anterior tilt than adults in the elevation and also at 60°, 90° and 120° during lowering of the arm. Children also showed higher scapulohumeral rhythm during lowering of the arm compared to adults from 90° to 60°. It was also found a low to little correlation between scapular position and age. The study showed small but significant differences in scapular kinematics and scapulohumeral rhythm between children and adults. These results can help clinicians to improve diagnosis and treatment protocols directed to children with dysfunction, as reference values on scapular kinematics in healthy children are also provided in this study.  相似文献   

8.
The kinematics of scapula and shoulder joint movements were analyzed in three species of arboreal quadrupedal primates using cineradiography. Our findings indicate that scapular movement is highly important for forelimb movement in primates with this ancestral mode of locomotion. Retroversion of the scapula (syn. caudal rotation or extension) during the stance phase contributes more than 40% to the stride length of the forelimb. Lateral forelimb excursions, a general feature for arboreal primates, are based on complex three-dimensional scapular movements guided by the clavicle. Humeral abduction is achieved by scapular abduction and transversal rotation of the scapula about its longitudinal axis, and is therefore strikingly different from humeral abduction in humans. At the same time, the movements of the shoulder joint are limited to flexion and extension only.  相似文献   

9.
Forward head and rounded shoulder posture (FHRSP) is theorized to contribute to alterations in scapular kinematics and muscle activity leading to the development of shoulder pain. However, reported differences in scapular kinematics and muscle activity in those with forward head and rounded shoulder posture are confounded by the presence of shoulder pain. Therefore, the purpose of this study was to compare scapular kinematics and muscle activity in individuals free from shoulder pain, with and without FHRSP. Eighty volunteers were classified as having FHRSP or ideal posture. Scapular kinematics were collected concurrently with muscle activity from the upper and lower trapezius as well as the serratus anterior muscles during a loaded flexion and overhead reaching task using an electromagnetic tracking system and surface electromyography. Separate mixed model analyses of variance were used to compare three-dimensional scapular kinematics and muscle activity during the ascending phases of both tasks. Individuals with FHRSP displayed significantly greater scapular internal rotation with less serratus anterior activity, during both tasks as well as greater scapular upward rotation, anterior tilting during the flexion task when compared with the ideal posture group. These results provide support for the clinical hypothesis that FHRSP impacts shoulder mechanics independent of shoulder pain.  相似文献   

10.
11.
Altered scapular motions premeditate shoulder impingement and other musculoskeletal disorders. Divergent experimental conditions in previous research precludes rigorous comparisons of non-invasive scapular tracking techniques. This study evaluated scapular orientation measurement methods across an expanded range of humeral postures. Scapular medial/lateral rotation, anterior/posterior tilt and protraction/retraction was measured using an acromion marker cluster (AMC), a scapular locator, and a reference stylus. Motion was captured using reflective markers on the upper body, as well as on the AMC, locator and stylus. A combination of 5 arm elevation angles, 3 arm elevation planes and 3 arm axial rotations was examined. Measurement method interacted with elevation angle and plane of elevation for all three scapular orientation directions (p < 0.01). Method of measurement interacted with axial rotation in anterior/posterior tilt and protraction/retraction (p < 0.01). The AMC had strong agreement with the reference stylus than the locator for the majority of humeral elevations, planes and axial rotations. The AMC underestimated lateral rotation, with the largest difference of ∼2° at 0° elevation. Both the locator and AMC overestimated posterior tilt at high arm elevation by up to 7.4°. Misestimations from using the locator could be enough to potentially obscure meaningful differences in scapular rotations.  相似文献   

12.
Scapular dyskinesis is observed in 61% of overhead athletes (Burn et al., 2016). For most of them, it remains asymptomatic. However, scapular dyskinesis is considered a risk factor for shoulder injury by some authors (Clarsen et al., 2014). The aim of this study is to explore the effectiveness of kinesiotaping in modifying scapular kinematics and peri-scapular muscle activity in dyskinetic athletes. The 3-dimensional position and orientation of the scapula as well as the activation of upper trapezius, lower trapezius and serratus anterior were recorded in twenty asymptomatic athletes during shoulder movements (flexion and abduction), in loaded and unloaded conditions and in three circumstances (standard, kinesiotaping 1, kinesiotaping 2). A significant decrease between 9 and 12% in upper trapezius activity was observed with kinesiotaping 1 and 2. Lower trapezius activity was slightly increased with kinesiotaping 1 while it was significantly decreased about 15–20% with kinesiotaping 2. No change was observed in serratus anterior activity, for either kinesiotaping 1 or 2. Considering scapular kinematics, both kinesiotaping 1 and 2 significantly increased posterior tilt and upward rotation. External rotation was decreased with kinesiotaping 2, in comparison to standard condition. Kinesiotaping, and especially taping 1, seems to be an effective method for changing periscapular muscle activity and scapular kinematics.  相似文献   

13.
For kinematic studies of the shoulder, electromagnetic sensors are commonly placed on the humerus, scapula, and trunk. The trunk sensor is used to describe humeral and scapular kinematics with respect to the trunk. There are two common trunk sensor placements, the sternum or third thoracic vertebrae (T3). It is currently unclear if placement of the trunk sensor affects kinematics, making it difficult to compare data across studies. The purpose of this study was to compare two trunk sensor placements (T3 and sternum) on trunk and scapular kinematics during arm elevation. An electromagnetic tracking system was used to collect kinematic data during five consecutive repetitions of ascending and descending arm elevation in the sagittal plane. The results indicate that trunk sensor placement had no significant effect on trunk kinematics or scapular upward/downward rotation and internal/external rotation. Scapular anterior/posterior tilt was significantly greater when the trunk sensor was on the sternum compared to the T3 vertebrae during ascending 30°–120°: mean difference = −3.51° (95%CI: −5.61, −1.40), and descending 120°–30°: mean difference = −3.27° (95%CI: −6.07, −0.48). However, the difference in anterior/posterior tilt did not exceed the error (minimal detectable change), and thus is likely not a meaningful difference. These results indicate the trunk sensors can be affixed on T3 or the sternum, depending on the needs of the study.  相似文献   

14.
The iliotibial band (ITB) has an important role in knee mechanics and tightness can cause patellofemoral maltracking. This study investigated the effects of increasing ITB tension on knee kinematics. Nine fresh-frozen cadaveric knees had the components of the quadriceps loaded with 175 N. A Polaris optical tracking system was used to acquire joint kinematics during extension from 100° to 0° flexion. This was repeated after the following ITB loads: 30, 60 and 90 N. There was no change with 30 N load for patellar translation. On average, at 60 and 90 N, the patella translated laterally by 0.8 and 1.4 mm in the mid flexion range compared to the ITB unloaded condition. The patella became more laterally tilted with increasing ITB loads by 0.7°, 1.2° and 1.5° for 30, 60 and 90 N, respectively. There were comparable increases in patellar lateral rotation (distal patella moves laterally) towards the end of the flexion cycle. Increased external rotation of the tibia occurred from early flexion onwards and was maximal between 60° and 75° flexion. The increase was 5.2°, 9.5° and 13° in this range for 30, 60 and 90 N, respectively. Increased tibial abduction with ITB loads was not observed. The combination of increased patellar lateral translation and tilt suggests increased lateral cartilage pressure. Additionally, the increased tibial external rotation would increase the Q angle. The clinical consequences and their relationship to lateral retinacular releases may be examined, now that the effects of a tight ITB are known.  相似文献   

15.
16.
Changes in muscle activities are commonly associated with shoulder impingement and theoretically caused by changes in motor program strategies. The purpose of this study was to assess for differences in latencies and deactivation times of scapular muscles between subjects with and without shoulder impingement. Twenty-five healthy subjects and 24 subjects with impingement symptoms were recruited. Glenohumeral kinematic data and myoelectric activities using surface electrodes from upper trapezius (UT), lower trapezius (LT), serratus anterior (SA) and anterior fibers of deltoid were collected as subjects raised and lowered their arm in response to a visual cue. Data were collected during unloaded, loaded and after repetitive arm raising motion conditions. The variables were analyzed using 2 or 3 way mixed model ANOVAs. Subjects with impingement demonstrated significantly earlier contraction of UT while raising in the unloaded condition and an earlier deactivation of SA across all conditions during lowering of the arm. All subjects exhibited an earlier activation and delayed deactivation of LT and SA in conditions with a weight held in hand. The subjects with impingement showed some significant differences to indicate possible differences in motor control strategies. Rehabilitation measures should consider appropriate training measures to improve movement patterns and muscle control.  相似文献   

17.
The purpose of this study was to determine the relationship between hip and knee strength, and valgus knee motion during a single leg squat. Thirty healthy adults (15 men, 15 women) stood on their preferred foot, squatted to approximately 60 deg of knee flexion, and returned to the standing position. Frontal plane knee motion was evaluated using 3-D motion analysis. During Session 2, isokinetic (60 deg/sec) concentric and eccentric hip (abduction/adduction, flexion/extension, and internal/external rotation) and knee (flexion/extension) strength was evaluated. The results demonstrated that hip abduction (r2=0.13), knee flexion (r2=0.18), and knee extension (r2=0.14) peak torque were significant predictors of frontal plane knee motion. Significant negative correlations showed that individuals with greater hip abduction (r=-0.37), knee flexion (r=-0.43), and knee extension (r=-0.37) peak torque exhibited less motion toward the valgus direction. Men exhibited significantly greater absolute peak torque for all motions, excluding eccentric internal rotation. When normalized to body mass, men demonstrated significantly greater strength than women for concentric hip adduction and flexion, knee flexion and extension, and eccentric hip extension. The major findings demonstrate a significant role of hip muscle strength in the control of frontal plane knee motion.  相似文献   

18.
The most recent non-invasive methods for the recording of scapular motion are based on an acromion marker (AM) set and a single calibration (SC) of the scapula in a resting position. However, this method fails to accurately measure scapular kinematics above 90° of arm elevation, due to soft tissue artifacts of the skin and muscles covering the acromion. The aim of this study was to evaluate the accuracy, and inter-trial and inter-session repeatability of a double calibration method (DC) in comparison with SC. The SC and DC data were measured with an optoelectronic system during arm flexion and abduction at different angles of elevation (0-180°). They were compared with palpation of the scapula using a scapula locator. DC data was not significantly different from palpation for 5/6 axes of rotation tested (Y, X, and Z in abduction and flexion), where as SC showed significant differences for 5/6 axes. The root mean square errors ranged from 2.96° to 4.48° for DC and from 6° to 9.19° for SC. The inter-trial repeatability was good to excellent for SC and DC. The inter-session repeatability was moderate to excellent for SC and moderate to good for DC. Coupling AM and DC is an easy-to-use method, which yields accurate and reliable measurements of scapular kinematics for the complete range of arm motion. It can be applied to the measurement of shoulder motion in many fields (sports, orthopaedics, and rehabilitation), especially when large ranges of arm motion are required.  相似文献   

19.
This study investigated the effect of hamstring co-contraction with quadriceps on the kinematics of the human knee joint and the in-situ forces in the anterior cruciate ligament (ACL) during a simulated isometric extension motion of the knee. Cadaveric human knee specimens (n = 10) were tested using the robotic universal force moment sensor (UFS) system and measurements of knee kinematics and in-situ forces in the ACL were based on reference positions on the path of passive flexion/extension motion of the knee. With an isolated 200 N quadriceps load, the knee underwent anterior and lateral tibial translation as well as internal tibial rotation with respect to the femur. Both translation and rotation increased when the knee was flexed from full extension to 30 of flexion; with further flexion, these motion decreased. The addition of 80 N antagonistic hamstrings load significantly reduced both anterior and lateral tibial translation as well as internal tibial rotation at knee flexion angles tested except at full extension. At 30 of flexion, the anterior tibial translation, lateral tibial translation, and internal tibial rotation were significantly reduced by 18, 46, and 30%, respectively (p<0.05). The in-situ forces in the ACL under the quadriceps load were found to increase from 27.8+/-9.3 N at full extension to a maximum of 44.9+/-13.8 N at 15 of flexion and then decrease to 10 N beyond 60 of flexion. The in-situ force at 15 was significantly higher than that at other flexion angles (p<0.05). The addition of the hamstring load of 80 N significantly reduced the in-situ forces in the ACL at 15, 30 and 60 of flexion by 30, 43, and 44%, respectively (p<0.05). These data demonstrate that maximum knee motion may not necessarily correspond to the highest in-situ forces in the ACL. The data also suggest that hamstring co-contraction with quadriceps is effective in reducing excessive forces in the ACL particularly between 15 and 60 of knee flexion.  相似文献   

20.
Movements of forelimb joints and segments during walking in the brown lemur (Eulemur fulvus) were analyzed using cineradiography (150 frames/sec). Metric gait parameters, forelimb kinematics, and intralimb coordination are described. Calculation of contribution of segment displacements to stance propulsion shows that scapular retroversion in a fulcrum near the vertebral border causes more than 60% of propulsion. The contribution by the shoulder joint is 30%, elbow joint 5%, and wrist joint 1%. Correlation analysis was applied to reveal the interdependency between metric and kinematic parameters. Only the effective angular movement of the elbow joint during stance is speed-dependent. Movements of all other forelimb joints and segments are independent of speed and influence, mainly, linear gait parameters (stride length, stance length). Perhaps the most important result is the hitherto unknown and unexpected degree of scapular mobility. Scapular movements consist of ante-/retroversion, adduction/abduction, and scapular rotation about the longitudinal axis. Inside rotation of the scapula (60 degrees -70 degrees ), together with flexion in the shoulder joint, mediates abduction of the humerus, which is not achieved in the shoulder joint, and is therefore strikingly different from humeral abduction in man. Movements of the shoulder joint are restricted to flexion and extension. At touch down, the shoulder joint of the brown lemur is more extended compared to that of other small mammals. The relatively long humerus and forearm, characteristic for primates, are thus effectively converted into stride length. Observed asymmetries in metric and kinematic behavior of the left and right forelimb are caused by an unequal lateral bending of the spinal column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号