首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different Eucalyptus urophylla clones grown under two different spacing regimes in an experimental site in the state of São Paulo, Brazil, were analyzed to test effects of clone identity, spacing, cambial age and hydroclimatic conditions on high-resolution intra-annual wood density profiles. Since distinct periodic tree-ring boundaries were not visible on the stem cross-sectional surfaces, finding an alternative method for synchronization of density profiles was crucial for the analysis. The challenge was to generate intra- and inter-tree synchronized density profiles that possess high amplitude variation and low phase variation. Thus, we developed a protocol and workflow of how such high-resolution density profiles can be spatially aligned and temporally annotated to enable correlation analyses between trees and with time series of environmental stimuli. Mean wood density was significantly different between clones, but not between the spacings. Wood density increased significantly with increasing cambial age and decreasing growth rate. Principal component analysis showed that the overall variability in the temporally annotated density profiles is dominated by a highly significant common signal. We found significant negative correlation values for precipitation, indicating that water supply is the main driver of stem growth at the site, and providing evidence for the correctness of the method. The developed workflow can easily be adjusted to the analysis of other intra-annual tree-ring features like anatomical xylem cell traits or isotopic signals in the wood. It has a large potential to be used as a general guideline for the synchronization of intra-annual tree-ring traits, especially when distinct tree-ring boundaries are missing, as it is often the case under tropical climatic conditions. The workflow supports the development of spatially aligned and temporally annotated chronologies under non-annual growth rhythms.  相似文献   

2.
《植物生态学报》2017,41(2):238
The anatomical traits of xylem are the characteristics of tree rings at the cellular and subcellular scales, and are often reflection of environmental signals. Studying the relationships between anatomical traits of xylem and environmental change not only provide physiological explanations to the statistics in dendroclimatology, but can also provide a new vision for studying the adaptation process and response strategies of tree growth to climate change. In this paper, with the relationships between the anatomical characteristics of xylem in tree-rings (cell chronology) and climate change as a main thread, we first outline the basic principles and mechanisms of wood anatomical features to record environmental signals, and expounded the basic methods involved in the process of xylem anatomy. Secondly, we discuss the relationship between the anatomical features of xylem and climate factors. We then propose the following as possible directions of future research based on the existing knowledge gap in the topical area: (1) to explore the temporal and spatial variations in the anatomical characteristics of xylem in tree-rings along radial and tangential directions and the relationships with environmental changes; (2) to explore the threshold of tree growth response to environmental plasticity and adaptation processes; (3) to assess the synergistic and antagonistic effects as well as the formation mechanisms of climate response among different tree-ring proxies, and to determine the specific roles and contributions of major climatic factors during different periods of tree-ring formation.  相似文献   

3.
The anatomical traits of xylem are the characteristics of tree rings at the cellular and subcellular scales, and are often reflection of environmental signals. Studying the relationships between anatomical traits of xylem and environmental change not only provide physiological explanations to the statistics in dendroclimatology, but can also provide a new vision for studying the adaptation process and response strategies of tree growth to climate change. In this paper, with the relationships between the anatomical characteristics of xylem in tree-rings (cell chronology) and climate change as a main thread, we first outline the basic principles and mechanisms of wood anatomical features to record environmental signals, and expounded the basic methods involved in the process of xylem anatomy. Secondly, we discuss the relationship between the anatomical features of xylem and climate factors. We then propose the following as possible directions of future research based on the existing knowledge gap in the topical area: (1) to explore the temporal and spatial variations in the anatomical characteristics of xylem in tree-rings along radial and tangential directions and the relationships with environmental changes; (2) to explore the threshold of tree growth response to environmental plasticity and adaptation processes; (3) to assess the synergistic and antagonistic effects as well as the formation mechanisms of climate response among different tree-ring proxies, and to determine the specific roles and contributions of major climatic factors during different periods of tree-ring formation.  相似文献   

4.
Stable isotopes in tree rings have widely been used for palaeoclimate reconstructions since tree rings record climatic information at annual resolution. However, various wood components or different parts of an annual tree-ring may differ in their isotopic compositions. Thus, sample preparation and subsequent laboratory analysis are crucial for the isotopic signal retained in the final tree-ring isotope series used for climate reconstruction and must therefore be considered for the interpretation of isotope–climate relationships. This study focuses on wood of Corsican Pine trees (Pinus nigra ssp. laricio) as this tree species allows to reconstruct the long-term climate evolution in the western Mediterranean. In a pilot study, we concentrated on methodological issues of sample preparation techniques in order to evaluate isotope records measured on pooled whole tree-ring cellulose and whole tree-ring bulk wood samples. We analysed 80-year long carbon and oxygen chronologies of Corsican Pine trees growing near the upper tree line on Corsica. Carbon and oxygen isotope records of whole tree-ring bulk wood and whole tree-ring cellulose from a pooled sample of 5 trees were correlated with the climate parameters monthly precipitation, temperature and the self-calibrating Palmer Drought Severity Index (sc-PDSI). Results show that the offsets in carbon and oxygen isotopes of bulk wood and cellulose are not constant over time. Both isotopes correlate with climate parameters from late winter and summer. The carbon and oxygen isotope ratios of cellulose are more sensitive to climatic variables than those of bulk wood. The results of this study imply that extraction of cellulose is a pre-requisite for the reconstruction of high-resolution climate records from stable isotope series of P. nigra ssp. laricio.  相似文献   

5.
Tropical West African savannas are exposed to high climatic variability with potential impacts on tree growth, forest dynamics and ecosystem productivity. In such context, understanding the long-term ecological responses of savanna trees to changing environmental conditions is of great relevance for taking appropriate conservation actions. We conducted the first study on tree-ring analysis and quantitative wood anatomy on Afzelia africana Sm. in Burkina Faso, to investigate the life-span growth trajectories and wood anatomical adjustment to site and to climate variations. A total of 24 stem discs was collected in four protected forests along the Sudano-sahelian and the Sudanian climatic zones. Wood samples were analyzed using standard dendrochronological methods and quantitative wood anatomy. The mean annual growth rates varied from 1.002 (± 0.249) mm. year−1 in the Sudanian zone to 1.128 (± 0.436) mm. year−1 in the Sudano-sahelian zone. Analysis of growth trajectories showed high variations within sites and between climatic zones. Wood anatomical traits significantly varied between sites. Principal Component Analysis revealed strong relationships between ring width, wood density and vessel traits, with 82.81 % of the total variance explained. Vessel size significantly increased from the pith to the bark, highlighting the ontogenetic effects on xylem anatomical variations. Inverse relationships were found between vessel size and vessel density across the driest site and the wettest site, suggesting that the higher the rainfall, the taller the tree, the larger vessel size, but the lower vessel density. By contrast, more arid conditions and high evapotranspiration lead to smaller vessel sizes and higher vessel density. Such anatomical adjustments highlight the trade-offs between water conductance efficiency and hydraulic safety, and emphasize physiological responses to climate variability. These variations on the long-term dynamics and xylem anatomical patterns underline complex interactions between ontogenetic effects and contrasting environmental factors that affect the eco-physiological functioning of A. africana throughout the Sudanian region.  相似文献   

6.
The results of comparative analysis of tree-ring anatomical structure in the trunk of Larix gmelinii (Rupr.) Rupr. growing in the forest-tundra ecotone in the north of Middle Siberia in contrasting hydrothermal conditions of permafrost soils are discussed. It is found that the best soil hydrothermal conditions affected the formation of relatively large tracheids in earlywood and latewood during the whole period investigated. Current climate warming has caused a positive trend in annual changes in the cellular characteristics in trees growing in relatively favorable soil conditions and has not caused observable changes in trees growing in adverse conditions. The wood anatomy structure of the water–conducting (earlywood) zone in the tree ring in favorable conditions is determined by the weather of late May and June, and in adverse conditions it is determined by the weather in late April and May.  相似文献   

7.
Faster growth in tropical trees is usually associated with higher mortality rates, but the mechanisms underlying this relationship are poorly understood. In this study, we investigate how tree growth patterns are linked with environmental conditions and hydraulic traits, by monitoring the cambial growth of 9 tropical cloud forest tree species coupled with numerical simulations using an optimization model. We find that fast‐growing trees have lower xylem safety margins than slow‐growing trees and this pattern is not necessarily linked to differences in stomatal behaviour or environmental conditions when growth occurs. Instead, fast‐growing trees have xylem vessels that are more vulnerable to cavitation and lower density wood. We propose the growth ‐ xylem vulnerability trade‐off represents a wood hydraulic economics spectrum similar to the classic leaf economic spectrum, and show through numerical simulations that this trade‐off can emerge from the coordination between growth rates, wood density, and xylem vulnerability to cavitation. Our results suggest that vulnerability to hydraulic failure might be related with the growth‐mortality trade‐off in tropical trees, determining important life history differences. These findings are important in furthering our understanding of xylem hydraulic functioning and its implications on plant carbon economy.  相似文献   

8.
Age-dependent xylogenesis in timberline conifers   总被引:3,自引:0,他引:3  
Neither anatomical change nor physiological abnormalities have been observed in the cambia of older trees. However, different sensitivity and period of significant responses to climate suggest the existence of some age-related change in the patterns of cambial activity and/or wood cell formation. Here, weekly cambial activity and timing and duration of xylem cell enlargement and wall thickening were compared in adult (50-80 yr) and old (200-350 yr) trees of Larix decidua, Pinus cembra and Picea abies at the Alpine timberline during 2004 and 2005. Timings and durations of xylogenesis differed between adult and old trees, with 2-3 wk shorter cambial activity found in the latter. The delayed onset of cambium division and lower cell production in old trees, with respect to adult trees, led to reductions of 15-20% in the overall duration of xylem differentiation. These results demonstrate that cambial dynamics change during the tree lifespan and that the time window of tree-ring production shortens with age. Variations in the period of xylem growth may be the cause of age-dependent responses to climate. The observed shorter xylogenesis in older plants at the Alpine timberline could be related to a size effect and not just to age per se.  相似文献   

9.
Tree-ring width, wood density, anatomical structure and 13C/12C ratios expressed as δ13C-values of whole wood of Picea abies were investigated for trees growing in closed canopy forest stands. Samples were collected from the alpine Renon site in North Italy, the lowland Hainich site in Central Germany and the boreal Flakaliden site in North Sweden. In addition, Pinus cembra was studied at the alpine site and Pinus sylvestris at the boreal site. The density profiles of tree rings were measured using the DENDRO-2003 densitometer, δ13C was measured using high-resolution laser-ablation-combustion-gas chromatography-infra-red mass spectrometry and anatomical characteristics of tree rings (tracheid diameter, cell-wall thickness, cell-wall area and cell-lumen area) were measured using an image analyzer. Based on long-term statistics, climatic variables, such as temperature, precipitation, solar radiation and vapor pressure deficit, explained <20% of the variation in tree-ring width and wood density over consecutive years, while 29–58% of the variation in tree-ring width were explained by autocorrelation between tree rings. An intensive study of tree rings between 1999 and 2003 revealed that tree ring width and δ13C-values of whole wood were significantly correlated with length of the growing season, net radiation and vapor pressure deficit. The δ13C-values were not correlated with precipitation or temperature. A highly significant correlation was also found between δ13C of the early wood of one year and the late wood of the previous year, indicating a carry-over effect of the growing conditions of the previous season on current wood production. This latter effect may explain the high autocorrelation of long-term tree-ring statistics. The pattern, however, was complex, showing stepwise decreases as well as stepwise increases in the δ13C between late wood and early wood. The results are interpreted in the context of the biochemistry of wood formation and its linkage to storage products. It is clear that the relations between δ13C and tree-ring width and climate are multi-factorial in seasonal climates.  相似文献   

10.
Tree growth at northern treelines is generally temperature‐limited due to cold and short growing seasons. However, temperature‐induced drought stress was repeatedly reported for certain regions of the boreal forest in northwestern North America, provoked by a significant increase in temperature and possibly reinforced by a regime shift of the pacific decadal oscillation (PDO). The aim of this study is to better understand physiological growth reactions of white spruce, a dominant species of the North American boreal forest, to PDO regime shifts using quantitative wood anatomy and traditional tree‐ring width (TRW) analysis. We investigated white spruce growth at latitudinal treeline across a >1,000 km gradient in northwestern North America. Functionally important xylem anatomical traits (lumen area, cell‐wall thickness, cell number) and TRW were correlated with the drought‐sensitive standardized precipitation–evapotranspiration index of the growing season. Correlations were computed separately for complete phases of the PDO in the 20th century, representing alternating warm/dry (1925–1946), cool/wet (1947–1976) and again warm/dry (1977–1998) climate regimes. Xylem anatomical traits revealed water‐limiting conditions in both warm/dry PDO regimes, while no or spatially contrasting associations were found for the cool/wet regime, indicating a moisture‐driven shift in growth‐limiting factors between PDO periods. TRW reflected only the last shift of 1976/1977, suggesting different climate thresholds and a higher sensitivity to moisture availability of xylem anatomical traits compared to TRW. This high sensitivity of xylem anatomical traits permits to identify first signs of moisture‐driven growth in treeline white spruce at an early stage, suggesting quantitative wood anatomy being a powerful tool to study climate change effects in the northwestern North American treeline ecotone. Projected temperature increase might challenge growth performance of white spruce as a key component of the North American boreal forest biome in the future, when drier conditions are likely to occur with higher frequency and intensity.  相似文献   

11.
Trees can adjust xylem anatomical structure related with potential hydraulic functions to cope with climate variability. We therefore need a better understanding of how climate variability constrains wood anatomy and tree radial growth. Pinus tabuliformis dominates natural forests and plantations over the western Qinling Mountains, which is one of the ecologically vulnerable areas in China. Here, we investigated the response of P. tabuliformis tree-ring anatomical structure to climate variability by applying wood anatomy analysis, and evaluated the influences of anatomical traits on potential hydraulic functions and the climate significance of intra-annual density fluctuations (IADFs). We found that with the increasing temperature from spring to summer, the negative effect of temperature on the formation and enlargement of earlywood and transition-wood tracheids was gradually enhanced. However, spring precipitation not only had a direct and positive influence on the formation of earlywood, but also had a delaying impact on the transition-wood cell enlargement. Besides, the smaller earlywood tracheid size of P. tabuliformis could be a substantially characteristic reflecting spring drought. The contribution of lumen diameter on conduit wall reinforcement was dominated in earlywood, while the contribution of cell wall thickness was greater than that of lumen diameter in latewood. The different contributions of anatomical traits on conduit wall reinforcement would further affect the response of potential hydraulic function to climate. IADFs of P. tabuliformis could be a potential indicator to reflect the abnormal summer precipitation events in the western Qinling Mountains. IADFs with strong and weak intensity indicated years with high and low rates of change in mid-summer precipitation, respectively. Future warmer and drier climate in the western Qinling Mountains will likely result in the production of smaller tracheids to ensure hydraulic safety, which means the stronger drought resistant of P. tabuliformis in the future. In this study, we linked the xylem anatomy and potential hydraulics functions with intra-seasonal climate variability in the context of climate warming and drying, and proposed some xylem anatomical indices reflecting potential drought events.  相似文献   

12.
The Azores Archipelago, located in the North Atlantic Ridge, experiences heavy rainfall and mild temperatures with weak seasonal differences due to oceanic influence. To our knowledge, there have been no dendrochronological studies in the Azores. The aim of this study is to explore the dendrochronological potential of Pinus pinaster Ait. growing in this archipelago and to determine what limiting factor is regulating tree growth. To do so, we have sampled adult maritime pine trees growing in a plantation, in the Pico island of the Azores.Tree ring boundaries were not always easily distinguished, suggesting that in some years cambial activity did not stop during winter. Despite this, it was possible to successfully crossdate the tree-ring series and to establish a tree-ring width chronology with a strong common signal. Climatic correlations revealed a positive response to spring precipitation but no temperature signal in the tree-ring width chronology. Tree-ring width was also negatively correlated with the North Atlantic Oscillation (NAO) and the sea level pressure (SLP) in May − June.Intra-annual density fluctuations (IADFs), which are anatomical features formed in response to variations in environmental conditions during the growing season, were present in 85% of the tree rings. IADFs were identified based on its position within the ring: type E+, characterized as a transition wood from early- to latewood; type L, the most frequent, characterized as earlywood-like cells within latewood; and type L+, characterized as earlywood-like cells between latewood and earlywood of the next tree ring. Each IADF type presented a unique climatic signal: type E+ was positively correlated with early summer precipitation and early spring temperature; type L was positively correlated with early autumn precipitation and temperature; and type L+ was positively correlated with late autumn precipitation.In conclusion, the tree-ring width chronology established for maritime pine growing in the Pico Island of Azores contains a clear climatic signal for spring precipitation, whereas IADFs frequency correlated better with precipitation later in the growing season. For this reason, we suggest that IADFs should be included in future dendrochronological studies in the Macaronesia Biogeographical region since they can improve the climatic signal present in tree-ring width chronologies.  相似文献   

13.
We investigated the variability of tree-ring width, wood density and 13C/12C in beech tree rings (Fagus sylvatica L.), and analyzed the influence of climatic variables and carbohydrate storage on these parameters. Wood cores were taken from dominant beech trees in three stands in Germany and Italy. We used densitometry to obtain density profiles of tree rings and laser-ablation-combustion-GC-IRMS to estimate carbon isotope composition (δ 13C) of wood. The sensitivity of ring width, wood density and δ 13C to climatic variables differed; with tree-ring width responding to environmental conditions (temperature or precipitation) during the first half of a growing season and maximum density correlated with temperatures in the second part of a growing season (July–September). δ 13C variations indicate re-allocation and storage processes and effects of drought during the main growing season. About 20% of inter-annual variation of tree-ring width was explained by the tree-ring width of the previous year. This was confirmed by δ 13C of wood which showed a contribution of stored carbohydrates to growth in spring and a storage effect that competes with growth in autumn. Only mid-season δ 13C of wood was related to concurrent assimilation and climate. The comparison of seasonal changes in tree-ring maximum wood density and isotope composition revealed that an increasing seasonal water deficit changes the relationship between density and 13C composition from a negative relation in years with optimal moisture to a positive relationship in years with strong water deficit. The climate signal, however, is over-ridden by effects of stand density and crown structure (e.g., by forest management). There was an unexpected high variability in mid season δ 13C values of wood between individual trees (−31 to −24‰) which was attributed to competition between dominant trees as indicated by crown area, and microclimatological variations within the canopy. Maximum wood density showed less variation (930–990 g cm−3). The relationship between seasonal changes in tree-ring structure and 13C composition can be used to study carbon storage and re-allocation, which is important for improving models of tree-ring growth and carbon isotope fractionation. About 20–30% of the tree-ring is affected by storage processes. The effects of storage on tree-ring width and the effects of forest structure put an additional uncertainty on using tree rings of broad leaved trees for climate reconstruction.  相似文献   

14.
In tropical dry forests, spatial heterogeneity in soil water availability is thought to determine interspecific differences in key components of resource use strategies, such as leaf phenology and xylem function. To understand the environmental drivers of variation in leaf phenology and xylem function, we explored the relation of soil water potential to topographic metrics derived from a digital elevation model. Subsequently, we compared nine xylem hydraulic, mechanical and storage traits in 18 species in three phenological classes (readily deciduous, tardily deciduous, and evergreen) in the dry tropical forest of Chamela, Mexico. Soil water potential was negatively correlated with elevation, insolation and water flow accumulation. Evergreen species characterized low-elevation moist sites, whereas deciduous species dominated hills and dry sites. Overall, evergreen species had lower xylem specific conductivity than deciduous species, and tardily deciduous species were different from readily deciduous and evergreen species in five of eight xylem traits. In dry tropical forests, water availability promotes divergence in leaf phenology and xylem traits, ranging from low wood density, evergreen species in moist sites to a combination of low wood density, readily deciduous species plus high wood density, tardily deciduous species in dry sites.  相似文献   

15.
Progress in quantitative wood anatomy has resulted in a growing number of increasingly understood proxies from the tree-ring archive. Much of this work has been based on tree species in the Northern Hemisphere. Here, we present and examine a relatively dense network of wood property chronologies (wood density, tracheid radial diameter, cell wall thickness and ring width) from several species in Tasmania, southern Australia. We ask how the relationships amongst the different types of chronologies differ within and amongst species. We also consider how each chronology responds to monthly climate. In general terms, and similar to findings in the Northern Hemisphere, relationships between the various wood properties and climate are stronger than those between climate and ring width chronologies. An important exception to this is the highest elevation Lagarostrobos franklinii site. Additionally, strongest response to climate for the wood properties generally occurs for the concurrent growing season compared to the prior growing season for ring width. Relationships amongst the various chronology types differ for the various species, with L. franklinii also showing some variation in these relationships by site (possibly associated with elevation). Results suggest there is considerable value in further exploring the potential for developing anatomical wood chronologies for climate reconstruction from other species for which ring widths do not exhibit a strong climate signal.  相似文献   

16.
Studies in Central Asia (Altai-Sayan region, northwest and central Mongolia) have shown that trees growing in arid conditions of mountain forest-steppes have a mixed and unstable climatic response. It is obvious that this nature of the climatic response of trees prevents the use of tree-ring chronologies for climate reconstruction. In this connection, it is necessary to separate the climatic signal of tree-ring chronologies, i.e., extract the signal for moisture. This paper proposes a method for separating the climatic signal of tree-ring chronologies of mountain forest-steppes, and reports estimates of its reliability by two independent methods. Analysis of the chronologies obtained after separation of the signal, based on meteorological and hydrological data, has shown that these chronologies can be used for climate reconstructions.  相似文献   

17.
The effects of climate change on high‐latitude forest ecosystems are complex, making forecasts of future scenarios uncertain. The predicted lengthening of the growing season under warming conditions is expected to increase tree growth rates. However, there is evidence of an increasing sensitivity of the boreal forest to drought stress. To assess the influence of temperature and precipitation on the growth of black spruce (Picea mariana), we investigated long‐term series of wood anatomical traits on 20 trees from four sites along 600 km, the latitudinal range of the closed boreal forest in Quebec, Canada. We correlated the anatomical traits resolved at intraring level with daily temperature, vapor pressure deficit (VPD), and precipitation during the 1943–2010 period. Tree‐ring width, number of cells per ring and cell wall thickness were positively affected by spring and summer daily mean and maximum temperature at the northern sites. These results agree with the well‐known positive effect of high temperatures on tree ring formation at high latitudes. However, we captured, for the first time in this region, the latent impact of water availability on xylem traits. Indeed, in all the four sites, cell lumen area showed positive correlations with daily precipitation (mostly at low latitude), and/or negative correlations with daily mean and maximum temperature and VPD (mostly at high latitude). We inferred that drought, due to high temperatures, low precipitations, or both, negatively affects cell enlargement across the closed boreal forest, including the northernmost sites. The production of tracheids with narrower lumen, potentially more resistant to cavitation, could increase xylem hydraulic safety under a warmer and drier climate. However, this would result in lower xylem conductivity, with consequent long‐term hydraulic deterioration, growth decline, and possibly lead to tree dieback, as observed in other forest ecosystems at lower latitudes.  相似文献   

18.
19.
In order to understand the impact of drought and intrinsic water-use efficiency (iWUE) on tree growth, we evaluated the relative importance of direct and indirect effects of water availability on secondary growth and xylem anatomy of Juniperus thurifera, a Mediterranean anisohydric conifer. Dendrochronological techniques, quantitative xylem anatomy, and 13C/12C isotopic ratio were combined to develop standardized chronologies for iWUE, BAI (basal area increment), and anatomical variables on a 40-year-long annually resolved series for 20 trees. We tested the relationship between iWUE and secondary growth at short-term (annual) and long-term (decadal) temporal scales to evaluate whether gains in iWUE may lead to increases in secondary growth. We obtained a positive long-term correlation between iWUE and BAI, simultaneously with a negative short-term correlation between them. Furthermore, BAI and iWUE were correlated with anatomical traits related to carbon sink or storage (tracheid wall thickness and ray parenchyma amount), but no significant correlation with conductive traits (tracheid lumen) was found. Water availability during the growing season significantly modulated tree growth at the xylem level, where growth rates and wood anatomical traits were affected by June precipitation. Our results are consistent with a drought-induced limitation of tree growth response to rising CO2, despite the trend of rising iWUE being maintained. We also remark the usefulness of exploring this relationship at different temporal scales to fully understand the actual links between iWUE and secondary growth dynamics.  相似文献   

20.
We studied xylem anatomy and hydraulic architecture in 14 transgenic insertion events and a control line of hybrid poplar (Populus spp.) that varied in lignin content. Transgenic events had different levels of down-regulation of two genes encoding 4-coumarate:coenzyme A ligase (4CL). Two-year-old trees were characterized after growing either as free-standing trees in the field or as supported by stakes in a greenhouse. In free-standing trees, a 20 to 40% reduction in lignin content was associated with increased xylem vulnerability to embolism, shoot dieback and mortality. In staked trees, the decreased biomechanical demands on the xylem was associated with increases in the leaf area to sapwood area ratio and wood specific conductivity (k(s)), and with decreased leaf-specific conductivity (k(l)). These shifts in hydraulic architecture suggest that the bending stresses perceived during growth can affect traits important for xylem water transport. Severe 4CL-downregulation resulted in the patchy formation of discoloured, brown wood with irregular vessels in which water transport was strongly impeded. These severely 4CL-downregulated trees had significantly lower growth efficiency (biomass/leaf area). These results underscore the necessity of adequate lignification for mechanical support of the stem, water transport, tree growth and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号