首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
Metal complexes in cancer therapy have attracted much interest mainly because metals exhibit unique characteristics, such as redox activity, metal-ligand interaction, structure and bonding, Lewis acid properties etc. In 1965, Barnett Rosenberg serendipitously discovered the metal-based compound cisplatin, an outstanding breakthrough in the history of metal-based anticancer complexes and led to a new area of anticancer drug discovery. Many metal-based compounds have been studied for their potential anticancer properties. Some of these compounds have FDA approval for clinical use, while others are now undergoing clinical trials for cancer therapy and detection. In the present study, we have highlighted the primary mode of action of metallic complexes and all FDA-approved/under clinical trial drugs with reference to cancer treatment. This review also focuses on recent progress on metal-based complexes such as platinum, ruthenium, iron, etc. with potential anticancer activities.  相似文献   

2.
The metal-based drugs represented by cisplatin, carboplatin, and oxaliplatin, prevail in cancer treatment, whereas new therapeutics are extremely slow to step into the clinic. Poor pharmacokinetics, multidrug resistance, and severe side effects greatly limit the development of metal-based anticancer drugs. The robustness and modular composition of supramolecular coordination complexes allow for the incorporation of novel diagnostic and therapeutic modalities, showing promising potentials for precise cancer theranostics. In this mini review, we highlight the recent advances in the development of supramolecular coordination complexes as diagnostic and therapeutic agents. The key focuses of these reports lie in searching sophisticated coordination ligands and nanoformulations that can potentially solve the issues faced by current metal-based drugs including imaging, resistance, toxicity, and pharmacological deficiencies.  相似文献   

3.
The ability to track drugs inside of cells and tumours has been highly valuable in cancer research and diagnosis. Metal complexes add attractive features to fluorescent drugs, such as targeting and specificity, solubility and uptake or photophysical properties. This review focuses on the latest fluorescent metal-based complexes, their cellular targets, photophysical properties and possible anticancer effects.  相似文献   

4.
Medicinal inorganic chemistry has been largely stimulated by the clinic success of platinum anticancer drugs. An array of metal-based drugs (e.g. platinum, gold, bismuth, and silver) are currently used clinically for the treatment of various diseases. Integrating multiomics approaches, particularly metalloproteomics, with other biochemical characterizations enables comprehensive understanding of cellular responses of metallodrugs, which in turn will guide the rational design of a new drug and modification of the presently used drugs. This review aims to summarize the recent progress in this area. We will describe the technology platforms and their applications for uncovering the mechanisms of action of metallodrugs, for which remarkable advances have been achieved recently. Moreover, we will also highlight the application of newly generated knowledge for the development of novel therapeutic strategies.  相似文献   

5.
Metal-based anticancer agents occupy a distinct chemical space due to their particular coordination geometry and reactivity. Despite the initial DNA-targeting paradigm for this class of compounds, it is now clear that they can also be tuned to target proteins in cells, depending on the metal and ligand scaffold. Since metallodrug discovery is dominated by phenotypic screenings, tailored proteomics strategies were crucial to identify and validate protein targets of several investigative and clinically advanced metal-based drugs. Here, such experimental approaches are discussed, which showed that metallodrugs based on ruthenium, gold, rhenium and even platinum, can selectively and specifically target proteins with clear-cut down-stream effects. Target identification strategies are expected to support significantly the mechanism-driven clinical translation of metal-based drugs.  相似文献   

6.
Elucidating the mode of action and thereby opening the way to the design of chemotherapeutic agents is one of the major goals of metal-based anticancer research. Hydrolysis and DNA binding play an important role for pharmaceutical formulation and for exerting anticancer activity. Herein, for the first time the application of capillary zone electrophoresis–inductively-coupled plasma mass spectrometry (CZE–ICP-MS) for studying the hydrolytic stability and the binding of the ruthenium anticancer drug candidates KP418, KP1019, and RAPTA-C to dGMP is described. RAPTA-C was found to hydrolyze fastest and showed the highest reactivity toward the DNA model compound, whereas KP418 was the most stable compound in both these respects.  相似文献   

7.
8.
Many anticancer drugs cannot recognize selectively tumor tissues, and cause destruction to normal ones. Although it is very toxic, cisplatin is still one of the most applied chemotherapeutics used for treatment of sarcomas, carcinomas, etc. It causes severe side effects as a result of the lack of selectivity of the drug to tumor tissue and acquired or intrinsic resistance occurs. Wheat germ agglutinin (WGA) is a lectin that specifically recognizes transformed cells: prostate cancer cells, pancreatic cells etc., and is uptaken into the tumor cells for which it appears to be a suitable target for anticancer agents. A fluorescence spectroscopy method was used to study the interaction of WGA with four metal-based anticancer drugs: cisplatin, Pt porphyrin and two gold porphyrins. The affinity constant (k(D)) for binding of cisplatin with WGA was k(D) = 6.67 ± 2.5 μM. The hyperbolic curve indicated the presence of a single cisplatin binding site. The affinity of Au and Pt porphyrin to WGA (k(D) = 0.08-0.49 μM) is almost two orders of magnitude higher than that for cisplatin. We found that Pt porphyrin could displace fluorescent dye ANS showing an increase in the fluorescence intensity with a concomitant blue shift of the emission maximum suggesting that the compounds accommodate the same binding site. Current research characterizes the metalloanticancer binding capacity of WGA. Our results indicate that four metal-based anticancer agents have high affinity for WGA. Since WGA recognizes transformed cells, the obtained data show that this protein might have putative usage as a drug delivery molecule in cancer.  相似文献   

9.
Platinum(II)-based anticancer drugs play an essential role in the clinic today, and a number of coordination compounds with other metals are in current development as promising antitumor drugs. Probably the most prominent non-platinum metal-based drugs are those of ruthenium. Various strategies have been applied for the design of novel drugs with an improved toxicological profile, and one of them involves the preparation of metal complexes in inert high oxidation states [e.g. Pt(IV), Ru(III)]. Three platinum(IV) and two ruthenium(III) drugs have already reached clinical trials. Ideally, hypoxia-selective drugs are delivered to the target environment without prior reduction or major transformation via substitution reactions at the metal center. A (selective) reduction has been proposed to activate the prodrugs by formation of active species, which react with the target more readily and lead ultimately to apoptosis. Investigations on the electrochemical behavior of platinum(IV) and ruthenium(III) cytotoxins and the establishment of preliminary structure-property relationships are therefore of current importance. Herein, we present recent results in the field of metal-centered electron-transfer activated Ru(III), Pt(IV) and Co(III) drugs with regard to design and targeting strategies, prediction of redox potentials in aqueous medium, labilization and enhanced reactivity with potential biological targets upon reduction, and correlations between electrochemical parameters and anticancer activity.  相似文献   

10.
DNA is believed to be the primary target for many metal-based drugs. For example, platinum-based anticancer drugs can form specific lesions on DNA that induce apoptosis. New platinum drugs can be designed that have novel modes of interaction with DNA, such as the trinuclear platinum complex BBR3464. Also it is possible to design inert platinum(IV) pro-drugs which are non-toxic in the dark, but lethal when irradiated with certain wavelengths of light. This gives rise to novel DNA lesions which are not as readily repaired as those induced by cisplatin, and provides the basis for a new type of photoactivated chemotherapy. Finally, newly emerging ruthenium(II) organometallic complexes not only bind to DNA coordinatively, but also by H-bonding and hydrophobic interactions triggered by the introduction of extended arene rings into their versatile structures. Intriguingly osmium (the heavier congener of ruthenium) reacts differently with DNA but can also give rise to highly cytotoxic organometallic complexes.  相似文献   

11.
In pursuit of better treatment options for malignant tumors, metal-based complexes continue to show promise as attractive chemotherapeutics due to tunability, novel mechanisms, and potency exemplified by platinum agents. The metabolic character of tumors renders the mitochondria and other metabolism pathways fruitful targets for medicinal inorganic chemistry. Cumulative understanding of the role of mitochondria in tumorigenesis has ignited research in mitochondrial targeting metal-based complexes to overcome resistance and inhibit tumor growth with high potency and selectivity. Here, we discuss recent progress made in third row transition metal-based mitochondrial targeting agents with the goal of stimulating an active field of research toward new clinical anticancer agents and the elucidation of novel mechanisms of action.  相似文献   

12.
Although conventional cancer therapies such as chemotherapy and radiotherapy prevail in clinic, they tend to have narrow therapeutic windows. Many chemotherapies have unfavorable pharmacokinetics while radiotherapy incurs radiotoxicity to normal tissues surrounding tumors. The chemical tunability of supramolecular metal-based nanoparticles (SMNPs) enables the incorporation of various therapeutics, including hydrophilic and hydrophobic chemotherapeutic drugs, photosensitizers, radiosensitizers, and biological therapeutics for more effective delivery to tumors. In this mini-review, we highlight recent advances in SMNPs, namely nanoscale coordination polymers and nanoscale metal–organic frameworks, for drug delivery and cancer therapy. We particularly focus on innovative uses of metal clusters, ligands, pores, and surface modifications to load various therapeutics into SMNPs and critical evaluations of the anticancer efficacies of SMNPs.  相似文献   

13.
Quantification and identification of platinum drugs and their metabolites in biological samples has always been difficult because these compounds are thermally unstable, non-volatile and insoluble. We have demonstrated that electrospray ionization mass spectrometry can be a valuable technique for direct mass spectral analysis of platinum anticancer agents and for obtaining structural information as a result of fragmentation. Full-scan spectra were obtained with approximately 10 pmol samples. These results show the potential of applying this technique in pharmacokinetic studies of platinum anticancer drugs.  相似文献   

14.
Ligand-targeted liposomal anticancer drugs   总被引:25,自引:0,他引:25  
Antibody or ligand-mediated targeting of liposomal anticancer drugs to antigens expressed selectively or over-expressed on tumor cells is increasingly being recognized as an effective strategy for increasing the therapeutic indices of anticancer drugs. This review summarizes some recent advances in the field of ligand-targeted liposomes (LTLs) for the delivery of anticancer drugs. New approaches used in the design and optimization of LTLs is discussed and the advantages and potential problems associated with their therapeutic applications are described. New technologies are widening the spectrum of ligands available for targeting and are allowing choices to be made regarding affinity, internalization and size. The time is rapidly approaching where we will see translation of anticancer drugs entrapped in LTLs to the clinic.  相似文献   

15.
Medicinal inorganic chemistry can exploit the unique properties of metal ions for the design of new drugs. This has, for instance, led to the clinical application of chemotherapeutic agents for cancer treatment, such as cisplatin. The use of cisplatin is, however, severely limited by its toxic side-effects. This has spurred chemists to employ different strategies in the development of new metal-based anticancer agents with different mechanisms of action. Recent trends in the field are discussed in this review. These include the more selective delivery and/or activation of cisplatin-related prodrugs and the discovery of new non-covalent interactions with the classical target, DNA. The use of the metal as scaffold rather than reactive centre and the departure from the cisplatin paradigm of activity towards a more targeted, cancer cell-specific approach, a major trend, are discussed as well. All this, together with the observation that some of the new drugs are organometallic complexes, illustrates that exciting times lie ahead for those interested in 'metals in medicine'.  相似文献   

16.
The main objective of anticancer treatment is the elimination of degenerated cells by the induction of programmed cell death. Various chemotherapy drugs and radiation are able to activate cell death mechanisms in tumors. However, unfortunately, monotherapy will always be insufficiently effective because of the variety and virulence of tumors, as well as their ability to develop resistance to drugs. Moreover, monotherapy might constrain many negative side effects. Therefore, the combination of different approaches and/or drugs will increase the efficiency of treatment. One such promising approach is the combination of nutrient restriction (NR) and various chemotherapeutic drugs. This approach may not only affect the autophagy but also influence apoptotic cell death. This review is focused on the potential of NR use in anticancer therapy, as well as the molecular mechanisms underlying this approach.  相似文献   

17.
New metal complexes as potential therapeutics   总被引:5,自引:0,他引:5  
The many activities of metal ions in biology have stimulated the development of metal-based therapeutics. Cisplatin, as one of the leading metal-based drugs, is widely used in treatment of cancer, being especially effective against genitourinary tumors such as testicular. Significant side effects and drug resistance, however, have limited its clinical applications. Biological carriers conjugated to cisplatin analogs have improved specificity for tumor tissue, thereby reducing side effects and drug resistance. Platinum complexes with distinctively different DNA binding modes from that of cisplatin also exhibit promising pharmacological properties. Ruthenium and gold complexes with antitumor activity have also evolved. Other metal-based chemotherapeutic compounds have been investigated for potential medicinal applications, including superoxide dismutase mimics and metal-based NO donors/scavengers. These compounds have the potential to modulate the biological properties of superoxide anion and nitric oxide.  相似文献   

18.
Helicobacter pylori causes various gastric diseases, such as gastritis, peptic ulcerations and gastric cancer. Bismuth-based triple or quadruple therapies have been commonly recommended for the treatment of H. pylori infections. Up to now, the molecular mechanisms by which bismuth inhibits the growth of H. pylori are far from clear. The present concise review intends to cover the most recent reports and discoveries in the field of the inhibitory mechanism of bismuth against H. pylori as well as the bacterial protective response to drug treatment, which will help us to further understand the molecular mechanisms underlying the actions of metal-based drugs and stimulate further development of effective anti-bacterial drugs.  相似文献   

19.
The clinical application of Pt-based anticancer drugs has inspired the development of novel chemotherapeutic metallodrugs with improved efficacies. Pt(IV) prodrugs are one of the most promising successors of Pt(II) drugs and have displayed great anticancer performance. In particular, judicious modification of axial ligands endows Pt(IV) complexes with unique properties that enable them to overcome the limitations of conventional Pt(II) drugs. Herein, we summarize recent developments in Pt(IV) anticancer complexes, with a focus on their axial functionalization with other anticancer agents, immunotherapeutic agents, photosensitive ligands, peptides, and theranostic agents. We hope that this concise view of recently reported Pt(IV) coordination complexes will help researchers to design next-generation multi-functional anticancer agents based on a comprehensive Pt(IV) platform.  相似文献   

20.
Drug repositioning (also referred to as drug repurposing), the process of finding new uses of existing drugs, has been gaining popularity in recent years. The availability of several established clinical drug libraries and rapid advances in disease biology, genomics and bioinformatics has accelerated the pace of both activity-based and in silico drug repositioning. Drug repositioning has attracted particular attention from the communities engaged in anticancer drug discovery due to the combination of great demand for new anticancer drugs and the availability of a wide variety of cell- and target-based screening assays. With the successful clinical introduction of a number of non-cancer drugs for cancer treatment, drug repositioning now became a powerful alternative strategy to discover and develop novel anticancer drug candidates from the existing drug space. In this review, recent successful examples of drug repositioning for anticancer drug discovery from non-cancer drugs will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号