首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
PurposeThe determination of output factors in small field dosimetry is a crucial point, especially when implementing stereotactic radiotherapy (SRT). Herein, a working group of the French medical physicist society (SFPM) was created to collect small field output factors. The objective was to gather and disseminate information on small field output factors based on different detectors for various clinical SRT equipment and measurement configurations.MethodParticipants were surveyed for information about their SRT equipment, including the type of linear particle accelerator (linac), collimator settings, measurement conditions for the output factors and the detectors used. Participants had to report both the ratio of detector readings and the correction factors applied as described in the IAEA TRS-483 code of practice for nominal field sizes smaller or equal to 3 cm. Mean field output factors and their associated standard deviations were calculated when data from at least 3 linacs were available.Results23 centres were enrolled in the project. Standard deviations of the mean field output factors were systematically smaller than 1.5% for field sizes larger or equal to 1 cm and reached 5% for the smallest field size (0.5 cm). Deviations with published data were smaller than 2% except for the 0.5 cm circular fixed aperture collimator of the CyberKnife where it reached 3.5%.ConclusionThese field output factor values obtained via a large multicentre study can be considered as an external cross verification for any radiotherapy centre starting a SRT program and should help minimize systematic errors when determining small field output factors.  相似文献   

2.
Purpose: Evaluate Acuros® XB dose calculation accuracy following TRS-483 recommendations in small static fields for flattened and un-flattened 6 MV X-ray beams.Methods: Field output factors were measured following TRS-483 recommendations using four radiation detectors. Two sets of field output factors were measured. One set was used to configure the beam model into Acuros® XB down to a jaw-defined field size of 1.0 cm × 1.0 cm. The second set was used to evaluate the differences between calculated and measured field output factors for MLC-fields down to a field size of 0.5 cm × 0.5 cm.Results: Acuros® XB showed an accuracy within 1.5% down to an MLC-field of 1.0 cm × 1.0 cm, for a focal spot size of 1.0 and 0.0 mm in the cross and in-plane directions. For an MLC-field of 0.5 cm × 0.5 cm, an agreement was found within 3% between calculated and measured field output factors. These results were addressed by optimizing the focal spot size to minimize the differences between calculated and measured dose profiles.Conclusions: By optimizing the focal spot size, Acuros® XB showed an acceptable agreement within 3% down to an MLC-field of 0.5 cm × 0.5 cm. The results of this work suggest that if static and modulated delivery of very small targets is planned, then a field output factor table down to a field size of 1.0 cm is required in the beam configuration model.  相似文献   

3.
PurposeThe increasing interest in SBRT treatments encourages the use of flattening filter free (FFF) beams. Aim of this work was to evaluate the performance of the PTW60019 microDiamond detector under 6 MV and 10MVFFF beams delivered with the EDGE accelerator (Varian Medical System, Palo Alto, USA). A flattened 6 MV beam was also considered for comparison.MethodsShort term stability, dose linearity and dose rate dependence were evaluated. Dose per pulse dependence was investigated in the range 0.2–2.2 mGy/pulse. MicroDiamond profiles and output factors (OFs) were compared to those obtained with other detectors for field sizes ranging from 40 × 40 cm2 to 0.6 × 0.6 cm2. In small fields, volume averaging effects were evaluated and the relevant correction factors were applied for each detector.ResultsMicroDiamond short term stability, dose linearity and dependence on monitor unit rate were less than 0.8% for all energies. Response variations with dose per pulse were found within 1.8%. MicroDiamond output factors (OF) values differed from those measured with the reference ion-chamber for less than 1% up to 40 × 40 cm2 fields where silicon diodes overestimate the dose of ≈3%. For small fields (<3 × 3 cm2) microDiamond and the unshielded silicon diode were in good agreement.ConclusionsMicroDiamond showed optimal characteristics for relative dosimetry even under high dose rate beams. The effects due to dose per pulse dependence up to 2.2 mGy/pulse are negligible. Compared to other detectors, microDiamond provides accurate OF measurements in the whole range of field sizes. For fields <1 cm correction factors accounting for fluence perturbation and volume averaging could be required.  相似文献   

4.
IntroductionNanochambers present some advantages in terms of energy independence and absolute dose measurement for small field dosimetry in the SBRT scenario. Characterization of a micro-chamber prototype was carried out both under flattened and flattening-filter-free (FFF) beams with particular focus on stem effect.MethodsThe study included characterization of leakage and stem effects, dose rate and dose per pulse dependence, measurement of profiles, and percentage depth doses (PDDs). Ion collection efficiency and polarity effects were measured and evaluated against field size and dose per pulse. The 6_MV, 6_MV_FFF and 10_MV FFF beams of a Varian EDGE were used. Output factors were measured for field sizes ranging from 0.8 × 0.8 cm2 to 20 × 20 cm2 and were compared with other detectors.ResultsThe 2 mm diameter of this chamber guarantees a high spatial resolution with low penumbra values. In orthogonal configuration a strong stem (and cable) effect was observed for small fields. Dose rate and dose per pulse dependence were <0.3% and 0.6% respectively for the whole range of considered values. The Nanochamber exhibits a field size (FS) dependence of the polarity correction >2%. The OF values were compared with other small field detectors showing a good agreement for field sizes >2 × 2 cm2. The large field over-response was corrected applying kpol(FS).ConclusionsNanochamber is an interesting option for small field measurements. The spherical shape of the active volume is an advantage in terms of reduced angular dependence. An interesting feature of the Nanochamber is its beam quality independence and, as a future development, the possibility to use it for small field absolute dosimetry.  相似文献   

5.
PurposeThe aim of the study was a multicenter evaluation of MLC&jaws-defined small field output factors (OF) for different linear accelerator manufacturers and for different beam energies using the latest synthetic single crystal diamond detector commercially available. The feasibility of providing an experimental OF data set, useful for on-site measurements validation, was also evaluated.MethodsThis work was performed in the framework of the Italian Association of Medical Physics (AIFM) SBRT working group. The project was subdivided in two phases: in the first phase each center measured OFs using their own routine detector for nominal field sizes ranging from 10 × 10 cm2 to 0.6 × 0.6 cm2. In the second phase, the measurements were repeated in all centers using the PTW 60019 microDiamond detector.ResultsThe project enrolled 30 Italian centers. Micro-ion chambers and silicon diodes were used for OF measurements in 24 and 6 centers respectively. Gafchromic films and TLDs were used for very small field OFs in 3 and 1 centers. Regarding the measurements performed with the user’s detectors, OF standard deviations (SD) for field sizes down to 2 × 2 cm2 were in all cases <2.7%. In the second phase, a reduction of around 50% of the SD was obtained using the microDiamond detector.ConclusionsThe measured values presented in this multicenter study provide a consistent dataset for OFs that could be a useful tool for improving dosimetric procedures in centers. The microDiamond data present a small variation among the centers confirming that this detector can contribute to improve overall accuracy in radiotherapy.  相似文献   

6.
PurposeEPID dosimetry in the Unity MR-Linac system allows for reconstruction of absolute dose distributions within the patient geometry. Dose reconstruction is accurate for the parts of the beam arriving at the EPID through the MRI central unattenuated region, free of gradient coils, resulting in a maximum field size of ~10 × 22 cm2 at isocentre. The purpose of this study is to develop a Deep Learning-based method to improve the accuracy of 2D EPID reconstructed dose distributions outside this central region, accounting for the effects of the extra attenuation and scatter.MethodsA U-Net was trained to correct EPID dose images calculated at the isocenter inside a cylindrical phantom using the corresponding TPS dose images as ground truth for training. The model was evaluated using a 5-fold cross validation procedure. The clinical validity of the U-Net corrected dose images (the so-called DEEPID dose images) was assessed with in vivo verification data of 45 large rectum IMRT fields. The sensitivity of DEEPID to leaf bank position errors (±1.5 mm) and ±5% MU delivery errors was also tested.ResultsCompared to the TPS, in vivo 2D DEEPID dose images showed an average γ-pass rate of 90.2% (72.6%–99.4%) outside the central unattenuated region. Without DEEPID correction, this number was 44.5% (4.0%–78.4%). DEEPID correctly detected the introduced delivery errors.ConclusionsDEEPID allows for accurate dose reconstruction using the entire EPID image, thus enabling dosimetric verification for field sizes up to ~19 × 22 cm2 at isocentre. The method can be used to detect clinically relevant errors.  相似文献   

7.
PurposeThe appropriate object thickness to start using anti-scatter grids (grids) has not sufficiently investigated in previous studies, and thus we rigorously investigated the effectiveness of two generally used grids with grid ratios of 6 and 10 (G6 and G10) for different 50–200 mm thicknesses at tube voltages of 60–100 kV.MethodsAcrylic phantoms with 30 × 30 cm2 and different thicknesses were used to measure the signal-to-noise ratio improvement factors (SIFs) of grids. To evaluate the infants’ conditions, field sizes of 225, 400, and 625 cm2 were also evaluated at 60–80 kV. In addition, the signal difference-to-noise ratio (SDNR) was used to evaluate tube voltage dependencies of grids for each thickness.ResultsSIF values exceeded 1.0 for ≥70 mm thicknesses and mostly exceeded 1.07 for the 100 mm thickness with 400 cm2 field size corresponding to a 1-year-old infant abdomen. The estimated dose reduction capabilities for a 1-year-old infant were approximately 15% using G10 at 70 and 80 kV. The tube voltage dependencies for grid use was almost not prominent for all conditions tested, except for some conditions that are not clinically realistic.ConclusionsG6 and G10 can improve SNR for  ≥100 mm thickness. The results from this work demonstrate approximately 15% dose reduction or image quality improvements at the same dose level for the use of G6 and G10 grids for 100 mm thickness, traditionally excluded from the recommended grid use conditions.  相似文献   

8.
PurposeTo evaluate the Integral Quality Monitor (IQM) as a clinical dosimetry device for detecting photon beam delivery errors in clinically relevant conditions.Materials and methodsThe IQM’s ability to detect delivery errors introduced into clinical VMAT plans for two different treatment sites was assessed. This included measuring 103 nasopharynx VMAT plans and 78 lung SBRT VMAT plans with introduced errors in gantry angle (1–5°) and in MLC-defined field size and field shift (1–5 mm). The IQM sensitivity was compared to ArcCheck detector performance. Signal dependence on field position for on-axis and asymmetrically offset square field sizes from 1 × 1 cm2 to 30 × 30 cm2 was also investigated.ResultsThe IQM detected almost all introduced clinically-significant MLC field size errors, but not some small gantry angle errors or most MLC field shift errors. The IQM sensitivity was comparable to the ArcCheck for lung SBRT, but worse for the nasopharynx plans. Differences between IQM calculated/predicted and measured signals were within ± 2% for all on-axis square fields, but up to 60% for the smallest asymmetrically offset fields at large offsets.Conclusion The IQM performance was consistent and reproducible. It showed highest sensitivity to the field size errors for these plans, but did not detect some clinically-significant introduced gantry angle errors or most MLC field shift errors. The IQM calculation model is still being developed, which should improve small offset-field performance. Care is required in IQM use for plan verification or online monitoring, especially for small fields that are off-axis in the detector gradient direction.  相似文献   

9.
PurposeWe experimentally determined the radiophotoluminescent glass dosimeter (RPLD) dose responses for TomoTherapy, CyberKnife, and flattening-filter-free (FFF) linear accelerator (linac) outputs for dosimetry audits in Japan.MethodsA custom-made solid phantom with a narrow central-axis spacing of three RPLD elements was used for output measurement to minimise the dose-gradient effect of the non-flattening filter beams. For RPLD dose estimation, we used the ISO 22127 formalism. Additional unit-specific correction factors were introduced and determined via the measured data. For TomoTherapy (7 units) and CyberKnife (4 units), the doses were measured under machine-specific reference fields. For FFF linac (5 units), in addition to the reference condition, we obtained the field-size effects for the range from 5×5 cm to 25×25 cm.ResultsThe correction factors were estimated as 1.008 and 0.999 for TomoTherapy and CyberKnife, respectively. For FFF linac, they ranged from 1.011 to 0.988 for 6 MV and from 1.011 to 0.997 for 10 MV as a function of the side length of the square field from 5 to 25 cm. The estimated uncertainties of the absorbed dose to water measured by RPLD for the units were 1.32%, 1.35%, and 1.30% for TomoTherapy, CyberKnife, and FFF linac, respectively. A summary of the dosimetry audits of these treatment units using the obtained correction factors is also presented. The average percentage differences between the measured and hospital-stated doses were <1% under all conditions.ConclusionRPLD can be successfully used as a dosimetry audit tool for modern treatment units.  相似文献   

10.
PurposeIn modern radiotherapy techniques, to ensure an accurate beam modeling process, dosimeters with high accuracy and spatial resolution are required. Therefore, this work aims to propose a simple, robust, and a small-scale fiber-integrated X-ray inorganic detector and investigate the dosimetric characteristics used in radiotherapy.MethodsThe detector is based on red-emitting silver-activated zinc-cadmium sulfide (Zn,Cd)S:Ag nanoclusters and the proposed system has been tested under 6 MV photons with standard dose rate used in the patient treatment protocol. The article presents the performances of the detector in terms of dose linearity, repeatability, reproducibility, percentage depth dose distribution, and field output factor. A comparative study is shown using a microdiamond dosimeter and considering data from recent literature.ResultsWe accurately measured a small field beam profile of 0.5 × 0.5 cm2 at a spatial resolution of 100 µm using a LINAC system. The dose linearity at 400 MU/min has shown less than 0.53% and 1.10% deviations from perfect linearity for the regular and smallest field. Percentage depth dose measurement agrees with microdiamond measurements within 1.30% and 2.94%, respectively for regular to small field beams. Besides, the stem effect analysis shows a negligible contribution in the measurements for fields smaller than 3x3 cm2. This study highlights the drastic decrease of the convolution effect using a point-like detector, especially in small dimension beam characterization. Field output factor has shown a good agreement while comparing it with the microdiamond dosimeter.ConclusionAll the results presented here anticipated that the developed detector can accurately measure delivered dose to the region of interest, claim accurate depth dose distribution hence it can be a suitable candidate for beam characterization and quality assurance of LINAC system.  相似文献   

11.
PurposeIn the current era of MRI-linac radiotherapy, dose optimization with arbitrary dose distributions is a reality. For the first time, we present new and targeted experiments and modeling to aid in evaluating the potential dose improvements offered with an electron beam mode during MRI-linac radiotherapy.MethodsSmall collimated (1 cm diameter and 1.5 × 1.5 cm2 square) electron beams (6, 12 and 20 MeV) from a clinical linear accelerator (Varian Clinac 2100C) are incident perpendicular and parallel to the strong and localized magnetic fields (0–0.7 T) generated by a permanent magnet device. Gafchromic EBT3 film is placed inside a slab phantom to measure two-dimensional dose distributions. A benchmarked and comprehensive Monte Carlo model (Geant4) is established to directly compare with experiments.ResultsWith perpendicular fields a 5% narrowing of the beam FWHM and a 10 mm reduction in the 15% isodose penetration is seen for the 20 MeV beam. In the inline setup the penumbral width is reduced by up to 20%, and a local central dose enhancement of 100% is observed. Monte Carlo simulations are in agreement with the measured dose distributions (2% or 2 mm).ConclusionA new range of experiments have been performed to offer insight into how an electron beam mode could offer additional choices in MRI-linac radiotherapy. The work extends on historic studies to bring a successful unified experimental and Monte Carlo modeling approach for studying small field electron beam dosimetry inside magnetic fields. The results suggest further work, particularly on the inline magnetic field scenario.  相似文献   

12.
PurposeUterine fibroids affect women mainly of childbearing age, an alternative for the treatment of these fibroids is uterine artery embolization (UAE), a minimally invasive procedure which uses fluoroscopy, providing radiation doses often high, due to the fact that professionals remain in the room throughout the procedure. In this work, equivalent and effective doses were evaluated for the main physician, for the assistant and for the patient during the UAE procedure.MethodsDoses were calculated using computer simulation with the Monte Carlo Method, and virtual anthropomorphic phantoms, in a typical scenario of interventional radiology with field sizes of 20 × 20, 25 × 25 and 32 × 32 cm2, tube voltages of 70, 80, 90 and 100 kV, and projections of LAO45, RAO45 and PA.ResultsThe results showed that the highest doses received by the professionals were for the LAO45 projection with 32 × 32 cm2 field size and 100 kV tube voltage, which is in accordance with the existing literature. The highest equivalent doses, without the protective equipment, were in the eyes, skin, breast and stomach for the main physician, and for the assistant they were in the eyes, breast, thyroid and skin. When she used the protective equipment, the highest equivalent doses for the main physician were on the skin, brain, bone marrow and bone surface, and for the assistant they were on the skin, brain, red bone marrow and bone surface.ConclusionsEffective doses increased up to 3186% for the main physician, and 2462% for the assistant, without protective equipment, thus showing their importance.  相似文献   

13.
AimThis study aimed to commission the Elekta Infinity™ working in 6 and 10 MV photon beam installed in Concord International Hospital, Singapore, and compare the OFs between MC simulation and measurement using PTW semiflex and microDiamond detector for small field sizes.Material and MethodsThere are two main steps in this study: modelling of Linac 6 and 10 MV photon beam and analysis of the output factors for field size 2 × 2–10 × 10 cm2. The EGSnrc/BEAMnrc-DOSXYZnrc code was used to model and characterize the Linac and to calculate the dose distributions in a water phantom. The dose distribution and OFs were compared to the measurement data in the same condition.ResultsThe commissioning process was only conducted for a 10 × 10 cm2 field size. The PDD obtained from MC simulation showed a good agreement with the measurement. The local dose difference of PDDs was less than 2% for 6 and 10 MV. The initial electron energy was 5.2 and 9.4 MeV for 6 and 10 MV photon beam, respectively. This Linac model can be used for dose calculation in other situations and different field sizes because this Linac has been commissioned and validated using Monte Carlo simulation. The 10 MV Linac produces higher electron contamination than that of 6 MV.ConclusionsThe Linac model in this study was acceptable. The most important result in this work comes from OFs resulted from MC calculation. This value was more significant than the OFs from measurement using semiflex and microDiamond for all beam energy and field sizes because of the CPE phenomenon.  相似文献   

14.
PurposeThe influence of basic plan parameters such as slice thickness, grid resolution, algorithm type and field size on calculated small field output factors (OFs) was evaluated in a multicentric study.Methods and materialsThree computational homogeneous water phantoms with slice thicknesses (ST) 1, 2 and 3 mm were shared among twenty-one centers to calculate OFs for 1x1, 2x2 and 3x3 cm2 field sizes (FSs) (normalized to 10x10 cm2 FS), with their own treatment planning system (TPS) and the energy clinically used for stereotactic body radiation therapy delivery. OFs were calculated for each combination of grid resolution (GR) (1, 2 and 3 mm) and ST and finally compared with the OFs measured for the TPS commissioning. A multivariate analysis was performed to test the effect of basic plan parameters on calculated OFs.ResultsA total of 509 data points were collected. Calculated OFs are slightly higher than measured ones. The multivariate analysis showed that Center, GR, algorithm type, and FS are predictive variables of the difference between calculated and measured OFs (p < 0.001). As FS decreases, the spread in the difference between calculated and measured OFs became larger when increasing the GR. Monte Carlo and Analytical Anisotropic Algorithms, presented a dependence on GR (p < 0.01), while Collapsed Cone Convolution and Acuros did not. The effect of the ST was found to be negligible.ConclusionsModern TPSs slightly overestimate the calculated small field OFs compared with measured ones. Grid resolution, algorithm, center number and field size influence the calculation of small field OFs.  相似文献   

15.
PurposeThe electron or photon beams might be used for treatment of tumors. Each beam has its own advantage and disadvantages. Combo beam can increase the advantages. No investigation has been performed for producing simultaneous mixed electron and photon beam. In current study a device has been added to the Medical Linac to produce a mixed photon–electron beam.MethodsFirstly a Varian 2300CD head was simulated by MCNP Monte Carlo Code. Two sets of perforated lead sheets with 1 and 2 mm thickness and 0.2, 0.3, and 0.5 cm punches then placed at the top of the applicator holder tray. This layer produces bremsstrahlung x-ray upon impinging fraction electrons on it. The remaining fraction of electrons passes through the holes. The simulation was performed for 10 × 10, 6 × 6, and 4 × 4 cm2 field size.ResultsFor 10 × 10 cm2 field size, among the punched targets, the largest penumbra difference between the depth of 1 and 7 cm was 72%. This difference for photon and electron beams were 31% and 325% respectively. A maximum of 39% photon percentage was produced by 2 mm target with 0.2 cm holes diameter layer. The minimum surface dose value was 4% lesser than pure electron beam. For small fields, unlike the pure electron beam, the PDD, penumbra, and flatness variations were negligible.ConclusionsThe advantages of mixing the electron and photon beam is reduction of pure electron's penumbra dependency with the depth, especially for small fields, also decreasing of dramatic changes of PDD curve with irradiation field size.  相似文献   

16.
PurposeThis study aims at the assessment of dose error in patients undergoing radiotherapy due to treatment couch of Co-60 teletherapy unit.Materials and methodsIn this study beam attenuation due to treatment couch of Co-60 unit was measured in air for different gantry angles and field sizes. Polymethylmethacrylate (PMMA) phantom was used to estimate the effect of depth on attenuation. Impact of couch on surface dose was also evaluated.ResultsBeam attenuation due to couch was in the range of 0.5–28% for different gantry angles with standard field size of 10 × 10 cm2 with optimum position of metallic cranks. Maximum attenuation (29%) was observed with smallest field size i.e. 5 × 5 cm2. Beam attenuation has been found higher in phantom as compared to that in air However, no particular trend of attenuation has been noted with varying depth of phantom. A 6% increase in surface dose has also been observed due to couch insertion for normal beam incidence. Maximum error of 80% is also note-worthy for most unfavorable situation of irradiation at 180 degree through the metallic cranks.ConclusionIt has been determined that ignoring the treatment couch and its accessories can result in dose error of 0.5–80%, depending on gantry angle, field size and position of couch accessories. Therefore, consideration of dose error due to couch during treatment planning is recommended.  相似文献   

17.
PurposeTo measure the environmental doses from stray neutrons in the vicinity of a solid slab phantom as a function of beam energy, field size and modulation width, using the proton pencil beam scanning (PBS) technique.MethodMeasurements were carried out using two extended range WENDI-II rem-counters and three tissue equivalent proportional counters. Detectors were suitably placed at different distances around the RW3 slab phantom. Beam irradiation parameters were varied to cover the clinical ranges of proton beam energies (100–220 MeV), field sizes ((2 × 2)–(20 × 20) cm2) and modulation widths (0–15 cm).ResultsFor pristine proton peak irradiations, large variations of neutron H1(10)/D were observed with changes in beam energy and field size, while these were less dependent on modulation widths. H1(10)/D for pristine proton pencil beams varied between 0.04 μSv Gy−1 at beam energy 100 MeV and a (2 × 2) cm2 field at 2.25 m distance and 90° angle with respect to the beam axis, and 72.3 μSv Gy−1 at beam energy 200 MeV and a (20 × 20) cm2 field at 1 m distance along the beam axis.ConclusionsThe obtained results will be useful in benchmarking Monte Carlo calculations of proton radiotherapy in PBS mode and in estimating the exposure to stray radiation of the patient. Such estimates may be facilitated by the obtained best-fitted simple analytical formulae relating the stray neutron doses at points of interest with beam irradiation parameters.  相似文献   

18.

The present study is aimed at exploring different scanning parameters, detectors and their orientations for time-efficient and accurate commissioning of a 6 MV clinical linear accelerator (LINAC). Beam profiles and percentage depth dose (PDD) curves were measured with a PTW dosimetry diode, a PTW Semiflex and a PinPoint ion chamber in different orientations. To acquire beam data, equidistant (step size of 0.5 mm, 1 mm, 2 mm and 3 mm) and fanline (step size of 2–0.5 mm, 2–1 mm, 3–0.5 mm and 3-1 mm) scanning modes were employed and data measurement time was recorded. Scan time per measurement point was also varied (0.2 s, 0.5 s and 1.0 s) to investigate its effect on the accuracy and acquisition time of beam data. Accuracy of the measured data was analyzed on the basis of the variation between measured data and data modeled by a treatment planning system. Beam profiles (particularly in penumbra region) were found to be sensitive to variation in scanning resolution and showed an improved accuracy with decrease in step size, while PDD curves were affected negligibly. The accuracy of beam data obtained with the PTW dosimetry diode and the PinPoint ion chamber was higher than those obtained with the PTW Semiflex ion chamber for small fields (2?×?2 cm2 and 3?×?3 cm2). However, the response of the PTW diode and the PinPoint ion chamber was significantly indifferent in these fields. Furthermore, axial orientation of the PTW Semiflex ion chamber improved accuracy of profiles and PDDs as compared to radial orientation, while such a difference was not significant for the PinPoint ion chamber. It is concluded that a scan time of 0.2 s/point with a fanline scanning resolution of 2–1 mm for beam profiles and 3 mm for PDDs are most favorable in terms of accuracy and time efficiency. For small fields (2?×?2 cm2 and 3?×?3 cm2), a PinPoint ion chamber in radial orientation or a dosimetry diode in axial orientation are recommended for both beam profiles and PDDs. If a PinPoint ion chamber and a PTW dosimetry diode are not available, a Semiflex ion chamber in axial orientation may be used for small fields.

  相似文献   

19.
PurposeIn modern radiation therapy accurate small fields dosimetry is a challenge and its standardization is fundamental to harmonize delivered dose in different institutions. This study presents a multicenter characterization of MLC-defined small field for Elekta and Varian linear accelerators. Measurements were performed using the Exradin W1 plastic scintillator detector.Materials and methodsThe project enrolled 24 Italian centers. Each center performed Tissue Phantom Ratio (TPR), in-plane and cross-plane dose profiles of 0.8 × 0.8 cm2 field, and Output Factor (OF) measurements for square field sizes ranging from 0.8 to 10 cm. Set-up conditions were 10 cm depth in water phantom at SSD 90 cm. Measurements were performed using two twin Exradin W1 plastic scintillator detectors (PSD) correcting for the Cerenkov effect as proposed by the manufacturer.ResultsData analysis from 12 Varian and 12 Elekta centers was performed. Measurements of 7 centers were not included due to cable problems. TPR measurements showed standard deviations (SD) < 1%; SD < 0.4 mm for the profile penumbra was obtained, while FWHM measurements showed SD < 0.5 mm. OF measurements showed SD < 1.5% for field size greater than 2 × 2 cm2. Median OFs values were in agreement with the recent bibliography.ConclusionsHigh degree of consistency was registered for all the considered parameters. This work confirmed the importance of multicenter dosimetric intercomparison. W1 PSD could be considered as a good candidate for small field measurements.  相似文献   

20.
In this study the interplay effects for Enhanced Dynamic Wedge (EDW) treatments are experimentally investigated. Single and multiple field EDW plans for different wedge angles were delivered to a phantom and detector on a moving platform, with various periods, amplitudes for parallel and perpendicular motions. A four field 4D CT planned lung EDW treatment was delivered to a dummy tumor over four fractions. For the single field parallel case the amplitude and the period of motion both affect the interplay resulting in the appearance of a step function and penumbral cut off with the discrepancy worst where collimator-tumor speed is similar. For perpendicular motion the amplitude of tumor motion is the only dominant factor. For large wedge angle the dose discrepancy is more pronounced compared to the small wedge angle for the same field size and amplitude-period values. For a small field size i.e. 5 × 5 cm2 the loss of wedged distribution was observed for both 60° and 15° wedge angles for parallel and perpendicular motions. Film results from 4D CT planned delivery displayed a mix of over and under dosages over 4 fractions, with the gamma pass rate of 40% for the averaged film image at 3%/1 mm DTA (Distance to Agreement). Amplitude and period of the tumor motion both affect the interplay for single and multi-field EDW treatments and for a limited (4 or 5) fraction delivery there is a possibility of non-averaging of the EDW interplay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号