首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 715 毫秒
1.
Cyanobacterial NDH-1 complexes belong to a family of energy converting NAD(P)H:Quinone oxidoreductases that includes bacterial type-I NADH dehydrogenase and mitochondrial Complex I. Several distinct NDH-1 complexes may coexist in cyanobacterial cells and thus be responsible for a variety of functions including respiration, cyclic electron flow around PSI and CO(2) uptake. The present review is focused on specific features that allow to regard the cyanobacterial NDH-1 complexes, together with NDH complexes from chloroplasts, as a separate sub-class of the Complex I family of enzymes. Here, we summarize our current knowledge about structure of functionally different NDH-1 complexes in cyanobacteria and consider implications for a functional mechanism. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   

2.
Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has a similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described for comparison.  相似文献   

3.
The expression and activity of type 1 NAD(P)H dehydrogenase (NDH-1) were investigated in Synechocystis PCC 6803 cells during different growth phases (i.e. lag, logarithmic, stationary and decline phases). The relative amount of NDH-1, estimated by Western blot analysis using antibodies against NdhH, NdhI and NdhK, increased more than two-fold during growth from the lag to the logarithmic phase and then decreased after the logarithmic phase to reach lowest levels after 15 days (decline phase). The activity of light-dependent NADPH oxidation and cyclic electron flow around photosystem I (PSI) changed nearly in parallel with the amount of NdhH, NdhI and NdhK in cells across the growth phases. In contrast, the activity of photosynthetic O2 evolution and respiratory O2 uptake was not significantly different across phases of growth; the fluctuation of the activity at different phases was within 40%. These results suggested that the activity of light-dependent NADPH oxidation and PSI-cyclic electron flow are restricted by the amount of NDH-1 and that other factor(s) are limiting the rates of photosynthesis and respiration.  相似文献   

4.
蓝藻NAD(P)H脱氢酶(NDH-1)是一种重要的光合膜蛋白复合体,参与CO2吸收、围绕光系统I的循环电子传递和细胞呼吸。就几种蓝藻NDH-1复合体的鉴定、结构、生理功能等研究的新进展进行了综述与分析,并对今后NDH-1复合体的研究作了展望。  相似文献   

5.
Sugar-beet plants ( Beta vulgaris L. cv. Monohill) were cultivated for 4 weeks in a complete nutrient solution. Indirect effects of cadmium were studied by adding 5, 10 or 20 μ M CdCl2 to the culture medium while direct effects were determined by adding 1, 5, 20, 50 or 2 000 μ M CdCl2 to the assay media. The photosynthetic properties were characterized by measurement of CO2 fixation in intact plants, fluorescence emission by intact leaves and isolated chloroplasts, photosystem (PS) I and PSII mediated electron transport of isolated chloroplasts, and CO2-dependent O2 evolution by protoplasts. When directly applied to isolated leaves, protoplasts and chloroplasts. Cd2+ impeded CO2 fixation without affecting the rates of electron transport of PSI or PSII or the rate of dark respiration. When Cd2+ was applied through the culture medium the capacity for, and the maximal quantum yield of CO2 assimilation by intact plants both decreased. This was associated with: (1) decreased total as well as effective chlorophyll content (PSII antennae size), (2) decreased coupling of electron transport in isolated chloroplasts, (3) perturbed carbon reduction cycle as indicated by fluorescence measurements. Also, protoplasts isolated from leaves of Cd2+-cultivated plants showed an increased rate of dark respiration.  相似文献   

6.
Adaptation to shade of the light-harvesting apparatus in Silene dioica   总被引:2,自引:1,他引:1  
Abstract. The physiological characteristics and photo-system composition of the photosynthetic apparatus of Silene dioica , a woodland plant, grown in sun and natural shade are examined. As expected, shade leaves exhibited lower chlorophyll a/b ratios, light saturated rates of CO2 assimilation (Asat), dark respiration (Rd,) and light compensation points ( Г ), with both sun and shade leaves having similar absorptances and quantum yields of CO2 assimilation (φ). Shade leaves were able to utilize far-red light for electron transport and carbon assimilation and reach the compensation point. Sun leaves in far-red light had a rate of carbon assimilation equivalent to their dark respiration rate. Chlorophyll fluorescence kinetics from leaves at 77 K together with analyses of thylakoid contents of photosystems (PS) I and II and the light-harvesting cholorphyll a/b protein complex associated with PSII (LHCII) demonstrated that the antenna size of PSII was similar in thylakoids of sun and shade leaves, but shade leaves contained ca. 20% more PSII and ca. 12% less PSI complexes. The increased PSII/PSI ratio in shade leaves accounted for their ability to achieve the compensation point in far-red light. An important feature of photosynethic shade adaptation in S. dioica is an increase in the PSII/PSI ratio and not an increase in the antenna size of PSII. The adaptive response of sun leaves when placed in a shade environment was rapid and had a half-time of ca. 18h.  相似文献   

7.
We tested the hypothesis that acclimation of foliar dark respiration to CO2 concentration and temperature is associated with adjustments in leaf structure and chemistry. Populus tremuloides Michx. , Betula papyrifera Marsh. , Larix laricina (Du Roi) K. Koch , Pinus banksiana Lamb., and Picea mariana (Mill.) B.S.P. were grown from seed in combined CO2 (370 or 580 μ mol mol–1) and temperature treatments (18/12, 24/18, or 30/24 °C). Temperature and CO2 effects were predominately independent. Specific respiration rates partially acclimated to warmer thermal environments through downward adjustment in the intercept, but not Q 10 of the temperature–response functions. Temperature acclimation of respiration was larger for conifers than broad-leaved species and was associated with pronounced reductions in leaf nitrogen concentrations in conifers at higher growth temperatures. Short-term increases in CO2 concentration did not inhibit respiration. Growth in the elevated CO2 concentration reduced leaf nitrogen and increased non-structural carbohydrate concentrations. However, for a given nitrogen concentration, respiration was higher in leaves grown in the elevated CO2 concentration, as rates increased with increasing carbohydrates. Across species and treatments, respiration rates were a function of both leaf nitrogen and carbohydrate concentrations ( R 2 = 0·71, P < 0·0001). Long-term acclimation of foliar dark respiration to temperature and CO2 concentration is largely associated with changes in nitrogen and carbohydrate concentrations.  相似文献   

8.
Influence of soil O2 and CO2 on root respiration for Agave deserti   总被引:5,自引:0,他引:5  
Respiration measured as CO2 efflux was determined at various soil O2 and CO2 concentrations for individual, attached roots of a succulent perennial from the Sonoran Desert, Agave deserti Engelm. The respiration rate increased with increasing O2 concentration up to about 16% O2 for established roots and 5% O2 for rain roots (fine branch roots on established roots induced by wetting of the soil) and then remained fairly constant up to 21% O2. When O2 was decreased from 21 to 0%, the respiration rates were similar to those obtained with increasing O2 concentration. The CO2 concentration in the root zone, which for the shallow-rooted A. deserti in the field was about 1 000 μl l-1, did not affect root respiration at concentrations up to 2 000 μl l-1, but higher concentrations reduced it, respiration being abolished at 20 000 μl l-1 (2%) CO2 for both established and rain roots. Upon lowering CO2 to 1 000 μl l-1 after exposure to concentrations up to 10000 μl l-1 CO2, inhibition of respiration was reversible. Uptake of the vital stain neutral red by root cortical cells was reduced to zero, indicating cell death, in about 4 h at 2% CO2, substantiating the detrimental effects of high soil CO2 concentrations on roots of A. deserti . This CO2 response may explain why roots of desert succulents tend to occur in porous, well-aerated soils.  相似文献   

9.
Herbaceous plants grown with free access to nutrients exhibit inherent differences in maximum relative growth rate (RGR) and rate of nutrient uptake. Measured rates of root respiration are higher in fast-growing species than in slow-growing ones. Fast-growing herbaceous species, however, exhibit lower rates of respiration than would be expected from their high rates of growth and nitrate uptake. We investigated why the difference in root O2 uptake between fast- and slow-growing species is relatively small. Inhibition of respiration by the build-up of CO2 in closed cuvettes, diurnal variation in respiration rates or an increasing ratio of respiratory CO2 release to O2 uptake (RQ) with increasing RGR failed to explain the relatively low root respiration rates in fast-growing grasses. Furthermore, differences in alternative pathway activity can at most only partly explain why the difference in root respiration between fast- and slow-growing grasses is relatively small. Although specific respiratory costs for maintenance of biomass are slightly higher in the fast-growing Dactylis glomerata L. than those in the slow-growing Festuca ovina L., they account for 50% of total root respiration in both species. The specific respiratory costs for ion uptake in the fast-growing grass are one-third of those in the slow-growing grass [0·41 versus 1·22 mol O2 mol (NO3)–1]. We conclude that this is the major cause of the relatively low rates of root respiration in fast-growing grasses.  相似文献   

10.
We present, for the first time, the oxygen response kinetics of mitochondrial respiration measured in intact leaves (sunflower and aspen). Low O2 concentrations in N2 (9–1500 ppm) were preset in a flow-through gas exchange measurement system, and the decrease in O2 concentration and the increase in CO2 concentration as result of leaf respiration were measured by a zirconium cell O2 analyser and infrared-absorption CO2 analyser, respectively. The low O2 concentrations little influenced the rate of CO2 evolution during the 60-s exposure. The initial slope of the O2 uptake curve on the dissolved O2 concentration basis was relatively constant in leaves of a single species, 1.5 mm s−1 in sunflower and 1.8 mm s−1 in aspen. The apparent K 0.5(O2) values ranged from 0.33 to 0.67 μ M in sunflower and from 0.33 to 1.1 μ M in aspen, mainly because of the variation of the maximum rate, V max (leaf temperature 22°C). The initial slope of the O2 response of respiration characterizes the catalytic efficiency of terminal oxidases, an important parameter of the respiratory machinery in leaves. The plateau of the response characterizes the activity of the mitochondrial electron transport chain and is subject to regulations in accordance with the necessity for ATP production. The relatively low oxygen conductivity of terminal oxidases means that in leaves, less than 10% of the photosynthetic oxygen can be reassimilated by mitochondria.  相似文献   

11.
Calcite nucleation on the surface of cyanobacteria of the Synechococcus leopoliensis strain PCC 7942 was investigated to assess the influence of photosynthetic uptake of inorganic carbon and active ion exchange processes across the cell membrane on the nucleation and precipitation mechanisms. We performed long-term precipitation experiments at a constant CO2 level in ambient air by adding suspensions of previously washed cyanobacteria to solutions of NaHCO3/CaCl2 which were supersaturated with respect to calcite. Induction times between 4 and 110 h were measured over a range of saturation states, Ω, between 8 and 4. The kinetics of CaCO3 nucleation was compared between experiments: (i) with ongoing photosynthesis, (ii) with cells metabolizing but not undergoing photosynthetic uptake of inorganic carbon and (iii) in darkness without photosynthesis. No significant differences were observed between the three treatments. The results reveal that under low nutrient concentrations and permanent CO2 supply, photosynthetic uptake of inorganic carbon predominantly uses CO2 and consequently does not directly influence the nucleation process of CaCO3 at the surface of S. leopoliensis. Furthermore, ion exchange processes did not affect the kinetics, indicating a passive nucleation process wherein the cell surface or extracellular polymers provided preferential sites for mineral nucleation. The catalyzing effect of the cyanobacteria on calcite nucleation was equivalent to a ∼18% reduction in the specific interfacial free energy of the calcite nuclei. This result and the ubiquitous abundance of cyanobacteria suggest that this process may have an impact on local and global carbon cycling.  相似文献   

12.
The cyanobacterial type I NAD(P)H dehydrogenase (NDH-1) complexes play a crucial role in a variety of bioenergetic reactions such as respiration, CO2 uptake, and cyclic electron transport around photosystem I. Two types of NDH-1 complexes, NDH-1MS and NDH-1MS′, are involved in the CO2 uptake system. However, the composition and function of the complexes still remain largely unknown. Here, we found that deletion of ndhM caused inactivation of NDH-1-dependent cyclic electron transport around photosystem I and abolishment of CO2 uptake, resulting in a lethal phenotype under air CO2 condition. The mutation of NdhM abolished the accumulation of the hydrophilic subunits of the NDH-1, such as NdhH, NdhI, NdhJ, and NdhK, in the thylakoid membrane, resulting in disassembly of NDH-1MS and NDH-1MS′ as well as NDH-1L. In contrast, the accumulation of the hydrophobic subunits was not affected in the absence of NdhM. In the cytoplasm, the NDH-1 subcomplex assembly intermediates including NdhH and NdhK were seriously affected in the ΔndhM mutant but not in the NdhI-deleted mutant ΔndhI. In vitro protein interaction analysis demonstrated that NdhM interacts with NdhK, NdhH, NdhI, and NdhJ but not with other hydrophilic subunits of the NDH-1 complex. These results suggest that NdhM localizes in the hydrophilic subcomplex of NDH-1 complexes as a core subunit and is essential for the function of NDH-1MS and NDH-1MS′ involved in CO2 uptake in Synechocystis sp. strain PCC 6803.  相似文献   

13.
Respiration in a future, higher-CO2 world   总被引:20,自引:9,他引:11  
Abstract. Apart from its impact on global warming, the annually increasing atmospheric [CO2] is of interest to plant scientists primarily because of its direct influence on photosynthesis and photorespiration in C3 species. But in addition, 'dark' respiration, another major component of the carbon budget of higher plants, may be affected by a change in [CO2] independent of an increase in temperature. Literature pertaining to an impact of [CO2] on respiration rate is reviewed. With an increase in [CO2], respiration rate is increased in some cases, but decreased in others. The effects of [CO2] on respiration rate may be direct or indirect. Mechanisms responsible for various observations are proposed. These proposed mechanisms relate to changes in: (1) levels of nonstructural carbohydrates, (2) growth rate and structural phytomass accumulation, (3) composition of phytomass, (4) direct chemical interactions between CO2 and respiratory enzymes, (5) direct chemical interactions between CO2 and other cellular components, (6) dark CO2 fixation rate, and (7) ethylene biosynthesis rate. Because a range-of (possibly interactive) effects exist, and present knowledge is limited, the impact of future [CO2] on respiration rate cannot be predicted. Theoretical considerations and types of experiments that can lead to an increase in the understanding of this issue are outlined.  相似文献   

14.
The cyanobacterial NADPH:plastoquinone oxidoreductase complex (NDH-1), that is related to Complex I of eubacteria and mitochondria, plays a pivotal role in respiration as well as in cyclic electron transfer (CET) around PSI and is involved in a unique carbon concentration mechanism (CCM). Despite many achievements in the past, the complex protein composition and the specific function of many subunits of the different NDH-1 species remain elusive. We have recently discovered in a NDH-1 preparation from Thermosynechococcus elongatus two novel single transmembrane peptides (NdhP, NdhQ) with molecular weights below 5 kDa. Here we show that NdhP is a unique component of the ∼450 kDa NDH-1L complex, that is involved in respiration and CET at high CO2 concentration, and not detectable in the NDH-1MS and NDH-1MS'' complexes that play a role in carbon concentration. C-terminal fusion of NdhP with his-tagged superfolder GFP and the subsequent analysis of the purified complex by electron microscopy and single particle averaging revealed its localization in the NDH-1L specific distal unit of the NDH-1 complex, that is formed by the subunits NdhD1 and NdhF1. Moreover, NdhP is essential for NDH-1L formation, as this type of NDH-1 was not detectable in a ΔndhP::Km mutant.  相似文献   

15.
Putative future increase in atmospheric CO2 is expected to adversely affect herbivore growth due to decrease in contents of key nutrients such as nitrogen and phosphorus (P) relative to carbon in primary producers including plant and algal species. However, as many herbivores are polyphagous and as the response of primary producers to elevated CO2 is highly species-specific, effects of elevated CO2 on herbivore growth may differ between feeding conditions with monospecific and multiproducer diets. To examine this possibility, we performed CO2 manipulation experiments under a P-limited condition with a planktonic herbivore, Daphnia , and three algal species, Scenedesmus obliquus (green algae), Cyclotella sp. (diatoms) and Synechococcus sp. (cyanobacteria). Semibatch cultures with single algal species (monocultures) and multiple algal species (mixed cultures) were grown at ambient (360 ppm) and high CO2 levels (2000 ppm) that were within the natural range in lakes. Both in the mono- and mixed cultures, algal steady state abundance increased but algal P : C and N : C ratios decreased when they were grown at high CO2. As expected, Daphnia fed monospecific algae cultured at high CO2 had decreased growth rates despite increased algal abundance. However, when fed mixed algae cultured at high CO2, especially consisting of diatoms and cyanobacteria or the three algal species, Daphnia maintained high growth rates despite lowered P and N contents relative to C in the algal diets. These results imply that algal diets composed of multiple species can mitigate the adverse effects of elevated CO2 on herbivore performance, although the magnitude of this mitigation depends on the composition of algal species involved in the diets.  相似文献   

16.
Respiratory responses of higher plants to atmospheric CO2 enrichment   总被引:5,自引:0,他引:5  
Although the respiratory response of native and agricultural plants to atmospheric CO2 enrichment has been reported over the past 75 years, only recently have these effects emerged as prominent measures of plant and ecosystem response to the earth's changing climate. In this review we discuss this rapidly expanding field of study and propose that both increasing and decreasing rates of leaf and whole-plant respiration are likely to occur in response to rising CO2 concentrations. While the stimulatory effects of CO2 on respiration are consistent with our knowledge of leaf carbohydrate status and plant metabolism, we wish to emphasize the rather surprising short-term inhibition of leaf respiration by elevated CO2 and the reported effects of long-term CO2 exposure on growth and maintenance respiration. As is being found in many studies, it is easier to document the respiratory response of higher plants to elevated CO2 than it is to assign a mechanistic basis for the observed effects. Despite this gap in our understanding of how respiration is affected by CO2 enrichment, data are sufficient to suggest that changes in leaf and whole-plant respiration may be important considerations in the carbon dynamics of terrestrial ecosystems as global CO2 continues to rise. Suggestions for future research that would enable these and other effects of CO2 on respiration to be unravelled are presented.  相似文献   

17.
The temperature dependence of C3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat ( Triticum aestivum L.) grown in controlled chambers with 370 or 700 μmol mol−1 CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Vcmax, although the latter effect was reversed at 15°C. With elevated CO2, Jmax decreased in the 15–25°C temperature range and increased at 30 and 35°C. The temperature response (activation energy) of Vcmax and Jmax increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.  相似文献   

18.
Carbon dioxide and ethylene interactions in tulip bulbs   总被引:2,自引:0,他引:2  
The effect of CO2 on ethylene-induced gummosis (secretion of polysaccharides), weight loss and respiration in tulip bulbs ( Tulipa gesneriana L.) was investigated. A pretreatment with 1-MCP prevented these ethylene-induced effects, indicating that ethylene action must have been directed via the ethylene receptor. Treatment with 0.3 Pa ethylene for 2 days caused gummosis on 50% of the total number of bulbs of cultivar Apeldoorn, known to be sensitive for gummosis. Addition of CO2 (10 kPa) reduced the ethylene-induced gummosis to 18%. In a second experiment the influence of ethylene and CO2 on respiration and FW loss of bulbs of the cultivar Leen van der Mark was studied. A range of ethylene partial pressures (0.003–0.3 Pa) was applied continuously for 29 days. Ethylene caused a transient peak in O2 consumption rate during the first days after the start of application. The relation between O2 consumption rate and ethylene partial pressure could be described by Michaelis-Menten kinetics. Respiratory peaks were reduced by CO2. This inhibition by CO2 could not totally be due to competition with ethylene at the receptor binding-site, as was indicated by the use of an O2 consumption model. Pre-treatment of bulbs with 1-MCP and subsequent exposure to CO2 showed that CO2 could influence respiration irrespective of any interaction with ethylene. Ethylene and CO2 both stimulated weight loss. The effect of combined treatments of ethylene and CO2 on weight loss was at least as strong as the sum of the separate effects, which implies that competition between ethylene and CO2 at the receptor binding-site was unlikely.  相似文献   

19.
In N2-fixing cyanobacteria, the reduction of N2 to NH3 is coupled with the production of molecular hydrogen, which is rapidly consumed by an uptake hydrogenase, an enzyme that is present in almost all diazotrophic cyanobacteria. The cellular and subcellular localization of the cyanobacterial uptake hydrogenase remains uncertain, and it is definitely strain dependent. Previous studies focused mainly on heterocystous cyanobacteria and used heterologous antisera. The present work represents the first effort to establish the subcellular localization of the uptake hydrogenase in a N2-fixing filamentous nonheterocystous cyanobacterium, Lyngbya majuscula CCAP 1446/4, using the first antiserum produced against a cyanobacterial uptake hydrogenase. The data obtained revealed higher specific labelling associated with the thylakoid membranes of L. majuscula , reinforcing the idea that the cyanobacterial uptake hydrogenase is indeed a membrane-bound protein. For comparative purposes, the localization of the uptake hydrogenase was also investigated in two distinct heterocystous cyanobacterial strains, and while in Nostoc sp. PCC 7120 the labelling was only observed in the heterocysts, in Nostoc punctiforme , the presence of uptake hydrogenase antigens was detected in both the vegetative cells and heterocysts, corresponding most probably to an inactive and an active form of the enzyme.  相似文献   

20.
Abstract.  The periodically occurring convective inflow of air into the tracheal system, or passive suction ventilation, together with the cyclic bursts of release of CO2 and active ventilation, is recorded in diapausing pupae of Mamestra brassicae . A constant volume respirometer combined with an opto-cardiograph-actograph is used. In all pupae with a metabolic rate of 0.025–0.054 mL g−1 h−1, the bouts of almost imperceptible abdominal contractions are recorded during the bursts of carbon dioxide release and this mode of active ventilation is qualified as extracardiac haemocoelic pulsations. The pupae whose metabolic rate is 0.052–0.075 mL−1 g−1 h−1 show more vigorous abdominal contractions. The results demonstrate that, in diapausing pupae, characterized with low metabolic rates, both passive suction ventilation, referred to also as passive suction inspiration, and active ventilation occurs. In approximately 50% of the pupae, each gas exchange microcycle during the interburst periods begins with a miniature PSI followed by a microburst of CO2 release; in approximately 30% of the individuals, passive suction inspirations occur separately from CO2 microbursts; in the remaining pupae, miniature ones without microbursts of CO2 are recorded. A typical event is heartbeat reversion: in longer periods, the heart peristalses are directed forward (anterograde of heartbeat) and, in shorter periods, the heart peristalses are directed backward (retrograde of heartbeat). At 0 °C, the cyclic release of CO2 and miniature passive suction inspirations during the interburst periods are preserved at lower frequencies but active ventilation is lost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号