首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endogenous phosphorylation of membrane-bound proteins was studied in the neostriata of rats treated for three weeks with incrementing doses of morphine. Fractions containing synaptic membranes were incubated with γ-32P-ATP. Phosphate incorporation into individual proteins was determined by gel-electrophoresis and autoradiography of SDS-solubilized membranes. At short reaction times (10 sec.), phosphorylation of all the endogenous protein substrates was reduced compared to preparations from placebo treated rats, but this decrease was differential. Phosphorylation of the specific protein bands designated F and H (MW 47,000 and 15–20,000) decreased by 60–70% while that of all the other bands decreased by only 15–30%. At longer incubations (2–5 min.) bands F and H remained depressed, while the phosphorylation of all the other bands had reached control values. The bands whose phosphorylation selectively decreased after long-term narcotic exposure were identified as the proteins whose phosphorylation was reported previously to increase after training experience. Modifications induced in the phosphorylation of these specific proteins may play a role in the adaptive responses of brain cells to various environmental and pharmacological stimulations.  相似文献   

2.
The effects of nonsaturating amounts (5–60 nmol/mg membrane protein) of p-chloromercuribenzoate on the stability of unsealed erythrocyte ghosts were studied by turbidimetric measurements and direct observation by phase contrast microscopy. The organic mercurial provokes drastic disorganization of the membrane involving vesicle formation by inter- and externalization of the bilayer. These effects are not associated with a release in solution of membrane proteins which was shown in previous studies to occur at higher p-chloromercuribenzoate concentration. Attempts have been made to identify the proteins involved in this phenomenon by the use of nonsaturating amounts of radioactively-labelled p-chloromercuribenzoate. Actin and band 3 protein which are the first to be labelled, represent plausible candidates as sensitive targets for the disrupting organic mercurial. Stroma obtained from spherocytes did not show significant differences with normocytes in their stability with regard to p-chloromercuribenzoate. Other reagents including N-ethylmaleimide, diamide and DNAase I were also studied. The results suggest strongly that the integrity of the sulfhydryl groups of actin, as well as those of band 3 protein, is essential for the stability of the erythrocyte membrane.  相似文献   

3.
Perfused rat hearts were treated with isoprenaline (10?6M) or ouabain (5.5 × 10?6M). The phosphate contents of troponin-I and myosin P light chains were established by radiolabelling with 32P; in the case of the light chains, direct chemical analysis of total and of specifically alkali-labile phosphate was also performed. Addition of isoprenaline caused phosphorylation of both troponin-I and myosin P light chains, reaching a maximum increment, after several minutes, of 1 mol/mol and 0.30 mol/mol, respectively. The Mg2+-ATPase activities, at saturating Ca2+ concentrations, of natural actomyosin isolated from treated hearts were significantly depressed, and an inverse correlation was established between the phosphate content of troponin-I and the Vmax[Ca2+] of this ATPase activity. The Ca2+ sensitivity of the Ca2+Mg2+-ATPase was also decreased. These changes were all reversed by an incubation permitting dephosphorylation of proteins by endogenous phosphatases.Treatment of hearts with ouabain caused no increment in troponin-I phosphorylation, but increased the P light chain phosphate content to a maximum of 0.30 mol/mol after some minutes. A positive correlation was evident between phosphate content of the light chains (in all experiments) and the maximum myosin Ca2+-ATPase activities. In addition, the Vmax[ATP] of the Ca2+Mg2+-ATPase of natural actomyosin was increased when light chain phosphorylation had occurred in the absence of troponin-I phosphorylation. P-light chain phosphorylation did not affect the Ca2+ sensitivity of Ca2+Mg2+-ATPase activity.We suggest that the effects of phosphorylation of troponin-I are to diminish thin filament sensitivity to Ca2+, and to decrease the efficiency of the transduction process along neighbouring actin monomers, such that the number of actin-myosin crossbridge interactions is decreased even in the presence of Ca2+ excess. Phosphorylation of P light chains of myosin has an activating effect on myosin Ca2+-ATPase activity, as well as on the rate of cross-bridge formation.  相似文献   

4.
Renal basal-lateral and brush border membrane preparations were phosphorylated in the presence of [γ-32P]ATP. The 32P-labeled membrane proteins were analysed on SDS-polyacrylamide gels. The phosphorylated intermediates formed in different conditions are compared with the intermediates formed in well defined membrane preparations such as erythrocyte plasma membranes and sarcoplasmic reticulum from skeletal muscle, and with the intermediates of purified renal enzymes such as (Na+ + K+)-ATPase and alkaline phosphatase. Two Ca2+-induced, hydroxylamine-sensitive phosphoproteins are formed in the basal-lateral membrane preparations. They migrate with a molecular radius Mr of about 130 000 and 100 000. The phosphorylation of the 130 kDa protein was stimulated by La3+-ions (20 μM) in a similar way as the (Ca2+ + Mg2+)-ATPase from erythrocytes. The 130 kDa phosphoprotein also comigrated with the erythrocyte (Ca2+ + Mg2+)-ATPase. In addition in the same preparation, another hydroxylamine-sensitive 100 kDa phosphoprotein was formed in the presence of Na+. This phosphoprotein comigrates with a preparation of renal (Na+ + K+)-ATPase. In brush border membrane preparations the Ca2+-induced and the Na+-induced phosphorylation bands are absent. This is consistent with the basal-lateral localization of the renal Ca2+-pump and Na+-pump. The predominant phosphoprotein in brush border membrane preparations is a 85 kDa protein that could be identified as the phosphorylated intermediate of renal alkaline phosphatase. This phosphoprotein is also present in basal-lateral membrane preparations, but it can be accounted for by contamination of those membranes with brush border membranes.  相似文献   

5.
Calcium-accumulating vesicles were isolated by differential centrifugation of sonicated platelets. Such vesicles exhibit a (Ca2+ + Mg2+)-ATPase activity of about 10 nmol (min·mg)?1 and an ATP-dependent Ca2+ uptake of about 10 nmol (min·mg)?1. When incubated in the presence of Mg[γ-32P]ATP, the pump is phosphorylated and the acyl phosphate bond is sensitive to hydroxylamine. The [32P]phosphate-labeled Ca2+ pump exhibits a subunit molecular weight of 120 000 when analyzed by lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Platelet calcium-accumulating vesicles contain a 23 kDa membrane protein that is phosphorylatable by the catalytic subunit of cAMP-dependent protein kinase but not by protein kinase C. This phosphate acceptor is not phosphorylated when the vesicles are incubated in the presence of either Ca2+ or Ca2+ plus calmodulin. The latter protein is bound to the vesicles and represents 0.5% of the proteins present in the membrane fraction. Binding of 125I-labeled calmodulin to this membrane fraction was of high affinity (16 nM), and the use of an overlay technique revealed four major calmodulin-binding proteins in the platelet cytosol (Mr = 94 000, 87 000, 60 000 and 43 000). Some minor calmodulin-binding proteins were enriched in the membrane fractions (Mr = 69 000, 57 000, 39 000 and 37 000). When the vesicles are phosphorylated in the presence of MgATP and of the catalytic subunit of cAMP-dependent protein kinase, the rate of Ca2+ uptake is essentially unaltered, while the Ca2+ capacity is diminished as a consequence of a doubling in the rate of Ca2+ efflux. Therefore, the inhibitory effect of cAMP on platelet function cannot be explained in such simple terms as an increased rate of Ca2+ removal from the cytosol. Calmodulin, on the other hand, was observed to have no effect on the initial rate of calcium efflux when added either in the absence or in the presence of the catalytic subunit of the cyclic AMP-dependent protein kinase, nor did the addition of 0.5 μM calmodulin result in increased levels of vesicle phosphorylation.  相似文献   

6.
The efflux of 42K+ from the matrix of isolated heart mitochondria under conditions of steady state K+ has the properties of an energy-linked K+K+ exchange reaction. Efflux requires respiration and external K+, is sensitive to uncouplers and to Mg+2, and is markedly decreased by oxidative phosphorylation. Efflux is stimulated by Pi and by mersalyl, but declines under conditions which promote net uptake of K+ and acetate. Acetate strongly inhibits efflux in the presence of mersalyl. These data suggest that mitochondrial K+ levels are not maintained by a balance between inward K+ pumping and a passive outward leak, but rather that a nearly constant K+ pool results from a regulated interplay between an inward K+ uniport (responsive to membrane potential) and a K+H+ exchanger (responsive to the transmembrane pH gradient).  相似文献   

7.
Treatment of plasma membrane isolated from murine plasmocytoma MOPC 173 with an EDTA-containing buffer resulted in a 300-fold increase in sensitivity of (Na+ + K+)-stimulated Mg2+-ATPase to ouabain. This phenomenon was associated with the solubilization by EDTA of phospholipid free proteins (approx. 30 000–34 000 daltons) from the cytoplasmic face of the plasma membrane and with removal of about 90% of the membrane bound Ca2+. The recovery of the original resistance to ouabain required specifically Ca2+ and was associated with a binding of the solubilized proteins to the membrane.  相似文献   

8.
When synaptic plasma membrane fragments are incubated with ATP in the presence of Mg2+, phosphate is transferred, not only to protein-bound serine, but also to protein-bound histidine. The phosphorylation of protein-bound serine is stimulated by cyclic AMP and has a Km for ATP of about 0.12 mM, both in the presence and absence of cyclic AMP. By contrast, the phosphorylation of protein-bound histidine is unaffected by cyclic AMP and does not follow Michaelis-Menton kinetics since a non-linear double reciprocal plot is given when activity is measured at various ATP concentrations.  相似文献   

9.
Pigeon erythrocyte membrane was solubilized partially, but relatively unselectively by Triton X-100. Vesicles were reconstituted from mixtures of Triton-solubilized membrane and lipid (phosphatidylcholine plus phosphatidylethanolamine plus cholesterol) by addition of bovine high-density lipoprotein. This efficiently removed the Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electropherograms of reconstituted vesicles showed band patterns resembling those of the original membrane. The reconstituted vesicles showed ATP-dependent active accumulation of 45Ca2+. ATP-dependent 45Ca2+ uptake by the reconstituted vesicles resembled the corresponding activity of the original membrane vesicles; in both preparations the Ca2+ uptake rate depended on the square of the Ca2+ concentration and had similar [Ca2+]12 values, 0.16 μM and 0.18 μM, respectively.  相似文献   

10.
Most of structural and metabolic events comprising mitosis can be explained by assumption of changing intracellular ratio of free Ca2+/free Mg2+ during this process. Evidence is discussed showing that the reason of changes in free divalent cations concentration during mitosis could be the shift induced by spindle protein polymerization in the SHSS status of the cellular proteins affecting the membrane ion transport.  相似文献   

11.
Phospholipid-sensitive Ca2+-dependent protein kinase (PL-Ca-PK) was found to be present at a high level in human neutrophils, with its activity localized in the particulate fraction. In contrast, cyclic AMP-dependent protein kinase (A-PK) and cyclic GMP-dependent protein kinase (G-PK), present at lower levels compared to PL-Ca-PK, were localized in the cytosolic fraction. Phosphorylation of several endogenous proteins (mol. wts. 89,000, 38,000, 34,000, 17,000 and 15,000), also localized in the particulate fraction, was stimulated specifically by a combination of phosphatidylserine and Ca2+, whereas no substrate proteins were observed for the calmodulin-sensitive Ca2+-dependent protein kinase system under the same incubation conditions. Although no substrate proteins for G-PK were detected, one substrate (mol. wt. 19,000) for A-PK was observed. Phosphorylation of substrates for PL-Ca-PK, but not that for A-PK and for enzymes independent of Ca2+ or cyclic AMP, was inhibited by a variety of agents, including trifluoperazine, W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide], adriamycin, palmitoylcarnitine, and melittin. The present findings suggest that the phospholipidCa2+-stimulated protein phosphorylation system may be important in the membrane associated functions of human neutrophils.  相似文献   

12.
13.
The effect of Mg2+ concentration and phosphorylation of light-harvesting chlorophyll ab-protein on various chlorophyll fluorescence induction parameters of isolated pea thylakoids has been studied. (1) Lowering the Mg2+ concentration from 3 to 0.4 mM decreases only the variable fluorescence (Fv) and the area above the induction curve while at the same time increasing the slow exponential component of the rise (βmax). (2) A further decrease in Mg2+ concentration from 0.4 to 0 mM decreases the initial (F0) fluorescence level such that the ratio FvFm increases slightly as does the area above the induction curve and βmax. (3) Thylakoid membranes, phosphorylated at 5 mM Mg2+, show an equal decrease in Fv and F0, no change in the area above the induction curve and an increase in βmax. At 2 mM Mg2+, however, phosphorylation induced a more extensive quenching of Fv so that the FvFm ratio was lowered and the area above the induction curve decreased while βmax increased. (4) When phosphorylated membranes were subsequently suspended in an Mg2+-free medium the effect on F0 due to phosphorylation was found to be additive to that due to the absence of Mg2+. The effect of membrane phosphorylation on fluorescence is discussed in relation to the control of excitation energy distribution and shows that different mechanisms operate depending on the background Mg2+ levels. At high Mg2+ the phosphorylation seems to affect the absorption cross-section of Photosystem II while at lower Mg2+ levels there is an additional effect of increased spillover from Photosystem II to I.  相似文献   

14.
Intact erythrocytes were spin-labeled with various classes of phospholipid label. The ESR spectrum for phosphatidylcholine spin label was distinctly different from those for phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidic acid spin labels. The overall splitting for the former (52.5 G) was markedly larger than those for the others (approx. 47 G), suggesting a more rigid phosphatidylcholine bilayer phase and more fluid phosphatidylethanolamine and phosphatidylserine phases in the erythrocyte membrane. Evidence for asymmetric distribution of phospholipids in the membrane was obtained. Spin-labeled phosphatidylcholine incorporated into erythrocytes was reduced immediately by cystein and Fe3+, while the reduction of spin-labeled phosphatidylserine was very slow. The present results therefore suggest asymmetric fluidity in erythrocyte membrane; a more rigid outer layer and a more fluid inner layer. The heterogeneity in the lipid structure was also manifested in the temperature dependence of the fluidity. The overall splitting for phosphatidylcholine spin label showed two inflection points at 18 and 33 °C, while that for phosphatidylserine spin label had only one transition at 30 °C.When the spin-labeled erythrocytes were hemolyzed, the marked difference in the ESR spectra disappeared, indicating homogenization of the heterogeneous fluidity. Mg2+ or Mg2++ATP prevented the hemolysis-induced spectral changes. Ca2+ did not prevent the homogenization and acted antagonistically to Mg2+. The heterogeneity preservation by Mg2+ was nullified by trypsin, pronase or N-ethylmaleimide added inside the cell. Some inner proteins may therefore be involved in maintaining the heterogeneous structure. The protecting action of Mg2+ was dependent on hemolysis temperature, starting to decrease at 18 °C and vanishing at 40 °C. The present study suggests that the heterogeneity in the fluidity of intact erythrocyte membranes arises from interactions between lipids and proteins in the membrane and also from interactions between the membrane constituents and the inner proteins. Concentration of cholesterol in the outer layer may also partly contribute to the heterogeneity.  相似文献   

15.
The relation of the adenylate energy charge (ATP + 12ADP/ATP + ADP + AMP) to the phosphorylation state (ATP)/(ADP)(HPO42?) in rat liver and kidney was analyzed. Under physiological conditions and in ischemia, the two regulatory parameters, calculated from reported values for adenine nucleotides and inorganic phosphate (Pi) and from new observations, were closely coordinated. Energy charge was an inverse linear function of Pi and -log (1 - energy charge) was a positive linear function of log phosphorylation state. To evaluate experimental data with known energy charge, but unknown Pi, and to determine the theoretical relation between energy charge and phosphorylation state, Pi was estimated from a) the regression equation: Pi, μmol/g wet wt tissue = 1.05 - energy charge/0.073 and b) the empirical relationship: (Pi/2Pa) + energy charge = k, where Pa = σAMP + 2ADP + 3ATP and k = 1. With both estimates, the relation between phosphorylation state and energy charge for the experimental data was, within error, the same as that observed with measured Pi and concordant with theoretical values. Over the physiological range of energy charge (~0.85 – 0.95, log phosphorylation state ~3.3 – 4.3), apparent ΔGATP (×2) was closer to the range of ΔG observed by Wilson et al (Biochem. J. 140:57, 1974) for transfer of two electrons from mitochondrial NAD to the cytochrome c couple than the ΔGATP (×2) they reported, supporting their conclusion that near-equilibrium exists between the mitochondrial respiratory chain and the cytoplasmic phosphorylation state under physiological conditions. From evidence presented, it is postulated that the phosphorylation state is regulated by the adenylate energy charge.  相似文献   

16.
The correlation between the ATP-dependent Ca2+ binding and the phosphorylation of the membranes from swine and bovine erythrocytes was studied. The Ca2+ binding was measured by using 45CaCl2, and the phosphorylation by [γ-32P]ATP was studied with the technique of SDS polyacrylamide gel electrophoresis. 200 mM NaCl and KCl markedly repressed the Ca2+ binding of swine erythrocyte membranes. The radioactivity of 32P-labelled membranes was revealed mainly in 250 000 dalton protein and a lipid fraction. NaCl and KCl also repressed the phosphorylation of the lipid which was identified as triphosphoinositide by paper chromatography. The membranes prepared from trypsin-digested erythrocytes completely retained the Ca2+-binding activity, and lost 30% of (Ca2+ + Mg2+)-ATPase activity. The Ca2+-binding and ATPase activity of isolated membranes decreased to 55% and to 0%, respectively, by tryptic digestion. Neither the Ca2+ binding nor the phosphorylation of polyphosphoinositides were detected in bovine erythrocyte membranes.These results suggest that the formation of triphosphoinositide rather than the (Ca2+ + Mg2+)-ATPase of membranes is linked to the ATP-dependent Ca2+ binding of erythrocyte membranes.  相似文献   

17.
Calcium-induced phosphorylated intermediates and calmodulin-binding proteins in membrane preparations from th renal cortex were analyzed by SDS-polyacrylamide gel electrophoresis at low pH, protein electroblotting and [125I]calmodulin overlay. Two calcium-induced phosphoproteins were found, with a molecular mass of 135 and 115 kDa, respectively. By comparing different preparations characterized by marker enzymes, it was shown that the 135 kDa phosphoprotein is localized in the basal-lateral fragment of the plasma membrane, whereas the 115 kDa phosphoprotein is more pronounced in preparations containing a high proportion of endoplasmic reticulum. A prominent calmodulin-binding protein comigrated with the 135 kDa phosphoprotein; there was no calmodulin binding to polypeptides in the molecular mass range of the 115 kDa phosphoprotein. Partial proteolysis by trypsin and the effect of 20 μM La2+ on the formation of phosphoproteins before and after trypsinization support the conclusion that the 135 kDa protein can be identified with the plasma membrane calcium pump, whereas the 115 kDa phosphoprotein is the phosphorylated intermediate of a different type of calcium pump probably originating from the endoplasmic reticulum. Calmodulin binding in renal membrane preparations analyzed on Laemmli-type slab gels revealed that there are many calmodulin-binding proteins in our preparations. We have identified one band with the renal calcium pump localized in the basal-lateral membrane. Another calmodulin-binding protein migrating at 108 kDa, is not localized in the basal-lateral membrane and could be one of the calmodulin-binding proteins originating from the cytoskeleton.  相似文献   

18.
2-Deoxyglucose and 3-O-methyglucose were used to assess endotoxin-induced changes in glucose transport in rat adipocytes. 6 h after Escherichia coli endotoxin injection insulin-stimulated 2-deoxyglucose uptake was significantly depressed (V decreased, Kmunaltered), phosphorylation of 2-deoxyglucose was seemingly unimpaired; basal 3-methylglucose entry was significantly increased, insulin-stimulated uptake was unaltered. Insulin significantly reduced Km in control and endotoxin-treated cells. Cytochalasin B-insensitive uptake of both 2-deoxyglucose and 3-methylglucose, a small fraction of total transport, increased significantly in endotoxic cells. Endotoxin reduced spermine- and insulin-stimulated 2-deoxyglucose uptake to a similar extent. Results are consistent with the hypotheses that (1) a site of endotoxin-induced insulin resistance is at the cell membrane level and may reflect a decrease in number or activity of effective carrier units, rather than alterations in affinity, (2) endotoxin does not compromise the hexokinase system, (3) the cell membrane-localized effect of endotoxin on hexose transport is not necessarily mediated by the insulin receptor and (4) the entry of 2-deoxyglucose and 3-methylglucose may involve two separate transport systems.  相似文献   

19.
The amino acid double labeling technique was used to identify and localize membrane-bound lactose operon proteins in E.coli. Both the “M” protein, thought to be the y gene product, and a polypeptide of MW ~15,000 appeared in the membrane following lac operon induction. The amounts of these two proteins were approximately equal.The inner and outer membrane layers of the cell envelope were separated by sucrose density gradient centrifugation or by selective solubilization of inner membranes with the detergent Sarkosyl. When gentle lysis conditions were employed to prepare membrane vesicles, both lac induced proteins fractionated with the inner membrane. However, the “M” protein was more easily randomized in the envelope structure by sonication than the 15,000 dalton component or an inner membrane marker enzyme.  相似文献   

20.
Experiments are presented to show that the phosphorylation of the light-harvesting chlorophyll ab-protein complex (LHC) induces structural reorganisation within the thylakoid membrane in response to the introduction of additional negative surface charges. The effect of cations of different valency on chlorophyll fluorescence measurements indicates that LHC-phosphorylation-induced reorganisation involves a change in the electrostatic screening capability of the added cation. At intermediate levels of cations (e.g., 1 or 2 mM Mg2+), which substantially stack non-phosphorylated membranes, it was found that membrane phosphorylation caused considerable unstacking as monitored by light scattering and electron microscopy. Concomitant with this was a large decrease in chlorophyll fluorescence indicative of randomisation of chlorophyll protein complexes which would result in an increase in energy transfer between the photosystems as well as an absorption cross-section change. At higher concentrations (e.g., above 5 mM Mg2+) a persistent ATP-induced decrease in chlorophyll fluorescence has been attributed to the displacement of charged phosphorylated LHC from the appressed granal to the non-appressed stromal lamellae, thus decreasing the absorption cross-section of Photosystem II. Under these circumstances only a small degree of unstacking was detected by light scattering and measurements of the percentage of thylakoid length which is stacked to form grana. However, when considered on a surface area basis, the structural changes observed can qualitatively account for the magnitude of the chlorophyll fluorescence quenching due to the lateral diffusion of LHC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号