首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intact lipopolysaccharide antigens isolated from seven different immunotypes of Pseudomonas aeruginosa have been examined by 31P-NMR spectroscopy. These macromolecular complexes contain phosphorus covalently attached to the carbohydrate residues present in the lipid A moiety and the ‘core’ oligosaccharide region. The spectral signals for various ortho- and pyro-phosphoric esters were observed. All phosphate groups appeared to be mono-esterified. Certain shifts characteristic for phosphate diester groups, observed in lipopolysaccharide complexes from other Gram-negative bacteria, were absent. Furthermore, no evidence was found to indicate that phosphate groups are involved in the covalent linkage of individual lipopolysaccharide complexes to form dimers or trimers.  相似文献   

2.
Carbon-13 spin-lattice relaxation times, T1, have been measured for aqueous solutions of L-aspartic acid, L-alanine, O-phospho-L-serine, and 2-mercapto-L-succinic acid in the presence of the paramagnetic metal ions, Cu2+ and Mn2+, and Mg2+ as a diamagnetic control, at ambient temperature and neutral pH. Nitrogen-15, oxygen-17 and proton relaxation times were also obtained for L-aspartic acid and phosphorus-31 relaxation times for O-phospho-L-serine under similar conditions. The structures of these complexes in solution were determined from the various metal ion-nuclei distances calculated from the paramagaetically-induced relaxation. These results indicate that the Cu2+ interaction with L-aspartic acid is through α-amino and β-carboxyl groups while Mn2+ coordinates most strongly through α-and β-carboxyl groups, with the possibility of a weak interaction through the amino group.An examination of the coordination of these divalent metal ions to an analog of L-aspartic acid in which the β-carboxyl group is replaced by a phosphate group (O-phospho-L-serine) indicated that Cu2+ coordination is now probably through the α-amino and phosphate groups, while this analog is a monodentate ligand for Mn2+ coordinating through the phosphate group. Removal of the β-carboxyl group (L-alanine) also results in Cu2+ coordination through the α-carboxyl and α-amino groups, and the same ligand interactions are observed with Mn2+. Replacement of the α-amino group of L-aspartic acid with an - SH group (2-mercapto-L-succinate) is sufficient to eliminate any specific coordination with either Cu2+ or Mn2+.  相似文献   

3.
Intact lipopolysaccharide antigens isolated from seven different immunotypes of Pseudomonas aeruginosa have been examined by 31P-NMR spectroscopy. These macromolecular complexes contain phosphorus covalently attached to the carbohydrate residues present in the lipid A moiety and the 'core' oligosaccharide region. The spectral signals for various ortho- and pyrophosphoric esters were observed. All phosphate groups appeared to be monoesterified. Certain shifts characteristic for phosphate diester groups, observed in lipopolysaccharide complexes from other Gram-negative bacteria, were absent. Furthermore, no evidence was found to indicate that phosphate groups are involved in the covalent linkage of individual lipopolysaccharide complexes to form dimers or trimers.  相似文献   

4.
We have measured the 31P n.m.r. spectra of NADP+ and NADPH in their binary complexes with Escherichia coli dihydrofolate reductase and in ternary complexes with the enzyme and folate or methotrexate. The 31P chemical shift of the 2′ phosphate group is the same in all complexes; its value indicates that it is binding in the dianionic state and its pH independence suggests that it is interacting strongly with cationic residue(s) on the enzyme. Similar behaviour has been noted previously for the complexes with the Lactobacillus casei enzyme although the 31P shift is somewhat different in this complex, possibly due to an interaction between the 2′ phosphate group and His 64 which is not conserved in the E. coli enzyme. For the coenzyme complexes with both enzymes 31POC21H2′ spin-spin interactions were detected (7.5–7.8 Hz) on the 2′ phosphate resonances, indicating a POC2H2′ dihedral angle of 30 or 330 : this is in good agreement with the value of 330° measured in crystallographic studies1 (Matthews et al., 1978) on the L. casei enzyme. NADPH-MTX complex. The pyrophosphate resonances are shifted to different extents in the various complexes and there is evidence that there is more OPO bond angle distortion in the E. coli enzyme complexes than in those with the L. casei enzyme. The effects of 31POC51H5′ spin coupling were detected on one pyrophosphate resonance and indicate that the POC5H5′ torsion angle has changed by at least ~30° on binding to the E. coli enzyme: this is considerably less than the distortion (~50°) observed previously in the L. casei enzyme complex.  相似文献   

5.
The Zn-OH2 and Zn-OH complexes of the new tris(pyrazolyl)borate ligands with pyridyl and carboxamido substituents were investigated for their reactivity towards hydrolyzeable substrates. Tp4−Py,MeZn-OH inserted CO2 and CS2 in methanol forming the Zn-OCOOMe and Zn-SCSOMe products. In non-aqueous media, both types of complexes with both types of substituents on the Tp ligands effected stoichiometric cleavage of tris(p-nitrophenyl)phosphate and p-nitrophenyl acetate. In solutions containing water and the MOPS buffer, up to eight p-nitrophenyl groups per equivalent of zinc complex could be cleaved from the esters, and the resulting bis(p-nitrophenyl)phosphate was also degraded to mono(p-nitrophenyl)phosphate. This is the first time that pyrazolylborate-zinc complexes have shown catalytic activity in hydrolytic reactions.  相似文献   

6.
The interaction between the plant hormone, 3-indoleacetic acid (IAA), and some phospholipids in CDCL3 has been studied by 1H, 13C and 31P nuclear magnetic resonance (NMR) spectroscopy. Upon interaction with IAA, significant changes occurred in resonance positions of the phospholipid head group nuclei. Alteration of the fatty acid composition influenced the effects of IAA on these nuclei. These effects were observed in the ethanolamine and phosphate groups of the phosphatidylethanolamines, and in the choline, phosphate and glycerol groups of the phosphatidylcholines. Changes in resonance positions of the phospholipid head group nuclei were used for the determination of dissociation constants (Kd). In all cases, Kd values were approx. 10?2 molal for 1 : 1 interaction. The NMR results suggest an interaction orientation in which the aromatic ring system of IAA interacts with the quaternary nitrogen function of the head group, and the phosphate group becomes hydrogen-bonded to the NH or carboxyl proton of 1AA.  相似文献   

7.
Terbium ion (Tb3+), like other rare earth lanthanides, has traditionally been viewed as binding nucleic acids at or near their ionized phosphate groups only. Here evidence is presented from 1H NMR studies that confirms this mode of binding in Tb3+-mono-nucleotide complexes. However, in polynucleotides, we find that Tb3+ coordinately binds at two distinct sites, the phosphate moiety and electron donor groups on purine and pyrimidine bases. This two-site binding is best illustrated by complexes of Tb3+-polyuridylic acid, where the relative sensitivities of the uracil protons H5 and H6 to induced chemical shift and nuclear spin relaxation are the inverse of that seen in Tb3+-uridine monophosphate complexes. These data substantiate recently reported results derived from ultraviolet absorption and fluorescence spectroscopy (D. S. Gross and H. Simpkins, 1981, J. Biol. Chem.256, 9593–9598) that two-site binding is characteristic of the terbium(III)-polynucleotide interaction.  相似文献   

8.
Polycrystalline lead(II) complexes with O,O-dipropyl- and O,O-di-cyclo-hexyldithiophosphate ions were prepared and studied by means of 31P, 31C CP/MAS NMR spectroscopy and single-crystal X-ray diffraction. Prepared complexes are characterised by polynuclear structures, in which pairs of dithiophosphate groups asymmetrically link neighbouring lead atoms, forming infinite linear zigzag chains. In spite of the same combined structural function, dithiophosphate ligands in both complexes display structural inequivalence. To characterise the combined structural state of the dialkyldithiophosphate ligands, 31P chemical shift anisotropy parameters, δaniso and η, were estimated from spinning sideband patterns in experimental CP/MAS NMR spectra for each of the two prepared complexes as well as the initial potassium O,O-dipropyl- and O,O-di-cyclo-hexyldithiophosphate salts.  相似文献   

9.
The effect of the hydrolysis product Pi and the artificial substrate p-nitrophenyl phosphate (p-nitrophenyl-P) on ouabain binding to (Na+ + K+)-activated ATPase was investigated.The hypothesis that (Mg2+ + p-nitrophenyl-P)-supported ouabain binding might be due to Pi release and thus (Mg2+ + Pi)-supported could not be confirmed.The enzyme · ouabain complexes obtained with different substrates were characterized according to their dissociation rates after removal of the ligands facilitating binding. The character of the enzyme · ouabain complex is determined primarily by the monovalent ion present during ouabain binding, but, qualitatively at least, it is immaterial whether binding was obtained with p-nitrophenyl phosphate or Pi.The presence or absence of Na+ during binding has a special influence upon the character of the enzyme · ouabain complex. Without Na+ and in the presence of Tris ions the complex obtained with (Mg2+ + Pi) and that obtained with (Mg2+ + p-nitrophenyl-P) behaved in a nearly identical manner, both exhibiting a slow decay. High Na+ concentration diminished the level of Pi-supported ouabain binding, having almost no effect on p-nitrophenyl phosphate-supported binding. Both enzyme · ouabain complexes, however, now resembled the form obtained with (Na+ + ATP), as judged from their dissociation rates and the K+ sensitivity of their decay. The complexes obtained at a high Na+ concentration underwent a very fast decay which could be slowed considerably after adding a low concentration of K+ to the resuspension medium. The most stable enzyme · ouabain complex was obtained in the presence of Tris ions only, irrespective of whether p-nitrophenyl phosphate or Pi facilitated complex formation. The presence of K+ gave rise to a complex whose dissociation rate was intermediate between those of the complexes obtained in the presence of Tris and a high Na+ concentration.It is proposed that the different ouabain dissociation rates reflect different reactive state of the enzyme. The resemblance between the observations obtained in phosphorylation and ouabain binding experiments is pointed out.  相似文献   

10.
Escherichia coli strain AN710 possesses only the PIT system for phosphate transport. Membrane vesicles from this strain, which contain phosphate internally, perform exchange and active transport of phosphate. The energy for active transport is supplied by the respiratory chain with ascorbate-phenazine methosulphate as electron donor. To a lesser extent also the oxidation of d-lactate energizes phosphate transport; the oxidation of succinate is only marginally effective. Phosphate transport is driven by the proton-motive force and in particular by the pH gradient across the membrane. This view is supported by the observation that phosphate transport is stimulated by valinomycin, inhibited by nigericin and abolished by the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Neither inhibitor affects phosphate exchange. The phosphate analogue arsenate inhibits both the exchange reaction and active transport. Both processes are stimulated by K+ and Mg2+, the highest activities being observed with both ions present.Membrane vesicles have also been isolated from Escherichia coli K10, a strain which possesses only a functional PST phosphate transport system. These vesicles perform neither exchange nor active transport of phosphate, although active transport of amino acids is observed in the presence of ascorbate-phenazine methosulphate or d-lactate.  相似文献   

11.
The electron transfer reactions of horse heart cytochrome c with a series of amino acid-pentacyanoferrate(II) complexes have been studied by the stopped-flow technique, at 25°C, μ = 0.100, pH 7 (phosphate buffer). A second-order behavior was observed in the case of the Fe(CN)5 (histidine)3? complex, with k = 2.8 x 105 M?1 sec?1. For the Fe(CN)5 (alanine)4? and Fe(CN)5(L-glutamate)5? complexes, only a minor deviation of the second-order behavior, close to the experimental error (k = 3.2 × 105 and 1.6 x 105 M?1 sec?1, respectively) was noted at high concentrations of the reactants (e.g., 6 × 10?4 M). The results are in accord with recent work on the Fe(CN)64?/cytochrome c system demonstrating weak association of the reactants. The calculated self-exchange rate constants including electrostatic interactions for the imidazole,L -histidine, 4-aminopyridine, glycinate, β-alaninate, andL-glutamate pentacyanoferrate(II) complexes were 3.3 × 105, 3.3 × 105, 2.8 × 106,4.1 × 102,5.5 × 102, and 6.0 M?1 sec?1, respectively. Marcus theory calculations for the cytochrome c reactions were interpreted in terms of two nonequivalent binding sites for the complexes, with the metalloprotein self-exchange rate constants varying from 104 M?1 sec?1 (histidine, imidazole, and 4-aminopyridine complexes) to 106 M?1 sec ?1 (glycinate, β-alaninate, and L-glutamate complexes).  相似文献   

12.
Mineral acid hydrolysis of the lipopolysaccharide from Vibrio cholerae 569B (Inaba) gives an oligosaccharide fraction which was shown, by use of 13C NMR and chemical methods, to be a regular α-(1 → 2) linked chain of d-perosamine (4-amino-4,6-dideoxy-d-mannose) units. This chain represents the O-antigen of the lipopolysaccharide, in which the amino functions are acylated with 3-hydroxypropionyl groups. The chromatographic properties of some hydroxamic acids are described and used to characterize these acyl groups.  相似文献   

13.
Adrien Binet  Pierre Volfin 《BBA》1977,461(2):182-187
The effects of platinum complexes, selected for their potent anti-tumor activities, have been studied on rat liver mitochondria. Among the mitochondrial properties which have been studied, the most marked effects of platinum complexes were obtained on functions linked to the inner membrane.cis-Pt(II)(3,4-diaminotoluene) dichloride is shown to stimulate state 4 respiration. It inhibits the phosphate transport into mitochondria, decreases the accumulation of Ca2+, and induces a more rapid release of the accumulated Ca2+. A release of Mg2+ from mitochondria incubated in the absence of added divalent cations, and an efflux of divalent cations from mitochondrial membranes are also observed.All these results indicate a profound modification of the permeability of mitochondrial membrane.  相似文献   

14.
Planctomycetes are bacteria with complex molecular and cellular biology. They have large genomes, some over 7 Mb, and complex life cycles that include motile cells and sessile cells. Some live on the complex biofilm of macroalgae. Factors governing their life in this environment were investigated at the genomic level. We analyzed the genomes of three planctomycetes isolated from algal surfaces. The genomes were 6.6 Mbp to 8.1 Mbp large. Genes for outer-membrane proteins, peptidoglycan and lipopolysaccharide biosynthesis were present. Rubripirellula obstinata LF1T, Roseimaritima ulvae UC8T and Mariniblastus fucicola FC18T shared with Rhodopirellula baltica and R. rubra SWK7 unique proteins related to metal binding systems, phosphate metabolism, chemotaxis, and stress response. These functions may contribute to their ecological success in such a complex environment. Exceptionally huge proteins (6000 to 10,000 amino-acids) with extracellular, periplasmic or membrane-associated locations were found which may be involved in biofilm formation or cell adhesion.  相似文献   

15.
A series of cis and trans tetradentate copper macrocyclic complexes, of ring size 14-16, that employ amine and thioether donor groups are reported. Apart from 5,6,15,16-bisbenzo-8,13-diaza-1,4-dithia-cyclohexadecane copper(I) (cis-[Cu(H4NbuSen)]+) all of the complexes are obtained in the copper(II) form. Crystallographic analysis shows that the copper(II) complexes all adopt a distorted planar geometry around the copper. In contrast, cis-[Cu(H4NbuSen)]+ is found to adopt a distorted tetrahedral geometry. The complexes were subjected to electrochemical analysis in water and acetonitrile. The effect of the solvent, positions of the donor atoms (cis/trans) on E1/2 is discussed as is the comparison of the electrochemical behaviour of these complexes with their parent Schiff base macrocycles.  相似文献   

16.
Batch cultivations were performed to evaluate the influence of phosphate concentrations (0.25, 0.5, 0.75, and 1.0 g L−1) for pH regimes (9.5, 10.0, and 10.5) on the biomass production by Spirulina platensis. The best condition for cell growth (3.099 g L−1) was found at 0.5 g L−1 phosphate and pH value of 10.0. Cultivation time, phosphate, and pH caused to increase significantly (p < 0.01) in biomass production by S. platensis. Lag time was observed up to 4 h. After then, biomass production increased sharply (p < 0.01) from 0.020 g L−1 to 2.063, 2.213, 1.532, and 0.797 g L−1 at 0.25, 0.5, 0.75, and 1.0 g L−1 phosphate values, respectively. Modified Gompertz model could be regarded as sufficient to describe the biomass production by S. platensis with high determination coefficients and low sum of square value indicated that. Biological parameters for biomass production were successfully predicted by modified Gompertz model.  相似文献   

17.
The surface pressure isotherms of chlorophyll a, monogalactosyldiacylglycerol and phytol at the air-water interface were studied on a Langmuir trough at 20.0±0.5°C. The subphase was a phosphate buffer, 10?3 M at pH 8.0. The extrapolated limiting areas per molecule are 115, 82 and 38 Å2/molecule, respectively. The isotherms of eight mixtures of chlorophyll a with monogalactosyldiacylglycerol and eight mixtures of chlorophyll a with phytol, covering in both cases the whole range of molar fractions have also been measured. The results for the mixed monolayers were analysed in terms of the additivity rule. They show that a small negative deviation with respect to ideality is observed upon mixing chlorophyll a with monogalactosyldiacylglycerol. However, chlorophyll a forms an ideal two-dimensional solution when mixed with phytol. The excess free energies of mixing of chlorophyll a with monogalactosyldiacylglycerol as a function of concentration were calculated from the surface pressure isotherms at 10, 15, 20 and 25 mN·m?1. The values are negative, reflecting the interaction prevailing between these components in the monolayers. For the four surface pressures studied, the excess free energies are symmetrical with respect to the mode fraction. The values for an equimolar mixture range from ?300 to ?540 J·mol?1 at 10 and 25 mN·m?1, respectively. A comparison between the thermodynamics of mixing of chlorophyll a with monogalactosyldiacylglycerol and phytol suggests that the polar head of monogalactosyldiacylglycerol together with the polar groups of chlorophyll a are probably involved in the interaction. However, this does not completely rule out the possibility that structural effects due to a different packing of chlorophyll a with monogalactosyldiacylglycerol and phytol may also be involved. Furthermore it is shown that the small interactions between these constituents are not inconsistent with the specific coupling existing between the apoprotein of the chlorophyll a-protein complexes and chlorophyll a.  相似文献   

18.
Sakano K 《Plant physiology》1990,93(2):479-483
Upon absorption of phosphate, cultured cells of Catharanthus roseus (L.) G. Don caused a rapid alkalinization of the medium in which they were suspended. The alkalinization continued until the added phosphate was completely exhausted from the medium, at which time the pH of the medium started to drop sharply toward the original pH value. Phosphate exposure caused the pH of the medium to increase from pH 3.5 to values as high as 5.8, while the rate of phosphate uptake was constant throughout (10-17 micromoles per hour per gram fresh weight). This indicates that no apparent pH optimum exists for the phosphate uptake by the cultured cells. The amount of protons cotransported with phosphate was calculated from the observed pH change up to the maximum alkalinization and the titration curve of the cell suspension. Proton/phosphate transport stoichiometry ranged from less than unity to 4 according to the amount of phosphate applied. At low phosphate doses, the stoichiometries were close to 4, while at high phosphate doses, smaller stoichiometries were observed. This suggests that, at high phosphate doses, activation of the proton pump is induced by the longer lasting proton influx acidifying the cytoplasm. The increased H+ efflux due to the proton pump could partially compensate protons taken up via the proton-phosphate cotransport system. Thus, the H+/H2PO4 stoichiometry of the cotransport is most likely to be 4.  相似文献   

19.
Arsenate and arsenite sensitivity and arsenate influx tests were conducted for two rice cultivars of different arsenic sensitivity, Azucena and Bala. These were to establish if the mechanism of reduced arsenic sensitivity is achieved through an altered phosphate uptake system, as shown for Holcus lanatus. High phosphate treatments (≥50 μM) provided protection against both arsenate and arsenite. Unlike the H. lanatus tolerance mechanism, in the less sensitive cultivar Bala, arsenate influx did not decrease with phosphate treatment and phosphate transporters appeared to be constitutively upregulated; Vmax for arsenate influx remain similar when Bala was grown in the presence or absence of phosphate (Vmax - 0.90 and 0.63 nmol g−1 f.wt min−1 respectively). Although mean Km appear different, Bala did not show lower affinity to arsenate than Azucena in the absence of phosphate (Km - Azucena, 0.30 mM and Bala, 0.18), while in phosphate treatment, Bala arsenate affinity was half that observed for Azucena (Km - Azucena, 0.14 and Bala, 0.36 mM). These were low compared to a 4 and 6 fold decrease seen for similar studies on H. lanatus in the absence and presence of phosphate. Phosphate-induced arsenic protection was observed but the mechanism does not resemble that of H. lanatus. Alternative mechanisms were discussed.  相似文献   

20.
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 · 107 M?1 · s?1 at low ionic strength (I = 223 mM, 10°C). The value of this rate constant decreases to 1.8 · 105 M?1 · s?1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 · 105 M?1 · s?1 and k?1 = 3.3 · 105 M?1 · s?1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10°C). The ‘equilibrium’ constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ai cytochrome c3+1 + cytochrome c2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号