首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1. Reduced ubiquinones-1, -2, -3, -4 and -6 were used as substrates for ubiquinol: cytochrome c oxidoreductase.2. The portion of antimycin-sensitive activity depends on the concentration of ubiquinol and on the pH. Only reduced ubiquinone-2 and reduced ubiquinone-3 show high activities the main part of which is sensitive to antimycin.3. The antimycin effect curve of ubiquinol: cytochrome c oxidoreductase is linear in shape with reduced ubiquinone-2 as substrate but sigmoidal with reduced ubiquinone-3 and succinate. Ubiquinol-3: cytochrome c oxidoreductase activity contains a portion scarcely affected by antimycin. About 300 pmoles of antimycin per mg protein, enough to inhibit succinate, NADH- and reduced ubiquinone-2:cytochrome c oxidoreductase almost totally, affect ubiquinol-3: cytochrome c oxidoreductase to only about 80% and another 300 pmoles of antimycin are needed for the next 10% of inhibition.4. The activities of succinate- and NADH: cytochrome c oxidoreductase are stimulated by ubiquinones-2 and -3. The shapes of the inhibition curves by antimycin of the stimulated activities are sigmoidal. About twice the amount of antimycin is necessary to inhibit stimulated activities to the same value as the unstimulated.5. The non-ionic detergent Lubrol WX is not effective in stimulating enzymatic activities. However, in the presence of 0.6 M sorbitol, it converts the linear antimycin effect curve with reduced ubiquinone-2 as substrate, into sigmoidal.6. NADH- and succinate: cytochrome c oxidoreductase activities and reduced ubiquinone-2 and reduced ubiquinone-3: cytochrome c oxidoreductase activities become deactivated with increasing concentrations of the non-ionic detergent Lubrol WX. The activity with reduced ubiquinone-2 as substrate is less resistant to the action of the detergent than with reduced ubiquinone-3. The b-cytochromes do not become CO-reactive by this treatment.7. Deoxycholate in low concentrations does not stimulate ubiquinol: cytochrome c oxidoreductase activity. It converts the inhibition curve by antimycin from sigmoidal to linear with increasing concentrations of the detergent with all substrates tested. The amount of antimycin needed for 90% inhibition of reduced ubiquinone activities is about the same under these conditions as with succinate, NADH or reduced ubiquinol in untreated particles.8. The results are discussed with respect to the theories of the electron transport mechanism and of the inhibition by antimycin of the electron flow through the bc1-segment of the respiratory chain in beef heart.  相似文献   

2.
Studies were made on the mechanism of respiration in Fasciola hepatica (Trematoda). Respiration was found to be dependent on the oxygen tension. The respiratory enzyme systems, NADH-cytochrome c oxidoreductase (EC 1.6.2.1), succinate-cytochrome c oxidoreductase (EC 1.3.99.1) NADH oxidase and cytochrome c-oxygen oxidoreductase (EC 1.9.3.1) were detected in a mitochondrial preparation, the NADH oxidase activity being markedly stimulated by addition of mammalian cytochrome c. Amytal and rotenone inhibited NADH oxidase activity. Antimycin A inhibited succinoxidase activity only at relatively high concentrations. Azide was inhibitory at high concentrations. However, cyanide was found to stimulate respiration. Hydrogen peroxide was found to be an end product of respiration in F. hepatica.  相似文献   

3.
Umezurike G. M. and Anya A. O. 1980. Carbohydrate energy metabolism in Fasciola gigantica (Trematoda). International Journal for Parasitology10: 175–180. Adult Fasciola gigantica contained 4.49 ± 0.06 % (mean ± S.D.) wet weight glycogen. Tissue homogenates contained high levels of malate dehydrogenase (MDH), NAD-linked malic enzyme (ME), Phosphoenolpyruvate carboxykinase (PEPCK) and lactate dehydrogenase (LDH). MDH, PEPCK and ME activities appeared to be localized in both cytosolic and mitoehondrial fractions, fumarase activity appeared to be predominantly mitochondrial whereas LDH and pyruvate kinase activities were cytosolic in distribution. Polyacrylamide gel electrophoresis revealed the predominance of LDH-1, LDH-2 and LDH-3 but only traces of LDH-4 and LDH-5 isoenzymes in the crude cytosolic fraction. LDH activity in the crude sample was inhibited by excess substrate (pyruvate). The mitoehondrial system showed NADH -cytochrome c oxidoreductase, succinate-cytochrome c oxidoreductase, NADH oxidase and some cytochrome c-oxygen oxidoreductase activities. Under anaerobic conditions, NADH-fumarate oxidoreductase and succinate-NAD + oxidoreductase activities of mitoehondrial preparations were stimulated in the presence of ADP and ATP respectively. Isolated mitochondria contained rhodoquinone and no ubiquinone, and isolated rhodoquinone was readily reduced by succinate in the presence of submitochondrial particles. Hydrogen peroxide was produced by submitochondrial particles in the presence or absence of KCN or in the presence of fumarate.  相似文献   

4.
The effect in vivo of hexavalent chromium (Cr6+) on the respiratory electron transport activity and production of superoxide (O2) radicals, was studied in submitochondrial particles (SMPs) prepared from mitochondria isolated from roots of 15‐day‐old pea (Pisum sativum L. cv. Azad) plants exposed to environmentally relevant (20 µm ) and acute (200 µm ) concentrations of chromium for 7 d. A concentration ‐dependent inactivation of electron transport activity from both NADH to O2 (NADH oxidase) and succinate to O2 (succinate oxidase) was observed. The electron transport activity was more sensitive to Cr6+ with NADH as the substrate than with succinate as the substrate. Although NADH dehydrogenase and succinate dehydrogenase were less affected, NADH: cytochrome c oxidoreductase and succinate: cytochrome c oxidoreductase activities were prominently affected by Cr6+. Cytochrome oxidase was the most susceptible complex of mitochondrial membranes to Cr6+, exhibiting maximal inactivation of activity both at 20 and 200 µm chromium concentrations. Cr6+ increased the generation of O2 radicals. This effect was more evident at 200 than at 20 µm . A significant increase in lipid peroxidation of mitochondrial membranes at 200 µm Cr6+ was the physiological impact of the metal‐induced enhanced generation of O2 radicals. An increase in superoxide dismutase (SOD) activity at 20 µm Cr6+ towards enhanced production of O2 radicals appeared to be a defence response in pea root mitochondria that, however, could not be sustained at 200 µm Cr6+. The results obtained concerning inactivation of mitochondrial electron transport and subsequent enhancement in the generation of O2 radicals suggest that root mitochondria are an important target of Cr6+‐induced oxidative stress in pea.  相似文献   

5.
Pyrrolnitrin has been reported to inhibit Bacillus megaterium primarily by forming complexes with phospholipids and to block electron transfer of Saccharomyces cerevisiae between succinate or reduced nicotinamide adenine dinucleotide (NADH) and coenzyme Q. We found that pyrrolnitrin inhibited respiration of conidia of Microsporum gypseum. In mitochondrial preparations, pyrrolnitrin strongly inhibited respiration and the rotenone-sensitive NADH-cytochrome c reductase. The rotenone-insensitive NADH-cytochrome c reductase, the succinate-cytochrome c reductase, and the reduction of dichlorophenolindophenol by either NADH or succinate were inhibited to a lesser extent. However, the activity of cytochrome oxidase was not affected by pyrrolnitrin. The extent of reduction of flavoproteins by NADH and succinate, measured at 465 - 510 nm, was unaltered; however, the reduction of cytochrome b, measured at 560 - 575 nm, was partially inhibited by pyrrolnitrin. The level of totally reduced cytochrome b was restored with antimycin A. We, therefore, concluded that the primary site of action of this antifungal antibiotic is to block electron transfer between the flavoprotein of the NADH-dehydrogenase and cytochrome b segment of the respiratory chain of M. gypseum.  相似文献   

6.
Incubation of submitochondrial particles with relatively low concentrations of ethanol (20–100 mm) or acetaldehyde (1–10 mm) produces alterations in the electron paramagnetic resonance spectra of the iron-sulfur centers in the NADH dehydrogenase segments of the respiratory chain. The iron-sulfur centers in the NADH dehydrogenase region are most sensitive to both ethanol and acetaldehyde, in comparison to the iron-sulfur centers in succinate dehydrogenase and the cytochrome b-c region. Centers N-3, 4, N-5, 6 and N-1b are affected after relatively short incubation periods (3–30 min) while center N-2 shows considerable sensitivity over somewhat longer incubations (20–90 min). The most ethanol-sensitive center in the succinate dehydrogenase region of the respiratory chain is high potential iron-sulfur protein-type center S-3. Potentiometric analysis shows that these alterations are not due to simple changes in the redox state caused by addition of dissolved oxygen. Changes in the electron paramagnetic resonance spectra can be correlated with decreased rates of oxidation of NADH and, to a lesser extent, succinate in both ethanol- and acetaldehyde-treated submitochondrial particles.  相似文献   

7.
Action of halothane upon mitochondrial respiration   总被引:6,自引:0,他引:6  
The inhibitory action of halothane upon respiration was studied with rat liver mitochondria (RLM3), beef heart mitochondria (HBHM), and electron-transport particles (ETP). With intact mitochondrial preparations the oxidation of NADH-linked substrates but not of succinate was markedly suppressed by low concentrations of halothane (<2 mm as determined by gas-liquid chromatography). This inhibitory action of halothane was completely reversible. In contrast, a number of other mitochondrial processes were found to be sensitive in an irreversible manner at higher concentrations of the anesthetic. Likewise, the oxidation of added NADH by HBHM, ETP, and detergent-disrupted RLM was found to be sensitive in a reversible manner to low concentrations of halothane. The energy-dependent transfer of electrons from succinate to NAD by ETPH was also sensitive to halothane. On the other hand, the NADH-ferricyanide reductase and the succinic oxidase activities of ETP and the NADH-cytochrome c reductase activity of microsomes were all insensitive to halothane. The site of inhibition by halothane appears to be in the vicinity of the rotenone-sensitive site of complex I (NADH-CoQ reductase). A number of other general anesthetics inhibited respiration at or near the same site as halothane.  相似文献   

8.
Functional inactivation of the mitochondrial small heat-shock protein (lmw Hsp) in submitochondrial vesicles using protein-specific antibodies indicated that this protein protects NADH:ubiquinone oxidoreductase (complex I), and consequently electron transport from complex I to cytochrome c:O2 oxidoreductase (complex IV). Lmw Hsp function completely accounted for heat acclimation of complex I electron transport in pre-heat-stressed plants. Addition of purified lmw Hsp to submitochondrial vesicles lacking this Hsp increased complex I electron transport rates 100% in submitochondrial vesicles assayed at high temperatures. These results indicate that production of the mitochondrial lmw Hsp is an important adaptation to heat stress in plants.  相似文献   

9.
Summary  Rubroskyrin, a modified bisanthraquinone pigment from an yellow rice moldPenicillium islandicum Sopp, was examined for its redox-interaction with the mitochondrial respiratory chain by using rat liver submitochondrial particles (SMP) and was compared with luteoskyrin and rugulosin. Rubroskyrin showed a redox interaction with the NAD-linked respiratory chain of SMP, promoting NADH oxidase in the presence of rotenone, a specific inhibitor to coupling site I of the respiratory chain. Rubroskyrin-mediated NADH oxidase was not inhibited by antimycin A and cyanide, inhibitors to coupling sites II and III, respectively, indicating a generation of an electron transport shunt from a rotenone-insensitive site of NADH dehydrogenase (complex I) to dissolved oxygen. An electrontransport shunt to cytochromec oxidase from complex I was also observed in the experiment with cytochromec and antimycin A. Rubroskyrin did not interact with succinate-linked respiratory chain. Such enzymatic redox response which generates electron transport shunt was not detected for luteoskyrin and rugulosin in the present study.  相似文献   

10.
Abstract

The polyphenolic structure common to flavonoids enables them to donate electrons and exert anti-oxidant activity. Since the mitochondrial electron transport chain consists of a series of redox inter-mediates, the effect of flavonoids in a complex mixture of polyphenols, as well as related pure flavonoids, was evaluated on the rat liver mitochondrial electron transport chain. A French maritime pine bark extract (PBE), a complex mixture of polyphenols and related pure flavonoids, was able to reduce cytochrome c reversibly, possibly by donation of electrons to the iron of the heme group; the donated electrons can be utilized by cytochrome c oxidase. Among single flavonoids tested, (-)-epicatechin gallate had the greatest ability to reduce cytochrome c. In addition, PBE competitively inhibited electron chain activity in both whole mitochondria and submitochondrial particles. A 3.5-fold increase in the apparent Km value for succinate was calculated from reciprocal plots. Among the flavonoids tested, taxifolin and (-)-epicatechin gallate showed minor inhibitory effects, while (±)-catechin and (+)-epicatechin were ineffective. Activities of NADH-ubiquinone, succinate-ubiquinone, and ubiquinol-cytochrome c reductases were inhibited by low concentrations of PBE to a similar extent. However, inhibition of cytochrome c oxidase activity required 4-fold higher PBE concen-trations. These results suggest that flavonoids reduce cytochrome c and that PBE inhibits electron transport chain activity mainly through NADH-ubiquinone, succinate-ubiquinone, and ubiquinol-cytochrome c reductases.  相似文献   

11.
Iron-sulfur clusters present in rat liver submitochondrial particles were characterized by ESR at temperatures between 30 and 5.5 K combined with potentiometric titrations. The spectral and thermodynamic characteristics of the iron-sulfur clusters were generally similar to those previously reported for pigeon or bovine heart submitochondrial particles. Clusters N-1a, N-1b, N-2, N-3 and N-4 of NADH dehydrogenase had midpoint oxidation-reduction potentials at pH 7.5 of ?425, ?265, ?85, ?240 and ?260 mV, respectively. Clusters S-1 and S-3 of succinate dehydrogenase had midpoint potentials of 0 and +65 mV, respectively. The iron-sulfur cluster of electron-transferring flavoprotein-ubiquinone oxidoreductase exhibited the gz signal at g = 2.08 and had a midpoint potential of +30 mV. This signal was relatively prominent in rat liver compared to pigeon or bovine heart.Submitochondrial particles from rats chronically treated with ethanol (36% of total calories, 40 days) showed decreases of 20–30% in amplitudes of signals due to clusters N-2, N-3 and N-4 compared to those from pair-fed control rats. Signals from clusters N-1b, S-1, S-3 and electron-transferring flavoprotein-ubiquinone oxidoreductase were unaffected. Microwave power-saturation behavior was similar for both submitochondrial particle preparations, suggesting that the lower signal amplitudes reflected a lower content of these particular clusters. NADH dehydrogenase activity was significantly decreased (46%), whilst succinate dehydrogenase activity was elevated (25%), following chronic ethanol consumption. The results indicate that chronic ethanol treatment leads to an alteration of the structure and function of the NADH dehydrogenase segment of the electron transfer chain. This alteration is one of the factors contributing to the lower respiration rates observed following chronic ethanol administration.  相似文献   

12.
Lauryl sulfate inhibits the Deltamu;(H)(+)-dependent reverse electron transfer reactions catalyzed by NADH:ubiquinone oxidoreductase (Complex I) in coupled bovine heart submitochondrial particles and in vesicles derived from Paracoccus denitrificans. The inhibitor affects neither NADH oxidase (coupled or uncoupled) nor NADH:ferricyanide reductase and succinate oxidase activities at the concentrations that selectively prevent the succinate-supported, rotenone-sensitive NAD(+) or ferricyanide reduction. Possible uncoupling effects of the inhibitor are ruled out: in contrast to oligomycin and gramicidin, which increases and decreases the rate of the reverse electron transfer, respectively, in parallel with their coupling and uncoupling effects, lauryl sulfate does not affect the respiratory control ratio. A mechanistic model for the unidirectional effect of lauryl sulfate on the Complex I catalyzed oxidoreduction is proposed.  相似文献   

13.
Accumulation of oxidative damage has been implicated to be a major causative factor in the decline in physiological functions that occur during the aging process. The mitochondrial respiratory chain is a powerful source of reactive oxygen species (ROS), considered as the pathogenic agent of many diseases and aging. L-malate, a tricarboxylic acid cycle intermediate, plays an important role in transporting NADH from cytosol to mitochondria for energy production. Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. In the present study we focused on the effect of L-malate on the activities of electron transport chain in young and aged rats. We found that mitochondrial membrane potential (MMP) and the activities of succinate dehydrogenase, NADH-cytochrome c oxidoreductase and cytochrome c oxidase in liver of aged rats were significantly decreased when compared to young control rats. Supplementation of L-malate to aged rats for 30 days slightly increased MMP and improved the activities of NADH-dehydrogenase, NADH-cytochrome c oxidoreductase and cytochrome c oxidase in liver of aged rats when compared with aged control rats. In young rats, L-malate administration increased only the activity of NADH-dehydrogenase. Our result suggested that L-malate could improve the activities of electron transport chain enzymes in aged rats.  相似文献   

14.
The effects of Q metabolites (Q acid-I, Q acid-II) and related compounds (dihydro Q acid-I, dehydro Q acid-II, QS-n, and their esters) on mitochondrial succinate and NADH oxidase systems were investigated. The activity restoring succinate oxidation in acetone-treated beef heart mitochondria was found to decrease with descending order of carbon number (n) of the side chain of the Q metabolites; activity was restored with Q acid-I (n = 7) to one-third as much as that with Q-7 and Q-10, but Q acid-II (n = 5) did not restore any activity. Of the related compounds with a carboxyalkyl group (QS-n), QS-16-QS-18 (n = 16–18) were found to be most active, and their activities were also correlated with n. The relationship between the restoration of activity and the partition coefficient was considered. NADH oxidation in pentane-treated beef heart submitochondrial particles could be restored with esters of low molecular weight quinones to the same extent as with Q-10, but not with the metabolites.  相似文献   

15.
The effects of temperature upon the respiratory pathways of Arum maculatum mitochondria have been studied. The alternate oxidase sustained a greater proportion of the total respiration at low temperatures than at higher temperatures. Arrhenius plots of respiratory activities show two discontinuities, one at 14°C and one at 21°C. The lower temperature discontinuity was associated with electron transport from succinate dehydrogenase to the alternative oxidase, enzymes that face the inner side of the membrane while the higher temperature discontinuity was associated with electron transport from the external NADH dehydrogenase to cytochrome c oxidase, which face the outer side of the membrane. Both discontinuities resulted in a decrease in the activation energy for electron transport on one side of the membrane. Arrhenius plots of transmembrane electron transport showed discontinuities at both 14° and 21°C but the upper discontinuity resulted in an increase in the activation energy. Activation energies determined for the respiratory activities show that above 21°C the exogenous NADH-cytochrome pathway and the succinate-alternative oxidase pathway were lower than those for the NADH-alternative pathway or the succinate cytochrome pathway.  相似文献   

16.
Boczoń K. and Michejda J. W. 1978. Electron transport in mitochondria of Trichinella spiralis larvae. International Journal for Parasitology8: 507–513. A mitochondrial fraction was prepared from Trichinella spiralis larvae. The mitochondria possess considerable activities of NADH-cytochrome c oxidoreductase, succinate-cytochrome c oxidoreductase and cytochrome c oxidase, in approximate ratio of 0.4: 0.4: 1. NADH-cytochrome c oxidoreductase was only partially sensitive to rotenone. Room temperature cytochrome spectra were examined. From the absorption peaks at 551, 561 and 603 nm the concentrations of cytochrome c, b and aa3 were calculated. Electron micrographs of mitochondria of Trichinella spiralis larvae revealed the orthodox configuration in situ and the condensed one in the cell-free preparation. The results suggest that the conventional respiratory chain may operate in Trichinella spiralis larvae.  相似文献   

17.
The problem of the resolution and reconstitution of the inner mitochondrial membrane has been approached at three levels. (1) Starting with phosphorylating submitochondrial particles, a "resolution from without" can be achieved by stripping of surface components. The most extensive resolution was recently obtained with the aid of silicotungstate. Such particles require for oxidative phosphorylation the addition of several coupling factors as well as succinate dehydrogenase. (2) Starting with submitochondrial particles that have been degraded by trypsin and urea a resolution of the inner membrane proper containing an ATPase has been achieved. These experiments show that at least five components are required for the reconstitution of an oligomycin-sensitive ATPase: a particulate component, F 1, Mg++, phospholipids, and Fc. Morphologically, the reconstituted ATPase preparations resemble submitochondrial particles. (3) Starting with intact mitochondria individual components of the oxidation chain have been separated from each other. The following components were required for the reconstitution of succinoxidase: succinate dehydrogenase, cytochrome b\, cytochrome c 1, cytochrome c, cytochrome oxidase, phospholipids and Q 10. The reconstituted complex had properties similar to those of phosphorylating submitochondrial particles; i.e., the oxidation of succinate by molecular oxygen was highly sensitive to antimycin.  相似文献   

18.
A novel procedure for isolating totally inverted preparations of submitochondrial particles by sonication of beef heart mitochondria is described. The procedure involves only differential centrifugation in 0.25 M sucrose containing 0.15 M KCl. The submitochondrial particles have 96% of their cytoplasmic face cytochromec-binding sites sequestered within the particles. Mild sonication exposes cytochromec-binding sites to the medium. The oligomycin-sensitive ATPase of sonic-derived submitochondrial particles, like that of electron transport particles, is inhibited 98% by exogenous isolated ATPase inhibitor protein. NADH oxidase activity in these particles is inhibited by oligomycin. The respiratory control index (uncoupled rate/oligomycin-inhibited rate) is approximately 3.4 and can be increased by washing the particles with medium containing bovine serum albumin.  相似文献   

19.
Appropriate combination of specific inhibitors of electron transport in the cytochrome bc1 segment of the respiratory chain of Saccharomyces cerevisiae allows the rapid resolution of three spectral forms of mitochondrial cytochrome b. (1) Addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to aerobic yeast submitochondrial particles preincubated with cyanide and mucidin in the presence of NADH reveals cytochrome b-561.5. (2) Addition of funiculosin to aerobic yeast submitochondrial particles preincubated with cyanide, mucidin and n-heptylhydroxyquinolineN-oxide in the presence of NADH reveals cytochrome b-558 independently of cytochrome b-561.5 and cytochrome b-565. (3) Specific resolution of cytochrome b-565 can be obtained either by addition of mucidin to aerobic submitochondrial particles preincubated with cyanide, DCMU and NADH, or by addition of antimycin plus an oxygen pulse to NADH-reduced particles, preincubated with cyanide, in the presence of ascorbate plus TMPD, or by addition of antimycin A in the presence of oxidized TMPD to aerobically NADH-reduced particles.  相似文献   

20.
We investigated the changes of the inner-membrane components and the electron-transfer activities of bovine heart submitochondrial particles induced by the lipid peroxidation supported by NADPH in the presence of ADP-Fe3+. Most of the polyunsaturated fatty acids were lost as a result of the peroxidation, and phospholipids were changed to polar species. Ubiquinone was also modified to polar substances as the peroxidation proceeded. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis showed the disappearance of 27000-Mr and 30000-Mr proteins and the appearance of highly polymerized substances. Flavins and cytochromes were not diminished, but the respiratory activity was lost. The reactions of NADH oxidase and NADH-cytochrome c reductase were most sensitive to the peroxidation, followed by those of succinate oxidase and succinate-cytochrome c reductase. Succinate dehydrogenase and duroquinol-cytochrome c reductase were inactivated by more extensive peroxidation, but cytochrome c oxidase was only partially inactivated. NADH-ferricyanide reductase was not inactivated. The pattern of the inactivation indicated that the lipid peroxidation affected the electron transport intensively between NADH dehydrogenase and ubiquinone, and moderately at the succinate dehydrogenase step and between ubiquinone and cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号