首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Although insulin and exercise cause dramatic changes in physiological parameters, the impact of exercise on neural and hemodynamic responses to insulin administration has not been described. In a study of the effects of a single bout of exercise on blood pressure (BP), muscle sympathetic nerve activity (MSNA), and forearm blood flow (FBF) responses to insulin infusion during the postexercise period, 11 healthy men underwent, in a random order, two hyperinsulinemic euglycemic clamps performed after 45 min of 1) bicycle exercise (50% peak O(2) uptake, Exercise session) and 2) seated rest (Control session). Data were analyzed during baseline and steady-state periods. Although insulin levels and insulin sensitivity were similar, baseline plasma glucose levels were significantly lower in the Exercise than in the Control session. Mean BP was significantly lower (3%) and FBF was higher (27%) in the Exercise session. Exercise increased insulin-induced MSNA enhancement (84%) without changing FBF and BP responses to hyperinsulinemia. In conclusion, a single bout of exercise that does not alter insulin sensitivity exacerbates insulin-induced increase in MSNA without changing FBF and BP responses to hyperinsulinemia.  相似文献   

2.
The aim of this study was to determine whether estrogen therapy enhances postexercise muscle sympathetic nerve activity (MSNA) decrease and vasodilation, resulting in a greater postexercise hypotension. Eighteen postmenopausal women received oral estrogen therapy (ET; n=9, 1 mg/day) or placebo (n=9) for 6 mo. They then participated in one 45-min exercise session (cycle ergometer at 50% of oxygen uptake peak) and one 45-min control session (seated rest) in random order. Blood pressure (BP, oscillometry), heart rate (HR), MSNA (microneurography), forearm blood flow (FBF, plethysmography), and forearm vascular resistance (FVR) were measured 60 min later. FVR was calculated. Data were analyzed using a two-way ANOVA. Although postexercise physiological responses were unaltered, HR was significantly lower in the ET group than in the placebo group (59+/-2 vs. 71+/-2 beats/min, P<0.01). In both groups, exercise produced significant decreases in systolic BP (145+/-3 vs. 154+/-3 mmHg, P=0.01), diastolic BP (71+/-3 vs. 75+/-2 mmHg, P=0.04), mean BP (89+/-2 vs. 93+/-2 mmHg, P=0.02), MSNA (29+/-2 vs. 35+/-1 bursts/min, P<0.01), and FVR (33+/-4 vs. 55+/-10 units, P=0.01), whereas it increased FBF (2.7+/-0.4 vs. 1.6+/-0.2 ml x min(-1) x 100 ml(-1), P=0.02) and did not change HR (64+/-2 vs. 65+/-2 beats/min, P=0.3). Although ET did not change postexercise BP, HR, MSNA, FBF, or FVR responses, it reduced absolute HR values at baseline and after exercise.  相似文献   

3.
Peripheral chemoreflex inhibition with hyperoxia decreases sympathetic nerve traffic to muscle circulation [muscle sympathetic nerve activity (MSNA)]. Hyperoxia also decreases lactate production during exercise. However, hyperoxia markedly increases the activation of sensory endings in skeletal muscle in animal studies. We tested the hypothesis that hyperoxia increases the MSNA and mean blood pressure (MBP) responses to isometric exercise. The effects of breathing 21% and 100% oxygen at rest and during isometric handgrip at 30% of maximal voluntary contraction on MSNA, heart rate (HR), MBP, blood lactate (BL), and arterial O2 saturation (SaO2) were determined in 12 healthy men. The isometric handgrips were followed by 3 min of postexercise circulatory arrest (PE-CA) to allow metaboreflex activation in the absence of other reflex mechanisms. Hyperoxia lowered resting MSNA, HR, MBP, and BL but increased Sa(O2) compared with normoxia (all P < 0.05). MSNA and MBP increased more when exercise was performed in hyperoxia than in normoxia (MSNA: hyperoxic exercise, 255 +/- 100% vs. normoxic exercise, 211 +/- 80%, P = 0.04; and MBP: hyperoxic exercise, 33 +/- 9 mmHg vs. normoxic exercise, 26 +/- 10 mmHg, P = 0.03). During PE-CA, MSNA and MBP remained elevated (both P < 0.05) and to a larger extent during hyperoxia than normoxia (P < 0.05). Hyperoxia enhances the sympathetic and blood pressure (BP) reactivity to metaboreflex activation. This is due to an increase in metaboreflex sensitivity by hyperoxia that overrules the sympathoinhibitory and BP lowering effects of chemoreflex inhibition. This occurs despite a reduced lactic acid production.  相似文献   

4.
Effects of acute exercise and detraining on insulin action in trained men   总被引:8,自引:0,他引:8  
Seven endurance-trained subjects [maximal O2 consumption (VO2max) 64 +/- 1 (SE) ml.min-1.kg-1] underwent sequential hyperinsulinemic euglycemic clamps on three occasions: 1) in the "habitual state" 15 h after the last training bout (C), 2) after 60 min of bicycle exercise at 72 +/- 3% of VO2max performed in the habitual state (E), and 3) 5 days after the last ordinary training session (detrained, DT). Sensitivity for insulin-mediated whole-body glucose uptake was not affected by acute exercise [insulin concentrations eliciting 50% of maximal insulin-mediated glucose uptake being 44 +/- 2 (C) vs. 46 +/- 3 (E) microU/ml] but was decreased after detraining (54 +/- 2 microU/ml, P less than 0.05) to levels comparable to those found in untrained subjects [Am. J. Physiol. 254 (Endocrinol. Metab. 17): E248-E259, 1988]. Near-maximal insulin-mediated glucose uptake (responsiveness) was higher than in untrained subjects and not influenced by acute exercise or detraining [13.4 +/- 1.2 (C), 12.2 +/- 0.9 (E), and 12.2 +/- 0.3 (DT) mg.min-1.kg-1]. Calculated by indirect calorimetry, the glucose-to-glycogen conversion was not influenced by E but was reduced during detraining (P less than 0.05) yet remained higher than previously found in untrained subjects (P less than 0.05). However, only on E days did muscle glycogen increase during insulin infusion. Glycogen synthase activity was increased on E and decreased on DT compared with C days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Previous studies suggest that prostaglandins may contribute to exercise-induced increases in muscle sympathetic nerve activity (MSNA). To test this hypothesis, MSNA was measured at rest and during exercise before and after oral administration of ketoprofen, a cyclooxygenase inhibitor, or placebo. Twenty-one subjects completed two bouts of graded dynamic and isometric handgrip to fatigue. Each exercise bout was followed by 2 min of postexercise muscle ischemia. The second exercise bouts were performed after 60 min of rest in which 11 subjects were given ketoprofen (300 mg) and 10 subjects received a placebo. Ketoprofen significantly lowered plasma thromboxane B(2) in the drug group (from 36 +/- 6 to 22 +/- 3 pg/ml, P < 0.04), whereas thromboxane B(2) in the placebo group increased from 40 +/- 5 to 61 +/- 9 pg/ml from trial 1 to trial 2 (P < 0.008). Ketoprofen and placebo did not change sympathetic and cardiovascular responses to dynamic handgrip, isometric handgrip, and postexercise muscle ischemia. There was no relationship between thromboxane B(2) concentrations and MSNA or arterial pressure responses during both exercise modes. The data indicate that physiological increases or decreases in prostaglandins do not alter exercise-induced increases in MSNA and arterial pressure in humans. These findings suggest that contraction-induced metabolites other than prostaglandins mediate MSNA responses to exercise in humans.  相似文献   

6.
Healthy subjects exposed to 20 min of hypoxia increase ventilation and muscle sympathetic nerve activity (MSNA). After return to normoxia, although ventilation returns to baseline, MSNA remains elevated for up to an hour. Because forearm vascular resistance is not elevated after hypoxic exposure, we speculated that the increased MSNA might be a compensatory response to sustained release of endogenous vasodilators. We studied the effect of isocapnic hypoxia (mean arterial oxygen saturation 81.6 +/- 4.1%, end-tidal Pco2 44.7 +/- 6.3 Torr) on plethysmographic forearm blood flow (FBF) in eight healthy volunteers while infusing intra-arterial phentolamine to block local alpha-receptors. The dominant arm served as control. Forearm arterial vascular resistance (FVR) was calculated as the mean arterial pressure (MAP)-to-FBF ratio. MAP, heart rate (HR), and FVR were reported at 5-min intervals at baseline, then while infusing phentolamine during room air, isocapnic hypoxia, and recovery. Despite increases in HR during hypoxia, there was no change in MAP throughout the study. By design, FVR decreased during phentolamine infusion. Hypoxia further decreased FVR in both forearms. With continued phentolamine infusion, FVR after termination of the exposure (17.47 +/- 6.3 mmHg x min x ml(-1) x 100 ml of tissue) remained lower than preexposure baseline value (23.05 +/- 8.51 mmHg x min x ml(-1) x 100 ml of tissue; P < 0.05). We conclude that, unmasked by phentolamine, the vasodilation occurring during hypoxia persists for at least 30 min after the stimulus. This vasodilation may contribute to the sustained MSNA rise observed after hypoxia.  相似文献   

7.
Exercise-induced hypoglycemia can occur within hours after exercise in type 1 diabetes mellitus (T1DM) patients. This study tested the hypothesis that an acute exercise bout causes (within hours) blunted autonomic and metabolic responses to subsequent hypoglycemia in patients with T1DM. Twelve T1DM patients (3 W/9 M) were studied during a single-step, 2-h hyperinsulinemic (572 +/- 4 pmol/l) hypoglycemic (2.8 +/- 0.1 mmol/l) clamp 2 h after either a hyperinsulinemic euglycemic (AM EUG) or hypoglycemic clamp (AM HYPO) or after sitting in a chair with basal insulin infusion (AM CON) or 90 min of moderate-intensity exercise (50% Vo(2 max), AM EX). Both AM HYPO and AM EX significantly blunted epinephrine responses and muscle sympathetic nerve activity responses to subsequent hypoglycemia compared with both control groups. Endogenous glucose production was significantly lower and the exogenous glucose infusion rate needed to maintain the hypoglycemic level was significantly greater during subsequent hypoglycemia in AM EX vs. CON. Rate of glucose disposal (Rd) was significantly reduced following AM HYPO. In summary, within 2.5 h, both moderate-intensity AM EX and AM HYPO blunted key autonomic counterregulatory responses. Despite this, glucose Rd was reduced during afternoon hypoglycemia following morning hypoglycemia, indicating posthypoglycemic insulin resistance. After morning exercise, endogenous glucose production was blunted, but glucose Rd was maintained during afternoon hypoglycemia, thereby indicating reduced metabolic defenses against hypoglycemia. These data suggest that exercise-induced counterregulatory failure can occur very rapidly, increasing the risk for hypoglycemia in T1DM within hours.  相似文献   

8.
Blood lipids may detrimentally affect autonomic and circulatory control. We tested the hypotheses that acute elevations in free fatty acids and triglycerides (acute hyperlipidemia) impair baroreflex control of cardiac period [cardiovagal baroreflex sensitivity (BRS)] and muscle sympathetic nerve activity (MSNA: sympathetic BRS), increase MSNA at rest, and augment physiological responses to exercise. Eighteen young adults were examined in this randomized, double-blinded, and placebo-controlled study. BRS was determined using the modified Oxford technique before (pre) and 60 min (post) after initiating infusion of Intralipid (0.8 ml x m(-2) x min(-1)) and heparin (1,000 U/h) (experimental; n = 12) to induce acute hyperlipidemia, or saline (0.8 ml x m(-2) x min(-1)) and heparin (1,000 U/h) (control; n = 6). Responses to isometric handgrip to fatigue (IHG) were also determined. Blood pressure increased more (P < 0.05) in experimental than control subjects during the infusion. MSNA at rest (14 +/- 2 vs. 11 +/- 1 bursts/min), cardiovagal (19.8 +/- 1.8 vs. 19.1 +/- 2.4 ms/mmHg pre and post, respectively) and sympathetic BRS (-5.5 +/- 0.6 vs. -5.2 +/- 0.4 au x beat(-1) x mmHg(-1)), and the neural and cardiovascular responses to IHG were unchanged by acute hyperlipidemia (pre vs. post) in experimental subjects. Similarly, MSNA at rest (10 +/- 2 vs. 12 +/- 2 bursts/min), cardiovagal (22.1 +/- 4.0 vs. 21.0 +/- 4.6 ms/mmHg) and sympathetic BRS (-5.8 +/- 0.5 vs. -5.5 +/- 0.5 au x beat(-1) x mmHg(-1)), and the neural and cardiovascular responses to IHG were unchanged by the infusion in control subjects. These data do not provide experimental support for the concept that acute hyperlipidemia impairs reflex cardiovagal or sympathetic regulation in humans.  相似文献   

9.
Seven endurance-trained subjects [maximal O2 consumption (VO2max) 64 +/- 1 (SE) ml.min-1.kg-1] were subjected to three sequential hyperinsulinemic euglycemic clamps 15 h after having performed their last training session (T). Results were compared with findings in seven untrained subjects (VO2max 44 +/- 2 ml.min-1.kg-1) studied both at rest (UT) and after 60 min of bicycle exercise at 150 W (UT-ex). In T and UT-ex compared with UT, sensitivity for insulin-mediated whole-body glucose uptake was higher [insulin concentrations eliciting half-maximal glucose uptake being 44 +/- 2 (T) and 43 +/- 4 (UT-ex) vs. 52 +/- 3 microU/ml (UT), P less than 0.05] and responsiveness was higher [13.4 +/- 1.2 (T) and 10.9 +/- 0.7 (UT-ex) vs. 9.5 +/- 0.7 mg.min-1.kg-1 (UT), P less than 0.05]. Furthermore, responsiveness was higher (P less than 0.05) in T than in UT-ex. Insulin-stimulated O2 uptake and maximal glucose oxidation rate were higher in T than in UT and UT-ex. Insulin-stimulated conversion or glucose to glycogen and muscle glycogen synthase was higher in T than in UT and UT-ex. However, glycogen storage in vastus lateralis muscle was found only in UT-ex. No change in any glucoregulatory hormone or metabolite could explain the increased insulin action in trained subjects. It is concluded that physical training induces an adaptive increase in insulin responsiveness of whole-body glucose uptake, which does not reflect increased glycogen deposition in muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Stage 2 sleep is characterized by the EEG appearance of "K-complexes" and blood pressure oscillations. K-complexes may be directly related to blood pressure changes or they may reflect central sympathetic activation. We analyzed the temporal relationship among K-complexes, heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA) during sleep in eight healthy volunteers (3 men and 5 women, age 22-41 yr). Most K-complexes presented as single large complexes (56 +/- 20%), followed by single small complexes (15 +/- 14%) and as couplets or triplets (13 +/- 6%). Single large K-complexes were preceded by a baroreflex-mediated increase of MSNA in approximately one-half (55%) of the cases. Detailed analysis of HR, BP, and MSNA was possible in 63 (45%) large single K-complexes not disturbed by preceding baroreflex-related changes. Systolic and diastolic BP and MSNA increased significantly after single events (22.5 +/- 13, 5.2 +/- 2.1, and 6.5 +/- 3.0%). Mean sympathetic baroreflex latency was similar after the single large K-complexes compared with the mean value during stage 2 sleep (1,290 +/- 126 vs. 1,279 +/- 61 ms). The area under the burst was significantly increased after single large K-complexes (median 3.9 vs. 9.0 arbitrary units, P < 0.03). The results support the hypothesis that K-complexes express cortical activation leading to temporary facilitation of sympathetic outflow in a graded fashion. Their functional effects appear to be independent of baroreflex modulation of MSNA in approximately 50% of the cases.  相似文献   

11.
Sex differences in sympathetic neural control during static exercise in humans are few and the findings are inconsistent. We hypothesized women would have an attenuated vasomotor sympathetic response to static exercise, which would be further reduced during the high sex hormone [midluteal (ML)] vs. the low hormone phase [early follicular (EF)]. We measured heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA) in 11 women and 10 men during a cold pressor test (CPT) and static handgrip to fatigue with 2 min of postexercise circulatory arrest (PECA). HR increased during handgrip, reached its peak at fatigue, and was comparable between sexes. BP increased during handgrip and PECA where men had larger increases from baseline. Mean ± SD MSNA burst frequency (BF) during handgrip and PECA was lower in women (EF, P < 0.05), as was ΔMSNA-BF smaller (main effect, both P < 0.01). ΔTotal activity was higher in men at fatigue (EF: 632 ± 418 vs. ML: 598 ± 342 vs. men: 1,025 ± 416 a.u./min, P < 0.001 for EF and ML vs. men) and during PECA (EF: 354 ± 321 vs. ML: 341 ± 199 vs. men: 599 ± 327 a.u./min, P < 0.05 for EF and ML vs. men). During CPT, HR and MSNA responses were similar between sexes and hormone phases, confirming that central integration and the sympathetic efferent pathway was comparable between the sexes and across hormone phases. Women demonstrated a blunted metaboreflex, unaffected by sex hormones, which may be due to differences in muscle mass or fiber type and, therefore, metabolic stimulation of group IV afferents.  相似文献   

12.
Interactions between mechanisms governing ventilation and blood pressure (BP) are not well understood. We studied in 11 resting normal subjects the effects of sustained isocapnic hyperventilation on arterial baroreceptor sensitivity, determined as the alpha index between oscillations in systolic BP (SBP) generated by respiration and oscillations present in R-R intervals (RR) and in peripheral sympathetic nerve traffic [muscle sympathetic nerve activity (MSNA)]. Tidal volume increased from 478 +/- 24 to 1,499 +/- 84 ml and raised SBP from 118 +/- 2 to 125 +/- 3 mmHg, whereas RR decreased from 947 +/- 18 to 855 +/- 11 ms (all P < 0.0001); MSNA did not change. Hyperventilation reduced arterial baroreflex sensitivity to oscillations in SBP at both cardiac (from 13 +/- 1 to 9 +/- 1 ms/mmHg, P < 0.001) and MSNA levels (by -37 +/- 5%, P < 0.0001). Thus increased BP during hyperventilation does not elicit any reduction in either heart rate or MSNA. Baroreflex modulation of RR and MSNA in response to hyperventilation-induced BP oscillations is attenuated. Blunted baroreflex gain during hyperventilation may be a mechanism that facilitates simultaneous increases in BP, heart rate, and sympathetic activity during dynamic exercise and chemoreceptor activation.  相似文献   

13.
Plasma osmolality alters control of sympathetic activity and heart rate in animal models; however, it is unknown whether physiological increases in plasma osmolality have such influences in humans and what effect concurrent changes in central venous and/or arterial pressures may have. We tested whether physiological increases in plasma osmolality (similar to those during exercise dehydration) alter control of muscle sympathetic nerve activity (MSNA) and heart rate (HR) in humans. We studied 17 healthy young adults (7 women, 10 men) at baseline and during arterial pressure (AP) transients induced by sequential injections of nitroprusside and phenylephrine, under three conditions: control (C), after 1 ml/kg intravenous hypertonic saline (HT1), and after 2 ml/kg hypertonic saline (HT2). We continuously measured HR, AP, central venous pressure (CVP; peripherally inserted central catheter) and MSNA (peroneal microneurography) in all conditions. Plasma osmolality increased from 287 +/- 1 mosmol/kg in C to 290 +/- 1 mosmol/kg in HT1 (P < 0.05) but did not increase further in HT2 (291 +/- 1 mosmol/kg; P > 0.05 vs. C). Mean AP and CVP were similar between C and HT1, but both increased slightly in HT2. HR increased slightly but significantly during both HT1 and HT2 vs. C (P < 0.05). Sensitivity of baroreflex control of MSNA was significantly increased vs. C in HT1 [-7.59 +/- 0.97 (HT1) vs. -5.85 +/- 0.63 (C) arbitrary units (au).beat(-1).mmHg(-1); P < 0.01] but was not different in HT2 (-6.55 +/- 0.94 au.beat(-1).mmHg(-1)). We conclude that physiological changes in plasma osmolality significantly alter control of MSNA and HR in humans, and that this influence can be modified by CVP and AP.  相似文献   

14.
The amplitude of low-frequency (LF) oscillations of heart rate (HR) usually reflects the magnitude of sympathetic activity, but during some conditions, e.g., physical exercise, high sympathetic activity results in a paradoxical decrease of LF oscillations of HR. We tested the hypothesis that this phenomenon may result from a feedback inhibition of sympathetic outflow caused by circulating norepinephrine (NE). A physiological dose of NE (100 ng.kg(-1).min(-1)) was infused into eight healthy subjects, and infusion was continued after alpha-adrenergic blockade [with phentolamine (Phe)]. Muscle sympathetic nervous activity (MSNA) from the peroneal nerve, LF (0.04-0.15 Hz) and high frequency (HF; 0.15-0.40 Hz) spectral components of HR variability, and systolic blood pressure variability were analyzed at baseline, during NE infusion, and during NE infusion after Phe administration. The NE infusion increased the mean blood pressure and decreased the average HR (P < 0.01 for both). MSNA (10 +/- 2 vs. 2 +/- 1 bursts/min, P < 0.01), LF oscillations of HR (43 +/- 13 vs. 35 +/- 13 normalized units, P < 0.05), and systolic blood pressure (3.1 +/- 2.3 vs. 2.0 +/- 1.1 mmHg2, P < 0.05) decreased significantly during the NE infusion. During the NE infusion after PHE, average HR and mean blood pressure returned to baseline levels. However, MSNA (4 +/- 2 bursts/min), LF power of HR (33 +/- 9 normalized units), and systolic blood pressure variability (1.7 +/- 1.1 mmHg2) remained significantly (P < 0.05 for all) below baseline values. Baroreflex gain did not change significantly during the interventions. Elevated levels of circulating NE cause a feedback inhibition on sympathetic outflow in healthy subjects. These inhibitory effects do not seem to be mediated by pressor effects on the baroreflex loop but perhaps by a presynaptic autoregulatory feedback mechanism or some other mechanism that is not prevented by a nonselective alpha-adrenergic blockade.  相似文献   

15.
Our purpose was to test the hypothesis that hypoxia potentiates exercise-induced sympathetic neural activation in humans. In 15 young (20-30 yr) healthy subjects, lower leg muscle sympathetic nerve activity (MSNA, peroneal nerve; microneurography), venous plasma norepinephrine (PNE) concentrations, heart rate, and arterial blood pressure were measured at rest and in response to rhythmic handgrip exercise performed during normoxia or isocapnic hypoxia (inspired O2 concn of 10%). Study I (n = 7): Brief (3-4 min) hypoxia at rest did not alter MSNA, PNE, or arterial pressure but did induce tachycardia [17 +/- 3 (SE) beats/min; P less than 0.05]. During exercise at 50% of maximum, the increases in MSNA (346 +/- 81 vs. 207 +/- 14% of control), PNE (175 +/- 25 vs. 120 +/- 11% of control), and heart rate (36 +/- 2 vs. 20 +/- 2 beats/min) were greater during hypoxia than during normoxia (P less than 0.05), whereas the arterial pressure response was not different (26 +/- 4 vs. 25 +/- 4 mmHg). The increase in MSNA during hypoxic exercise also was greater than the simple sum of the separate responses to hypoxia and normoxic exercise (P less than 0.05). Study II (n = 8): In contrast to study I, during 2 min of exercise (30% max) performed under conditions of circulatory arrest and 2 min of postexercise circulatory arrest (local ischemia), the MSNA and PNE responses were similar during systemic hypoxia and normoxia. Arm ischemia without exercise had no influence on any variable during hypoxia or normoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We examined the hypothesis that the increase in inactive leg vascular resistance during forearm metaboreflex activation is dissociated from muscle sympathetic nerve activity (MSNA). MSNA (microneurography), femoral artery mean blood velocity (FAMBV, Doppler), mean arterial pressure (MAP), and heart rate (HR) were assessed during fatiguing static handgrip exercise (SHG, 2 min) followed by posthandgrip ischemia (PHI, 2 min). Whereas both MAP and MSNA increase during SHG, the transition from SHG to PHI is characterized by a transient reduction in MAP but sustained elevation in MSNA, facilitating separation of these factors in vivo. Femoral artery vascular resistance (FAVR) was calculated (MAP/MBV). MSNA increased by 59 +/- 20% above baseline during SHG (P < 0.05) and was 58 +/- 18 and 78 +/- 18% above baseline at 10 and 20 s of PHI, respectively (P < 0.05 vs. baseline). Compared with baseline, FAVR increased 51 +/- 22% during SHG (P < 0.0001) but returned to baseline levels during the first 30 s of PHI, reflecting the changes in MAP (P < 0.005) and not MSNA. It was concluded that control of leg muscle vascular resistance is sensitive to changes in arterial pressure and can be dissociated from sympathetic factors.  相似文献   

17.
There are conflicting reports for the role of endogenous opioids on sympathetic and cardiovascular responses to exercise in humans. A number of studies have utilized naloxone (an opioid-receptor antagonist) to investigate the effect of opioids during exercise. In the present study, we examined the effect of morphine (an opioid-receptor agonist) on sympathetic and cardiovascular responses at rest and during isometric handgrip (IHG). Eleven subjects performed 2 min of IHG (30% maximum) followed by 2 min of postexercise muscle ischemia (PEMI) before and after systemic infusion of morphine (0.075 mg/kg loading dose + 1 mg/h maintenance) or placebo (saline) in double-blinded experiments on separate days. Morphine increased resting muscle sympathetic nerve activity (MSNA; 17 +/- 2 to 22 +/- 2 bursts/min; P < 0.01) and increased mean arterial pressure (MAP; 87 +/- 2 to 91 +/- 2 mmHg; P < 0.02), but it decreased heart rate (HR; 61 +/- 4 to 59 +/- 3; P < 0.01). However, IHG elicited similar increases for MSNA, MAP, and HR between the control and morphine trial (drug x exercise interaction = not significant). Moreover, responses to PEMI were not different. Placebo had no effect on resting, IHG, and PEMI responses. We conclude that morphine modulates cardiovascular and sympathetic responses at rest but not during isometric exercise.  相似文献   

18.
High-fat and high-sucrose diets increase the contribution of gluconeogenesis to glucose appearance (glc R(a)) under basal conditions. They also reduce insulin suppression of glc R(a) and insulin-stimulated muscle glycogen synthesis under euglycemic, hyperinsulinemic conditions. The purpose of the present study was to determine whether these impairments influence liver and muscle glycogen synthesis under hyperglycemic, hyperinsulinemic conditions. Male rats were fed a high-sucrose, high-fat, or low-fat, starch control diet for either 1 (n = 5-7/group) or 5 wk (n = 5-6/group). Studies involved two 90-min periods. During the first, a basal period (BP), [6-3H]glucose was infused. In the second, a hyperglycemic period (HP), [6-3H]glucose, [6-14C]glucose, and unlabeled glucose were infused. Plasma glucose (BP: 111.2 +/- 1.5 mg/dl; HP: 172.3 +/- 1.5 mg/dl), insulin (BP: 2.5 +/- 0.2 ng/ml; HP: 4.9 +/- 0.3 ng/ml), and glucagon (BP: 81.8 +/- 1.6 ng/l; HP: 74.0 +/- 1.3 ng/l) concentrations were not significantly different among diet groups or with respect to time on diet. There were no significant differences among groups in the glucose infusion rate (mg x kg(-1) x min(-1)) necessary to maintain arterial glucose concentrations at approximately 170 mg/dl (pooled average: 6.4 +/- 0.8 at 1 wk; 6.4 +/- 0.7 at 5 wk), percent suppression of glc R(a) (44.4 +/- 7.8% at 1 wk; 63.2 +/- 4.3% at 5 wk), tracer-estimated net liver glycogen synthesis (7.8 +/- 1.3 microg x g liver(-1) x min(-1) at 1 wk; 10.5 +/- 2.2 microg x g liver(-1) x min(-1) at 5 wk), indirect pathway glycogen synthesis (3.7 +/- 0.9 microg x g liver(-1) x min(-1) at 1 wk; 3.4 +/- 0.9 microg x g liver(-1) x min(-1) at 5 wk), or tracer-estimated net muscle glycogenesis (1.0 +/- 0.3 microg x g muscle(-1) x min(-1) at 1 wk; 1.6 +/- 0.3 microg x g muscle(-1) x min(-1) at 5 wk). These data suggest that hyperglycemia compensates for diet-induced insulin resistance in both liver and skeletal muscle.  相似文献   

19.
The purpose of this study was to determine if abnormalities of sympathetic neural and vascular control are present in mild and/or severe heart failure (HF) and to determine the underlying afferent mechanisms. Patients with severe HF, mild HF, and age-matched controls were studied. Muscle sympathetic nerve activity (MSNA) and forearm vascular resistance (FVR) in the nonexercising arm were measured during mild and moderate static handgrip. MSNA during moderate handgrip was higher at baseline and throughout exercise in severe HF vs. mild HF (peak MSNA 67 +/- 3 vs. 54 +/- 3 bursts/min, P < 0.0001) and higher in mild HF vs. controls (33 +/- 3 bursts/min, P < 0.0001), but the change in MSNA was not different between the groups. The change in FVR was not significantly different between the three groups during static exercise. During isolation of muscle metaboreceptors, MSNA and blood pressure remained elevated in normal controls and mild HF but not in severe HF. During mild handgrip, the increase in MSNA was exaggerated in severe HF vs. controls and mild HF, in whom MSNA did not increase. In summary, the increase in MSNA during static exercise in severe HF appears to be attributable to exaggerated central command or muscle mechanoreceptor control, not muscle metaboreceptor control.  相似文献   

20.
The effect of one bout of acute exercise on impaired glucose metabolism was studied in obese (480 +/- 20 g), untrained rats, at rest (n = 10) and after 60 min of swimming (n = 5). Using the euglycemic, hyperinsulinemic (10 mU.kg-1 x min-1) clamp, glucose clearance rate increased from 7.6 +/- 0.9 at rest to 9.7 +/- 0.5 mL.kg-1 x min-1 after exercise (p < 0.05). Glucose (3-O-[14C]methylglucose) transport (GT) into epididymal adipocytes were incubated with or without insulin. In the absence of insulin, GT was 0.13 +/- 0.02 and 0.26 +/- 0.07 fmol.cell-1 x min-1 at rest and after exercise, respectively. In the presence of insulin (25-1000 microU.mL-1) GT increased at rest from 0.97 +/- 0.08 to 1.13 +/- 0.07 fmol.cell-1 x min-1, and after exercise from 1.35 +/- 0.05 to 1.87 +/- 0.11 fmol.cell-1 x min-1. GT was significantly higher after exercise compared with rest (p < 0.004). At rest, maximal insulin effect was achieved at 100 microU.mL-1, whereas with exercise, GT increased gradually with the insulin dosage. The following may be concluded: (i) the biological effect of insulin is amplified in obese rats by one bout of exercise and (ii) exercise affects GT into enlarged adipocytes by enhancing tissue responsiveness to insulin and by a cellular mechanism unrelated to the insulin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号