首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of the rat hepatic dioxin and glucocorticoid receptors to the polyanionic matrices heparin-Sepharose and DNA-cellulose in vitro and to cell nuclei in vivo was studied under various conditions. In a non-liganded and non-activated state both receptors eluted from heparin-Sepharose at a low ionic strength and were not retained on DNA-cellulose. Following ligandation and activation in vitro both receptors showed an increased affinity for heparin-Sepharose and were retained on DNA-cellulose. In analogy to these in vitro data, it was found that a high salt concentration (0.4 M KCl) was required to extract in vivo liganded dioxin receptor from purified nuclear preparations in contrast to that previously reported for non-liganded nuclear receptors. Limited proteolysis of both dioxin and glucocorticoid receptors resulted in molecular species of similar binding properties with regard to DNA-cellulose and heparin-Sepharose. We conclude that, in addition to the dioxin and glucocorticoid receptors showing considerable similarities in their physicochemical properties, they may also share a similar structural organization with regard to functional domains.  相似文献   

2.
The relationship between glucocorticoid receptor subunit dissociation and activation was investigated by DEAE-cellulose and DNA-cellulose chromatography of monomeric and multimeric [3H]triamcinolone acetonide ([3H]TA)-labeled IM-9 cell glucocorticoid receptors. Multimeric (7-8 nm) and monomeric (5-6 nm) complexes were isolated by Sephacryl S-300 chromatography. Multimeric complexes did not bind to DNA-cellulose and eluted from DEAE-cellulose at a salt concentration (0.2 M KCl) characteristic of unactivated steroid-receptor complexes. Monomeric [3H]TA-receptor complexes eluted from DEAE-cellulose at a salt concentration (20 mM KCl) characteristic of activated steroid-receptor complexes. However, only half of these complexes bound to DNA-cellulose. This proportion could not be increased by heat treatment, addition of bovine serum albumin, or incubation with RNase A. Incubation of monomeric complexes with heat inactivated cytosol resulted in a 2-fold increase in DNA-cellulose binding. Unlike receptor dissociation, this increase was not inhibited by the presence of sodium molybdate. Fractionation of heat inactivated cytosol by Sephadex G-25 chromatography demonstrated that the activity responsible for the increased DNA binding of monomeric [3H]TA-receptor complexes was macromolecular. These results are consistent with a two-step model for glucocorticoid receptor activation, in which subunit dissociation is a necessary but insufficient condition for complete activation. They also indicate that conversion of the steroid-receptor complex to the low-salt eluting form is a reflection of receptor dissociation but not necessarily acquisition of DNA-binding activity.  相似文献   

3.
The effect of leupeptin upon the transformation of the glucocorticoid receptor was tested. When the labeled receptor was treated with heat or high salt in the presence of leupeptin, the binding to DNA-cellulose decreased in a dose-dependent manner. We observed 50% inhibition with about 40 mM leupeptin. The addition of leupeptin after the transformation procedures did not inhibit the binding to DNA-cellulose. In gradient centrifugation, 40 mM leupeptin retained approximately 10S, untransformed form. Elution profiles from DEAE-cellulose showed the preservation of the peak eluted with 0.2 M KCl, corresponding to the untransformed form. These results indicate that leupeptin might have the similar effects to molybdate in regard to blocking the transformation of rat liver glucocorticoid receptor, though the effects with leupeptin were not as great as those seen with molybdate.  相似文献   

4.
The cytosolic glucocorticoid receptor of 21st gestational day rat epiphyseal chondrocytes has been evaluated. The receptor, a single class of glucocorticoid binding component approached saturation, utilizing [3H]triamcinolone acetonide ([3H]TA) as the radiolabeled ligand, at approximately 1.8-2.0 x 10(-8) M. The dissociation constant (Kd) reflected high-affinity binding, equaling 4.0 +/- 1.43 x 10(-9) M (n = 7) for [3H]TA. The concentration of receptor estimated from Scatchard analysis was approximately 250 fmol/mg cytosolic protein and when calculated on a sites/cell basis equalled 5800 sites/cell. The relative binding affinities of steroid for receptor were found to be triamcinolone acetonide greater than corticosterone greater than hydrocortisone greater than progesterone greater than medroxyprogesterone acetate much greater than 17 alpha-hydroxyprogesterone much greater than testosterone greater than 17 beta-estradiol. Cytosolic preparations activated in vitro by warming (25 degrees C for 20 min) were shown to exhibit an increased affinity for DNA-cellulose. 46% of the total specifically bound activated ligand-receptor complex was bound to DNA-cellulose. Cytosol maintained at 0-4 degrees C in the presence of 10 mM molybdate or activated in vitro in the presence of molybdate, bound to DNA-cellulose at 8 and 10% respectively. DEAE-Sephadex elution profiles of the nonactivated receptor were indicative of a single binding moiety which eluted from the columns at 0.4 M KCl. Elution profiles of activated receptor were suggestive of an activation induced receptor lability. The 0.4 M KCl peak was diminished, while a concomitant increase in the 0.2 M KCl peak was only modestly discernible. Evaluation of endogenous proteolytic activity in chondrocyte cytosol using [methyl-14C]casein as substrate show a temperature-dependent proteolytic activity with a pH optimum of 5.9-6.65. The proteolytic activity was susceptible to heat inactivation and was inhibitable, by 20 mM EDTA. The sedimentation coefficient of the nonactivated receptor was 9.3s (n = 6) on sucrose density gradients and exhibited steroid specificity and a resistance to activation induced molecular alterations when incubated in the presence of 10 mM molybdate. Receptor activation in vitro, in the absence of molybdate induced an increased receptor susceptibility to proteolytic attack and/or enhanced ligand receptor dissociation as evidenced by a diminution of the 9.3s binding form without a concomitant increase in 5s or 3s receptor fragments.  相似文献   

5.
The DNA-binding and physical properties of the rat liver cytosol glucocorticoid receptor were determined before and after Sephacryl S-300 filtration in the presence or absence of molybdate. Cytosol was prepared and labeled with [3H]triamcinolone acetonide in buffer containing molybdate. Prior to gel filtration, only 5 +/- 3% (mean +/- S.E.) of labeled receptors bound to DNA-cellulose. After gel filtration in the presence and absence of molybdate, the per cent of labeled receptors binding to DNA-cellulose was 57 +/- 10% and 83 +/- 1%, respectively. Nonreceptor fractions from the Sephacryl S-300 column contained a heat-stable factor which blocked receptor activation but did not block the binding of activated receptors to DNA-cellulose. The activation inhibitor eluted from the column in the region of the albumin standard, but after heating its size was considerably reduced (Mr less than 3500). Receptors activated by Sephacryl S-300 filtration underwent the same size changes in the presence or absence of molybdate. Prior to gel filtration, the S20,w of labeled receptors in the presence of molybdate was 9.2 +/- 0.2 S. After filtration in the presence and absence of molybdate, the S20,w of labeled receptors was 4.2 +/- 0.2 and 4.4 +/- 0.1 S, respectively. The Stokes radius (Rs) of labeled receptors after gel filtration in either the presence or absence of molybdate was 65 +/- 1 A. From the Rs and S20,w values, the molecular weight (Mr) of activated receptors was calculated to be 115,000 to 121,000, which was in close agreement with the Mr of affinity-labeled receptors determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

6.
In this report we examine the DNA-cellulose binding and sedimentation properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) receptors from rat intestine and cultured human mammary cancer cells (MCF-7) extracted in nonactivating (low salt) buffers. Receptors prepared in hypotonic buffer had low DNA binding (13%) compared to receptors extracted with 0.3 M KCl (50%). Treatment of low salt receptor preparations with KCl significantly increased (approximately 3-fold) DNA-binding (activation), demonstrating that receptors can be "activated" in vitro. Activated receptors eluted from DNA-cellulose at 0.18 M KCl. Sedimentation analysis followed by DNA-cellulose binding indicated that activated receptors are approximately 3.2 S and unactivated receptors 5.5 S in size. These results suggest that dissociation of an aggregated moiety may lead to receptor activation. Treatment of unactivated receptor with RNase did not alter DNA binding or sedimentation properties of the aggregated receptor. Treatment of unactivated receptor complexes with heat did not increase DNA binding, and molybdate did not block subsequent salt activation. In summary these results suggest that 1,25(OH)2D3 receptors undergo a salt-induced activation step similar to that described for other steroid receptor systems. However, 1,25(OH)2D3 receptors differ from other steroid receptors in not exhibiting heat activation nor having salt activation blocked by molybdate.  相似文献   

7.
The activation in vitro of dioxin and glucocorticoid receptors from a non-DNA binding to a DNA binding state was characterized. Ligand-free dioxin and glucocorticoid receptors were partially co-purified from rat liver cytosol, and both receptors sedimented at 9 S following labeling with the respective ligand. The 9 S forms of the dioxin and glucocorticoid receptors have previously been shown to represent heteromeric complexes containing the Mr approximately equal to 90,000 heat shock protein. The 9 S ligand-free or ligand-bound glucocorticoid receptor was converted to the monomeric 4-5 S form upon exposure to 0.4 M NaCl even in the presence of the stabilizing agent molybdate. Under identical conditions, the 9 S ligand-free and ligand-bound dioxin receptor forms remained essentially intact. However, in the absence of molybdate, the dioxin receptor could be converted to a 4-5 S form upon exposure to high concentrations of salt. These results indicate that the glucocorticoid receptor readily dissociates from the 9 S to the 4-5 S form even in the absence of hormone, whereas both the ligand-free and ligand-occupied 9 S dioxin receptor forms represent more stable species. Gel mobility shift experiments revealed that the 4-5 S glucocorticoid receptor interacted with a glucocorticoid response element both in the absence and presence of ligand. On the other hand, occupation of the dioxin receptor by ligand greatly enhanced the ability of the receptor to be activated to a form that binds to its target enhancer element. Once dissociated, the monomeric form of the dioxin receptor was also able to interact with its DNA target sequences even in the absence of ligand. Thus, ligand binding efficiently facilitates subunit dissociation of the dioxin receptor but is not a prerequisite for DNA binding per se. Given the apparent stability of its non-DNA binding 9 S form, the dioxin receptor system might be a useful model for the investigation of the mechanism of activation of soluble receptor proteins.  相似文献   

8.
A comparison of the physicochemical properties between pyridoxal 5'-phosphate- and 0.4 M KCl-extracted nuclear glucocorticoid receptors has been made utilizing HeLa S3 cells as a source of receptor. Both pyridoxal 5'-phosphate/NaBH4-reduced and 0.4 M KCl-extracted receptors sedimented as approximately 3.5-4.5 S species in 5-20% sucrose gradients containing 0, 0.15, and 0.4 M KCl. Under low-ionic-strength buffer conditions, pyridoxal 5'-phosphate-extracted receptor elutes close to the void volume of a Sephacryl S-300 gel-exclusion column. Increasing the [KCl] of the column to 0.4 M resulted in the elution of receptor with a Stokes radius of 58 A and calculated Mr = 96,000. Nuclear receptors extracted with 0.4 M KCl also formed a large-molecular-weight complex which eluted close to the void volume of the gel-exclusion column. Increasing the [KCl] to 0.4 M had the effect of shifting this receptor form to a species which had a Stokes radius of 62 A and calculated Mr = 89,700. Ion-exchange analysis of nuclear-extracted receptors revealed that 0.4 M KCl-extracted receptors exhibited considerable charge heterogeneity, whereas pyridoxal 5'-phosphate-extracted receptors did not. Pyridoxal 5'-phosphate-extracted receptors (approximately 86%) eluted from DEAE-cellulose at a [KCl] greater than 0.15 M; approximately 14% of the receptors had little affinity for DEAE-cellulose. Pyridoxal phosphate-treated receptors had little affinity for hydroxylapatite, phosphocellulose, and DNA-cellulose. The predominant form of 0.4 M KCl-extracted nuclear receptors (approximately 78%) eluted from DEAE-cellulose between 0.05 and 0.15 M KCl, a position coincident with "activated" glucocorticoid receptors. The remaining receptor fraction (approximately 22%) eluted from DEAE-cellulose at a [KCl] greater than 0.15 M, a position coincident with "unactivated" glucocorticoid receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The molecular properties of the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse hepatoma cell line Hepa 1c1c7 were investigated. The receptor was found to represent a highly asymmetrical molecule with a sedimentation coefficient, s20,w, of approximately 8 S, a Stokes radius of 7-8 nm, and a calculated Mr approximately equal to 260,000-300,000. In comparison, the Hepa 1c1c7 glucocorticoid receptor in analogy to the glucocorticoid receptor in general as well as the C57BL/6 mouse and rat hepatic dioxin receptors are molecules with an s20,w value of 4-5 S, a Stokes radius of approximately 6 nm, and a calculated Mr approximately equal to 100,000. In the presence of 20 mM sodium molybdate, a large Mr approximately equal to 270,000-310,000 form of the Hepa 1c1c7 glucocorticoid receptor is stabilized which is hydrodynamically indistinguishable from the Mr approximately equal to 260,000-300,000 Hepa 1c1c7 dioxin receptor. Sodium molybdate does not have any effect on the molecular properties of the Hepa 1c1c7 dioxin receptor. In conclusion, the large form of dioxin receptor present in Hepa 1c1c7 mouse hepatoma cells in the absence of sodium molybdate is strikingly similar to molybdate-stabilized steroid hormone receptors as well as the molybdate-stabilized form of the dioxin receptor previously demonstrated in rat hepatic cytosol. Therefore, the Hepa 1c1c7 dioxin receptor might offer an interesting model for studies on the structure and function of Mr approximately equal to 300,000 forms of soluble receptors.  相似文献   

10.
Treatment of intact GH1 cells with sodium molybdate inhibits the subsequent rate of nuclear accumulation of hormone-occupied glucocorticoid and estrogen receptors. Cells were incubated at 23 degrees C for 1 h with 30 mM molybdate and then for up to 30 min with [3H]triamcinolone acetonide or [3H]estradiol in the continued presence of molybdate. Although molybdate did not affect the rate of receptor occupancy with either steroid, cells treated with molybdate had more occupied cytosolic and fewer occupied nuclear receptors than control cells. For the glucocorticoid receptor, cells treated with molybdate had more 10 S and fewer 4 S cytosolic receptors than control cells. In low salt cytosol molybdate inhibits the temperature-mediated subunit dissociation of occupied 10 S glucocorticoid receptor. These results suggest that a hormone-mediated dissociation of an intracellular 10 S oligomeric glucocorticoid receptor form to its 4 S subunits is required prior to accumulation of occupied receptors in the nuclear fraction. In cells incubated at 37 degrees C for 1 h or longer with [3H]triamcinolone acetonide, molybdate shifts the steady state intracellular distribution of receptor toward the 10 S cytosolic receptor form, consistent with the interpretation that molybdate affects the rapidly exchanging subunit equilibrium between the 10 S and 4 S cytosolic forms by slowing the rate of 10 S receptor dissociation. Molybdate prevents loss of glucocorticoid-occupied 10 S but not 4 S receptors in heated cytosol by stabilizing the relatively protease-resistant 10 S receptor. Since molybdate stabilizes 10 S oligomeric steroid receptors in vitro, the effects of molybdate on nuclear accumulation of occupied receptors in intact cells support the intracellular existence and physiological relevance of 10 S glucocorticoid and estrogen receptors. These results support a general model for steroid receptor activation in which binding of hormone promotes dissociation of intracellular 8-10 S oligomeric receptors to their DNA-binding subunits.  相似文献   

11.
Conversion of the glucocorticoid receptor into a DNA-binding protein results in the generation of several distinct receptor subspecies (peaks A-E) which can be resolved by anion exchange chromatography. In vitro, the fraction of the receptor population (approx. 40%) which gains a capacity to bind DNA-cellulose is preferentially transformed into the peak A species by a process that was enhanced by the presence of KCl. At 0.4 M KCl, virtually all of the DNA-binding receptor was in the peak A form. Isolated nuclei also exhibit a receptor binding profile similar to that observed with DNA-cellulose.  相似文献   

12.
The physico-chemical properties of the dioxin and glucocorticoid receptors from rat liver and wild-type and mutant cell lines were investigated and compared. In rat liver, the receptors are virtually indistinguishable. Both are highly asymmetrical proteins with axial ratios of 12-15, have Stokes radii of 6 nm and sedimentation coefficients of approximately 4 S. This results in a calculated apparent mol. wt of approximately 100,000. The dioxin receptor from the mouse hepatoma cell line Hepa 1c1c7 represents an atypical form of the dioxin receptor with a pronounced tendency to aggregate to form Mr approximately equal to 300,000 complexes in high ionic strength and in the absence of sodium molybdate. In the presence of sulphydryl reducing agents, however, the Hepa 1c1c7 dioxin receptor dissociates to an Mr approximately 100,000 species. In analogy to the nt- mutant glucocorticoid receptor in mouse lymphoma cells, there is no gross change in the structure of the nt- dioxin mutant in mouse hepatoma cells compared with the wild-type receptor. The nt- dioxin receptor does, however, have a reduced affinity for DNA.  相似文献   

13.
The use of high-performance ion-exchange chromatography (HPIEC) on a Mono Q column was investigated for the analysis of glucocorticoid receptor. In the presence of 10 mM sodium molybdate, both liganded and unliganded glucocorticoid receptor were eluted as a single and sharp peak (0.32 M NaCl). In the absence of molybdate and after exposure to heat and salt, another peak of specifically bound radioactivity was eluted with 0.08 M NaCl. When HPIEC was performed in the absence of molybdate, two molecular forms of the liganded receptor were detected which eluted with 0.08 M NaCl (Stokes' radius Rs = 5.1 nm, s20,w = 4.6 S, calculated mol. wt Mr approximately 100,000) and 0.32 M NaCl (Rs = 7.3 nm, S20,w = 9.0 S, calculated Mr approximately 280,000). Analysis of both forms with mini-columns of DNA-Ultrogel, DEAE-Trisacryl and hydroxylapatite (HA-Ultrogel) confirmed the identity of the two peaks with transformed and non-transformed glucocorticoid-receptor complexes. These results suggest that HPIEC may provide a useful tool for the rapid resolution and quantification of receptor molecular forms.  相似文献   

14.
Physicochemical properties of native and activated (DNA-binding) forms of the glucocorticoid receptor in cytosol prepared from lactating goat mammary tissue have been examined. Under hypotonic conditions the cytosolic receptor sediments at 8.4 S or 9.9 S in the absence or presence of 10 mM molybdate, respectively. The receptor in cytosol, either with or without molybdate elutes from DEAE-cellulose at approximately 200 mM potassium phosphate concentration. Isoelectric focusing reveals that this form of the receptor focuses at pH 5.5. Further, the cytosolic form of the receptor exhibits minimal binding affinity for polyanions such as DNA-cellulose. Its Stokes radius is 77 A and the mol. wt is approximately 331,000. Following exposure to in vitro activating conditions (including elevated ionic strength or temperature), the liganded receptor exhibits much lower affinity for DEAE-cellulose (elution at 35-55 mM potassium phosphate concentration). Other alterations in properties of the activated receptor, after partial purification, include sedimentation at 3.9 S in hypotonic sucrose gradients, binding to polyanions (DNA-cellulose), and an isoelectric point at pH 7.2. This receptor has a Stokes radius of 58 A and a mol wt of 98,000. A degraded form, with a mol. wt of approximately 57,000 and high affinity for polyanions, was the major form of the receptor obtained if appropriate precautions to prevent or remove proteolytic activity were not observed during purification and/or characterization of the activated receptor.  相似文献   

15.
The rat hepatic glucocorticoid, dioxin and oxysterol receptors were subjected to high performance liquid chromatography on size-exclusion and anion-exchange columns. Both the glucocorticoid receptor and the dioxin receptor had a Stokes radius Rs approximately 7.5 nm, expected value for heteromeric complexes containing a dimer of the Mr approximately 90,000 heat shock protein, hsp90 (Rs approximately 7.0 nm). The oxysterol receptor represented a much smaller entity (Rs approximately 6.0 nm). When analyzed on a Mono Q anion-exchange column, the molybdate-stabilized glucocorticoid receptor and dioxin receptor eluted as single peaks at approximately 0.30 M and 0.26-0.28 M NaCl, respectively, whereas the oxysterol receptor represented a less negatively charged species (0.11-0.14 M NaCl). Following washing of the Mono Q column with molybdate-free buffer, the activated monomeric glucocorticoid receptor was detected (0.10-0.12 M NaCl). In contrast, no modification in the elution pattern of the dioxin receptor and the oxysterol receptor was observed. These data demonstrate differences in the physico-chemical properties of the glucocorticoid, dioxin and oxysterol receptors, respectively, which might reflect structural differences.  相似文献   

16.
Two forms of rat liver aryl hydrocarbon receptor were separated by chromatography on DEAE-cellulose in the presence of molybdate. After labeling for 2 h at 0 degrees C, the receptor separated on the DEAE column into a flow-through peak (peak I) and a peak eluting at 80 mM KCl (peak II). It had been reported previously that exposure to high salt in the presence of molybdate caused the appearance of both 9 and 5-6 S receptor forms. After confirming this, I examined the relationship of the peak I and peak II receptors to these receptor forms. In high salt buffer containing molybdate, the peak I receptor sedimented in the 5-6 S region and the peak II receptor at 9 S. High salt buffer lacking molybdate converted both peak I and peak II receptors to forms sedimenting in the 5-6 S region. In low salt buffer containing molybdate, the peak I receptor sedimented at slightly more than 7 S and the peak II receptor at 9-10 S. Thus, the peak II receptor could be stabilized by molybdate as a 9 S form, and the peak I receptor was converted by high salt from a 7 to a 5-6 S form, despite the presence of molybdate. Most of the peak I receptor bound to a DNA-cellulose column and was eluted by high salt. The peak II receptor showed very little DNA binding.  相似文献   

17.
Characterization of glucocorticoid receptor in HeLa-S3 cells   总被引:1,自引:0,他引:1  
H Hoschützky  O Pongs 《Biochemistry》1985,24(25):7348-7356
Glucocorticoid receptor of the human cell line HeLa-S3 has been characterized and has been compared to rat and to mouse glucocorticoid receptors. If HeLa cells were lysed in the absence of glucocorticoid, glucocorticoid receptor was isolated in a nonactivated form, which did not bind to DNA-cellulose. If HeLa cells were preincubated with glucocorticoid, glucocorticoid receptor was isolated in an activated, DNA-binding form. HeLa cell glucocorticoid receptor bound [3H]triamcinolone acetonide with a dissociation constant (KD = 1.3 nM at 0 degrees C) that was similar to those of mouse and rat glucocorticoid receptors. Similarly, the relative binding affinities for steroid hormones decreased in the order of triamcinolone acetonide greater than dexamethasone greater than promegestone greater than methyltrienolone greater than aldosterone greater than or equal to moxestrol. Nonactivated and activated receptors were characterized by high-resolution anion-exchange chromatography (FPLC), DNA-cellulose chromatography, and sucrose gradient centrifugation. Human, mouse, and rat nonactivated glucocorticoid receptors had very similar ionic and sedimentation properties. Activated glucocorticoid receptors were eluted at similar salt concentrations from DNA-cellulose columns but at different salt concentrations from the FPLC column. A monoclonal mouse anti-rat liver glucocorticoid receptor antibody [Westphal, H.M., Mugele, K., Beato, M., & Gehring, U. (1984) EMBO J. 3, 1493-1498] did not cross-react with HeLa cell glucocorticoid receptor. Glucocorticoid receptors of HeLa, HTC, and S49.1 cells were affinity labeled with [3H]dexamethasone and with [3H]dexamethasone 21-mesylate. The molecular weights of [3H]dexamethasone 21-mesylate labeled glucocorticoid receptors (MT 96 000 +/- 1000) were undistinguishable by polyacrylamide gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effect of pyridoxal 5'-phosphate on the binding of the ecdysteroid receptor from a nuclear extract of Drosophila melanogaster to DNA-cellulose was studied. The binding of hormone-receptor complexes to DNA-cellulose was completely blocked after a 30-min incubation with 3 mM pyridoxal 5'-phosphate at 0-4 degree C. The effect was specific for pyridoxal 5'-phosphate since related compounds (pyridoxal, pyridoxamine 5'-phosphate and pyridoxamine) were not effective or gave only 17% inhibition (pyridoxal). Under standard conditions, none of the compounds tested exerted a significant effect on the stability of [3H](20R,22R)-2 beta,3 beta, 14 alpha,20,22-pentahydroxy-5 beta-cholest-7-en-6-one ([3H]ponasterone A)-receptor complexes. The loss of DNA-binding activity caused by pyridoxal 5'-phosphate is accompanied by changes in the molecular properties of [3H]ponasterone-A-receptor complexes. A shift of [3H]ponasterone-A binding was observed from the 8.0-8.5 S to the 4.5-5.0 S region, when [3H]ponasterone-A-receptor complexes were exposed to pyridoxal 5'-phosphate during sucrose-gradient centrifugation. The inhibition of DNA-cellulose binding by pyridoxal 5'-phosphate can be reversed. Probably, pyridoxal 5'-phosphate forms a Schiff base with a critical lysine group of the ecdysteroid receptor, presumably at its DNA-binding site. The hormone-receptor complexes obtained after removal of pyridoxal 5'-phosphate had the same affinity for DNA-cellulose as 'native' complexes. DNA-cellulose-bound [3H]ponasterone-A complexes were efficiently eluted from DNA-cellulose with pyridoxal 5'-phosphate in 0.1 M KCl resulting in a 104-fold purification of the ecdysteroid receptor. The results reflect possible structural similarities between ecdysteroid and vertebrate steroid receptors.  相似文献   

19.
The glucocorticoid receptor from rat liver cytosol prepared in 2 ml buffer/g tissue sedimented at approximately 10 S in low salt density gradient centrifugation without molybdate. When the receptor was heated at 25 degrees C, both approximately 10 S and approximately 7 S forms were seen in low salt gradient. The approximately 10 S form was not capable of binding to DNA-cellulose and was stabilized by sodium molybdate, namely it corresponded to untransformed receptor. The approximately 7 S form was capable of binding to DNA-cellulose and regarded as transformed receptor. On the other hand, partially-purified transformed receptor labeled with [3H]dexamethasone-21-mesylate sedimented at approximately 5 S, which migrated as a approximately 94 kDa species in SDS-polyacrylamide gel electrophoresis. The reconstitution analysis of this partially-purified approximately 5 S receptor and liver cytosol, showed the shift to approximately 7 S form. RNase A or T1 converted approximately 7 S transformed form into approximately 5 S but it did not affect approximately 10 S untransformed form. 5-20 mM sodium molybdate also shifted approximately 7 S to approximately 5 S. These results indicate that the approximately 7 S transformed form of the glucocorticoid receptor observed in low salt conditions might be an oligomer, probably including both approximately 5 S steroid-binding component and RNA/ribonucleoprotein, and that molybdate dissociates these interactions in a specific manner.  相似文献   

20.
Aliquots of rat liver cytosol glucocorticoid-receptor complexes (GRc) were transformed by an incubation with 8-10 mM ATP at 0 degrees C and were compared with those transformed by an exposure to 23 degrees C. The extent of receptor transformation was measured by chromatography of the samples over columns of DEAE-Sephacel. The ATP-transformed complexes, like those which were heat-transformed, exhibited lower affinity for the positively charged ion-exchange resin and were eluted with 0.12 M KCl (peak-I): the nontransformed complexes appeared to possess higher affinity and required 0.21 M KCl (peak II) for their elution. As expected, the receptor in the peak-I exhibited the DNA-cellulose binding capacity and sedimented as 4S in sucrose gradients. Peak II contained an 8-9S glucocorticoid receptor (GR) form that showed reduced affinity for DNA-cellulose. Presence of sodium tungstate (5 mM) prevented both heat and ATP transformation of the GRc resulting in the elution of the complexes in the region of nontransformed receptors. When parallel experiments were performed, binding of the cytosol GRc to rat liver nuclei or DNA-cellulose was seen to increase 10-15 fold upon transformation by heat or ATP: tungstate treatment blocked this process completely. The transformed and nontransformed GRc were also differentially fractionated by (NH4)2SO4: tungstate-treated (nontransformed) receptor required higher salt concentration and was precipitated at 55% saturation. In addition, the GRc could be extracted from DNA-cellulose by an incubation of the affinity resin with sodium tungstate resulting in approximately 500-fold purification of the receptor with a 30% yield. These studies show that the nontransformed, and the heat-, salt-, and ATP-transformed GRc from the rat liver cytosol can be separated chromatographically, and that the use of tungstate facilitates the resolution of these different receptor forms. In addition, extraction of the receptor from DNA-cellulose by tungstate provides another new and efficient method of partial receptor purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号