首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The monitoring of biodiversity at the level of habitats is becoming widespread in Europe and elsewhere as countries establish national habitat monitoring systems and various organisations initiate regional and local schemes. Parallel to this growth, it is increasingly important to address biodiversity changes on large spatial (e.g. continental) and temporal (e.g. decade-long) scales, which requires the integration of currently ongoing monitoring efforts. Here we review habitat monitoring and develop a framework for integrating data or activities across habitat monitoring schemes. We first identify three basic properties of monitoring activities: spatial aspect (explicitly spatial vs. non-spatial), documentation of spatial variation (field mapping vs. remote sensing) and coverage of habitats (all habitats or specific habitats in an area), and six classes of monitoring schemes based on these properties. Then we explore tasks essential for integrating schemes both within and across the major classes. Finally, we evaluate the need and potential for integration of currently existing schemes by drawing on data collected on European habitat monitoring in the EuMon project. Our results suggest a dire need for integration if we are to measure biodiversity changes across large spatial and temporal scales regarding the 2010 target and beyond. We also make recommendations for an integrated pan-European habitat monitoring scheme. Such a scheme should be based on remote sensing to record changes in land cover and habitat types over large scales, with complementary field mapping using unified methodology to provide ground truthing and to monitor small-scale changes, at least in habitat types of conservation importance.  相似文献   

2.
Recently, the science and policy agenda on biodiversity moved to include ecosystem services assessments and it is recognised that for determining the effectiveness and progress of policy frameworks monitoring is crucial.Within European monitoring schemes, data is collected following different sampling protocols for a range of biodiversity or context related aspects; from EU-wide general land cover mapping to red list species within Annex I habitats. In this paper, we analysed field instructions of seven monitoring schemes on the extent to which they can provide data on the provision of ecosystem services and what additional information may be needed for future monitoring of ecosystem services.We compared seven monitoring schemes (i.e. CORINE Land Cover, Land Use Cover Area Survey (LUCAS), European Biodiversity Observation Network (EBONE), biodiversity monitoring on organic and low-input farming systems (BioBio), National Inventory of the Landscape of Sweden (NILS) and Pan-European Common Birds Monitoring (PECBM) and UK Butterfly monitoring (UK-BM)) by scoring the quality of recorded parameters and the adequacy of sampling protocols for ecosystem service monitoring.All the examined schemes were able to provide some parameters on ecosystem services, but the quality of the parameters on average did not exceed the level of qualitative data. Additionally, the divergence between the sampling designs of the schemes and the spatial characteristics of ecosystem services reduced the potential monitoring value of all schemes. Monitoring schemes including a range of sampling methods, scales and included the recording of data on habitats, such as EBONE, BioBio and NILS, provided the best data on the provision of ecosystem services.We conclude that improvement of the monitoring of ecosystem services is hindered by several knowledge gaps: (1) a robust definition and conceptual framework of ecosystem services; (2) the linkage between biodiversity and ecosystem services; and (3) the interpretation of monitoring data.In addition to ecosystem service monitoring, biodiversity monitoring unremittingly remains very important, at least to identify trade-offs between the management for services and the resulting biodiversity status.  相似文献   

3.
When habitats are lost, species are lost in the region as a result of the sampling process. However, it is less clear what happens to biodiversity in the habitats that remain. Some have argued that the main influence of habitat loss on biodiversity is simply due to the total amount of habitat being reduced, while others have argued that fragmentation leads to fewer species per site because of altered spatial connectance among extant habitats. Here, we use a unique data set on invertebrate species in ponds spanning six decades of habitat loss to show that both regional and local species richness declined, indicating that species loss is compounded by habitat loss via connectivity loss, and not a result of a sampling process or changes in local environmental conditions. Overall, our work provides some of the clearest evidence to date from a longitudinal study that habitat loss translates into species loss, even within the remaining habitats.  相似文献   

4.
Large monitoring programs exist in many countries and are necessary to assess present and past biodiversity status and to evaluate the consequences of habitat degradation or destruction. Using such an extensive data set of the floristic richness in the Paris Ile-de-France region (France), we compared different sampling efforts and protocols in different habitat units to highlight the best methods for assessing the actual plant biodiversity. Our results indicate that existing data can be used for a general understanding of site differences, but analysts should be aware of the limitations of the data due to non-random selection of sites, inconsistent observer knowledge, and inconsistent sampling period. The average species diversity recorded in a specific habitat does not necessarily reflect its actual diversity, unless the monitoring effort was very strong. Overall, increasing the sampling effort in a given region allows improvement of the (1) number of habitats visited, (2) the total sampled area for a given habitat type, (3) the number of seasons investigated. Our results indicate that the sampling effort should be planned with respect to these functional, spatial and temporal heterogeneities, and to the question examined. While the effort should be applied to as many habitats as possible for the purpose of capturing a large proportion of regional diversity, or comparing different regions, inventories should be conducted in different seasons for the purpose of comparing species richness in different habitats.  相似文献   

5.
The implementation of conservation strategies for species and habitats is frequently hampered by the availability of the necessary resources. These should be prioritized and focused on those species and habitats most in need, but also in regard to the importance of their distribution in a certain region, country or other administrative unit. In that perspective, the concept of national responsibilities (NR) is a recently developed tool to support priority setting. It captures the impact of the loss of a particular species or habitat within the focal region (usually a country) may have on the global persistence of that species or habitat type. Although the method consists of a few simple steps and is not very demanding in regard to data availability per species and habitat type, it is still impossible to determine NRs for all species and habitats. Here, we focus on the difficulties in determining NRs due to missing distribution data, varying interpretations of definitions especially in respect to habitat types, and differences in data formats and maps using European examples of these data limitations and sources of bias. These include artificially enlarged distribution areas resulting from grid cells being reported more than once, gridded shapefiles stretching into the sea or into other biogeographic regions, and differences in the size and the shape of grid cells and hence the resolution of maps. While focusing on European examples, these sources of bias are also relevant for conservation efforts on a global scale. Our analysis stresses the importance of quickly improving data quality, availability and comparability to render conservation more efficient. We give policy relevant examples on how the NR approach can be applied, e.g. how to help attributing budgets to poorer countries, on which species and habitats to focus limited monitoring resources, and how to consider newly emerging diseases. Generally, our analyses suggests (i) to develop clear global data standards, (ii) to regularly assess data to keep up with advances in data handling, and (iii) to use downscaling approaches for biodiversity data to a higher resolution for reducing the impact of bias to a negligible level together with improving the overall quality of distribution data for conservation purposes.  相似文献   

6.
Marine biogenic habitats—habitats created by living organisms—provide essential ecosystem functions and services, such as physical structuring, nutrient cycling, biodiversity support, and increases in primary, secondary, and tertiary production. With the growing trend toward ecosystem approaches to marine conservation and fisheries management, there is greater emphasis on rigorously designed habitat monitoring programs. However, such programs are challenging to design for data‐limited habitats for which underlying ecosystem processes are poorly understood. To provide guidance in this area, we reviewed approaches to benthic assessments across well‐studied marine biogenic habitats and identified common themes related to indicator selection, sampling methods, and survey design. Biogenic habitat monitoring efforts largely focus on the characteristics, distribution, and ecological function of foundation species, but may target other habitat‐forming organisms, especially when community shifts are observed or expected, as well as proxies of habitat status, such as indicator species. Broad‐scale methods cover large spatial areas and are typically used to examine the spatial configuration of habitats, whereas fine‐scale methods tend to be laborious and thus restricted to small survey areas, but provide high‐resolution data. Recent, emerging methods enhance the capabilities of surveying large areas at high spatial resolution and improve data processing efficiency, bridging the gap between broad‐ and fine‐scale methods. Although sampling design selection may be limited by habitat characteristics and available resources, it is critically important to ensure appropriate matching of ecological, observational, and analytical scales. Drawing on these common themes, we propose a structured, iterative approach to designing monitoring programs for marine biogenic habitats that allows for rigorous data collection to inform management strategies, even when data and resource limitations are present. A practical application of this approach is illustrated using glass sponge reefs—a recently discovered and data‐limited habitat type—as a case study.  相似文献   

7.
Freshwater ecosystems are declining faster than their terrestrial and marine counterparts because of physical pressures on habitats. European legislation requires member states to achieve ecological targets through the effective management of freshwater habitats. Maps of habitats across river networks would help diagnose environmental problems and plan for the delivery of improvement work. Existing habitat mapping methods are generally time consuming, require experts and are expensive to implement. Surveys based on sampling are cheaper but provide patchy representations of habitat distribution. In this study, we present a method for mapping habitat indices across networks using semi-quantitative data and a geostatistical technique called regression kriging. The method consists of the derivation of habitat indices using multivariate statistical techniques that are regressed on map-based covariates such as altitude, slope and geology. Regression kriging combines the Generalised Least Squares (GLS) regression technique with a spatial analysis of model residuals. Predictions from the GLS model are ‘corrected’ using weighted averages of model residuals following an analysis of spatial correlation. The method was applied to channel substrate data from the River Habitat Survey in Great Britain. A Channel Substrate Index (CSI) was derived using Correspondence Analysis and predicted using regression kriging. The model explained 74% of the main sample variability and 64% in a test sample. The model was applied to the English and Welsh river network and a map of CSI was produced. The proposed approach demonstrates how existing national monitoring data and geostatistical techniques can be used to produce continuous maps of habitat indices at the national scale.  相似文献   

8.
9.
Trends and status of species and habitats need to be measured to assess whether global biodiversity policy targets have been achieved. However, it is impossible to monitor all species and habitats with a justifiable effort. Therefore, it is critical to prioritize the monitoring of specific biodiversity components. Priorities must be linked to key nature conservation policies to ensure that monitoring efforts are relevant to policy needs, achieve maximum impact, and obtain governmental support. Here we discuss priority setting in biodiversity monitoring in view of monitoring obligations and priorities in supranational biodiversity legislation and policies in Europe and assess overlaps in priorities among policies. While most supranational biodiversity regulations require monitoring of biodiversity, obligations are legally enforceable only for the Nature Directives, the Water Framework Directive, and the Marine Strategy Framework Directive of the European Union. Of the assessed international conventions and other relevant policy instruments about 50% explicitly designate priority species and most focus on vertebrates. Lower emphasis is given to habitats and geographical priorities are even less pronounced. Also, an overarching system for monitoring prioritization is still missing. Our prioritization system is based on three main criteria: (1) legal requirement for reporting, (2) wording used to define priority or importance, and (3) inclusion in lists that indicate importance of monitoring due to e.g. threats or relevance of a region for a species. Our system contains five main priority levels, within which an additional division differentiates priorities according to national/European responsibility criteria. Based on this system, we provide recommendations for allocating species and habitats enlisted by the reviewed policy tools to explicit non-overlapping priority levels. Our approach will facilitate synergies between monitoring activities for different policy needs, and contribute to alleviate the notorious resource shortage for biodiversity monitoring.  相似文献   

10.
There is growing urgency for integration and coordination of global environmental and ecological data and indicators required to respond to the ‘grand challenges’ the planet is facing, including climate change and biodiversity decline. A consistent stratification of land into relatively homogenous strata provides a valuable spatial framework for comparison and analysis of ecological and environmental data across large heterogeneous areas. We discuss how statistical stratification can be used to design national, European and global biodiversity observation networks. The value of strategic ecological survey based on stratified samples is first illustrated using the United Kingdom (UK) Countryside Survey, a national monitoring programme that has measured ecological change in the UK countryside for the last 35 years. We then present a design for a European-wide sampling design for monitoring common habitats, and discuss ways of extending these approaches globally, supported by the recently developed Global Environmental Stratification. The latter provides a robust spatial analytical framework for the identification of gaps in current monitoring efforts, and systematic design of new complementary monitoring and research. Examples from Portugal and the transboundary Kailash Sacred Landscape in the Himalayas illustrate the potential use of this stratification, which has been identified as a focal geospatial dataset within the Group on Earth Observation Biodiversity Observation Network (GEO BON).  相似文献   

11.
This paper examines how a biodiversity monitoring system based on data collected by protected area staff and local communities was established and maintained in Xe Pian national protected area, Laos. Monitoring activities commenced with project support in 1998. Protected area staff, district forestry staff and villagers continued the monitoring work after 2001 when the external advisers left. More than 2500 records of wildlife, natural resource use and threats to the protected area were collected by villagers and protected area staff, mainly through use of patrols, village discussions and village logbooks. The management interventions that followed the monitoring activities were a reaction to immediate threats or perceived trends in biodiversity rather than to trends revealed by analyses of the collected data. Patrols and village discussions came to a virtual standstill when external funding ceased, probably because of lack of supporting national policies. The annual running cost of the monitoring system was only about US$ 4000 or 0.02 per ha of forest habitat.  相似文献   

12.
13.
Land use and land cover change (LULCC) is one of the main components of current anthropogenic global change. Unravelling the ecological response of biodiversity to the combined effect of land use change and other stressors is essential for effective conservation. For this purpose, we used co-inertia analysis to combine LULCC analysis of earth observation satellite data-derived maps and raptor data obtained from road censuses conducted in 2001 and 2014 at sampling unit level (10 km2 spatial resolution), in northwestern Spain (province of Ourense, c. 7281 km2). In addition, habitat suitability models were also computed using ten widely used single-modelling techniques providing an ensemble of predictions at landscape level (four spatial resolutions: 500-m, 1-km, 2-km and 5-km radius around each sighting) for each year and raptor species to analyse the habitat suitability changes in the whole study area through three niche overlap indices. The models revealed an increase in occurrence and habitat suitability of forest raptor species coupled with a strong decrease in species associated with open habitats, mainly heaths and shrub formations. Open-habitat specialist species were negatively affected by the concomitant effects of intensive forest management and a long-lasting trend of rural abandonment coupled with an unusually high frequency of wildfires. Sustainable forest management and agricultural practices should be encouraged by both public and private sectors, through, e.g. policies related to European funds for rural and regional development (FEDER and FEADER programs) to effectively protect threatened habitats and species, and to comply with current environmental legislation. The combined use of satellite imagery and ground-level biodiversity data proved to be a cost-effective and systematic method for monitoring priority habitats and their species in highly dynamic landscapes.  相似文献   

14.
Turloughs, ephemeral water bodies associated with karstified limestone, are an important habitat found in the West of Ireland. They are a priority habitat under the European Habitats Directive (92/43/EEC) and are groundwater-dependent habitats under the European Water Framework Directive (2000/60/EC; WFD). Sampling to meet the objectives of either Directive requires discrimination of inherent natural variation from anthropogenically induced disturbances and accounting for both spatial and seasonal patterns of biotic distribution. This study reports within- (submerged grassland) and between-habitat (submerged and emergent grassland) variability of macroinvertebrate communities in six turloughs. Two different habitat types were sampled from two turloughs in April 2007, and further assessment of spatial pattern in commonly found submerged grassland habitat was determined from four additional turloughs in spring 2008. While cluster analysis and non-metric multidimensional scaling identified differences in macroinvertebrate community structures between habitats in one out of two turloughs, congruence of invertebrate communities was, nevertheless, greater within than among turloughs. Within-habitat variability of macroinvertebrate communities across sampling locations of submerged grassland habitat was sufficiently low so that samples collected at any location of a turlough can provide a reliable metric of the macroinvertebrate community of a turlough as a whole. A standardized submerged grassland sampling approach for routine turlough sampling is recommended as a pressure response method to fulfil the requirements of the WFD. For a comprehensive conservation assessment, however, as demanded under the EC Habitats Directive, we suggest a multi-habitat sampling approach to obtain a thorough assessment of turlough macroinvertebrate biodiversity.  相似文献   

15.
1. Britain is unusual in the quantity and quality of species and habitat data available, at both national and regional scales. This paper reviews the sources, coverage and quality of these data. 2. Habitat and species data are used by conservation agencies in England, Scotland and Wales for site selection and for monitoring habitat quality. The paper argues, however, that neither habitat data nor species distribution data on their own are sufficient to locate and monitor habitats for nature conservation purposes effectively. 3. Differences in sampling methodologies between habitat and species surveys present methodological difficulties for the development of an integrated monitoring system that uses both types of data. These problems need to be overcome if habitat and species data are to be used more effectively for nature conservation in the wider countryside. 4. A more integrated system based on the concept of biotope occupancy is proposed and discussed. The implementation of the system would assist with understanding those factors that explain observed patterns in species distribution and diversity, thereby helping to improve the effectiveness of policies for nature conservation.  相似文献   

16.
阳文锐  李婧  闻丞  黄越  顾燚芸  朱洁  唐燕 《生态学报》2022,42(20):8213-8222
高强度的城市化活动导致了生物栖息地破碎化、退化和消失,是生物多样性减少的主要原因。建立城市地区生态网络是保护生物多样性的重要途径。因其他物种数据可获得性差,以观测的典型鸟类群落为指示物种,探讨构建生态网络,可为城市生物多样性保护提供新思路。以北京市平原区为研究范围,重点基于86种鸟类分布大数据,通过Maxent模型掩膜生成栖息地源地并进行分级,在GIS技术的支撑下,以土地利用数据建立鸟类活动阻力面,采用最小累积阻力模型算法,模拟并形成了平原地区分级的生物多样性保护网络。研究结果表明,河湖湿地和城市公园组成了北京平原地区生态网络的优势景观类型,占平原区生态空间的81%。基于景观类型大小与物种数量的线性关系筛选出分级生物栖息地,其中一级生物栖息地58个,二级生物栖息地146个,通过模型模拟形成了平原地区生物多样性保护的一二级生态网络,共948条网络,长3760km。筛选出重要生态节点12处,关键生态廊道6条,是保护平原地区生物多样性的重要生态设施。该生态网络的实施对于提升首都平原区的生物多样性具有重要价值,研究结果可为国土生态空间优化提供重要科学依据和参考。  相似文献   

17.
Monitoring Matters: Examining the Potential of Locally-based Approaches   总被引:8,自引:7,他引:1  
Monitoring of biodiversity and resource use by professional scientists is often costly and hard to sustain, especially in developing countries, where financial resources are limited. Moreover, such monitoring can be logistically and technically difficult and is often perceived to be irrelevant by resource managers and the local communities. Alternatives are emerging, carried out at a local scale and by individuals with little formal education. The methods adopted span a spectrum, from participatory monitoring where aims and objectives are defined by the community, to ranger-based monitoring in protected areas. What distinguishes these approaches is that local people or local government staff are directly involved in data collection and (in most instances) analysis. In this issue of Biodiversity and Conservation, 15 case studies examine whether these new approaches can address the limitations of professional monitoring in developing countries. The case studies evaluate ongoing locally-based monitoring schemes involving more than 1500 community members in 13 countries. The papers are based on a symposium held in Denmark in April 2004 (www. monitoringmatters.org). Here, we review how the case studies shed light on the following key issues concerning locally-based methods: cost, sustainability, their ability to detect true local or larger-scale trends, their links to management decisions and action, and the empowerment of local constituencies. Locally-based monitoring appears to be consistently cheap relative to the costs of management and of professional monitoring, even though the start-up costs can be high. Most local monitoring schemes are still young and thus their chances of being sustained over the longer term are not yet certain. However, we believe their chances of surviving are better than many professional schemes, particularly when they are institutionalised within existing management structures, and linked to the delivery of ecosystem goods or services to local communities. When properly designed, local schemes yield locally relevant results that can be as reliable as those derived from professional monitoring. Many management decisions emanate from local schemes. The decisions appear to be taken promptly, in response to immediate threats to the environment, and often lead to community-based actions to protect habitats, species or the local flow of ecosystem benefits; however, few local schemes have so far led to actions beyond the local scale. Locally-based monitoring schemes often reinforce existing community-based resource management systems and lead to change in the attitude of locals towards more environmentally sustainable resource management. Locally-derived data have considerable unexplored potential to elucidate global patterns of change in the status of populations and habitats, the services they provide, and the threats they face, but more effort is needed to develop effective modalities for feeding locally-derived data up to national and international levels.  相似文献   

18.
With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether benefits are maximized by including many small features throughout the landscape (‘land‐sharing’ agriculture) or a few large contiguous blocks alongside intensive farmland (‘land‐sparing’ agriculture). In this study, we are the first to integrate carbon storage alongside multi‐taxa biodiversity assessments to compare land‐sparing and land‐sharing frameworks. We do so by sampling carbon stocks and biodiversity (birds and dung beetles) in landscapes containing agriculture and forest within the Colombian Chocó‐Andes, a zone of high global conservation priority. We show that woodland fragments embedded within a matrix of cattle pasture hold less carbon per unit area than contiguous primary or advanced secondary forests (>15 years). Farmland sites also support less diverse bird and dung beetle communities than contiguous forests, even when farmland retains high levels of woodland habitat cover. Landscape simulations based on these data suggest that land‐sparing strategies would be more beneficial for both carbon storage and biodiversity than land‐sharing strategies across a range of production levels. Biodiversity benefits of land‐sparing are predicted to be similar whether spared lands protect primary or advanced secondary forests, owing to the close similarity of bird and dung beetle communities between the two forest classes. Land‐sparing schemes that encourage the protection and regeneration of natural forest blocks thus provide a synergy between carbon and biodiversity conservation, and represent a promising strategy for reducing the negative impacts of agriculture on tropical ecosystems. However, further studies examining a wider range of ecosystem services will be necessary to fully understand the links between land‐allocation strategies and long‐term ecosystem service provision.  相似文献   

19.
Butterfly monitoring in Europe: methods,applications and perspectives   总被引:1,自引:0,他引:1  
Since the first Butterfly Monitoring Scheme in the UK started in the mid-1970s, butterfly monitoring in Europe has developed in more than ten European countries. These schemes are aimed to assess regional and national trends in butterfly abundance per species. We discuss strengths and weaknesses of methods used in these schemes and give examples of applications of the data. A new development is to establish supra-national trends per species and multispecies indicators. Such indicators enable to report against the target to halt biodiversity loss by 2010. Our preliminary European Grassland Butterfly Indicator shows a decline of 50% between 1990 and 2005. We expect to develop a Grassland Butterfly Indicator with an improved coverage across European countries. We see also good perspectives to develop a supra-national indicator for climate change as well as an indicator for woodland butterflies.  相似文献   

20.
Observing spatial and temporal variations of marine biodiversity from non-destructive techniques is central for understanding ecosystem resilience, and for monitoring and assessing conservation strategies, e.g. Marine Protected Areas. Observations are generally obtained through Underwater Visual Censuses (UVC) conducted by divers. The problems inherent to the presence of divers have been discussed in several papers. Video techniques are increasingly used for observing underwater macrofauna and habitat. Most video techniques that do not need the presence of a diver use baited remote systems. In this paper, we present an original video technique which relies on a remote unbaited rotating remote system including a high definition camera. The system is set on the sea floor to record images. These are then analysed at the office to quantify biotic and abiotic sea bottom cover, and to identify and count fish species and other species like marine turtles. The technique was extensively tested in a highly diversified coral reef ecosystem in the South Lagoon of New Caledonia, based on a protocol covering both protected and unprotected areas in major lagoon habitats. The technique enabled to detect and identify a large number of species, and in particular fished species, which were not disturbed by the system. Habitat could easily be investigated through the images. A large number of observations could be carried out per day at sea. This study showed the strong potential of this non obtrusive technique for observing both macrofauna and habitat. It offers a unique spatial coverage and can be implemented at sea at a reasonable cost by non-expert staff. As such, this technique is particularly interesting for investigating and monitoring coastal biodiversity in the light of current conservation challenges and increasing monitoring needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号