首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelet-activating factor (PAF), a phospholipid product of neutrophils, alveolar macrophages, monocytes, and platelets and an important mediator of inflammatory reactions, was studied for its ability to evoke hindpaw edema in the rat. PAF caused edema, peaking at 1 hr and gradually declining over the next 2 hr. The H1 and H2 antihistamines, mepyramine and cimetidine, the serotonin/histamine antagonists, cyrpoheptadine, and the serotonin antagonist, methysergide, were ineffective in reducing PAF-induced paw edema. Indomethacin, acetylsalicylic acid, and dexamethasone did not inhibit the peak edematous response but significant reduction was noted with only dexamethasone at 3 hr. Prazosin and propranolol did not prevent PAF-induced edema, whereas, yohimbine, phentolamine, rauwolscine, verapamil and theophylline partially inihibited edema. Clonidine and guanfacine did not induce edema when injected into the rat hindpaw. These results suggest that PAF elicits edema at2+ vascular sites of the rat hindpaw which are partially dependent on extracellular Ca movement, are not due to -1 or -2,-adrenoreceptor stimulation, histamine, serotonin, of photaglandin activity, and demonstrates variable sensitivities to agents blocking Ca2+ entry. Inhibition of specific PAF-sensitive receptors await the discovery of specific PAF antagonists.  相似文献   

2.
Stimulation of rat Kupffer cells in primary culture with platelet-activating factor (PAF) caused a rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate with a concomitant increase in the levels of myo-inositol 1,4,5-trisphosphate and myo-inositol 1,4-bisphosphate. This phospholipase C-mediated hydrolysis of polyphosphoinositides was independent of extracellular Ca2+ but was inhibited by the intracellular Ca2+ antagonist TMB-8. A second slower response to PAF was characterized by deacylation of PI leading to the accumulation of glycerophosphoinositol (GPI). PAF-induced GPI synthesis was not inhibited by TMB-8. These effects of PAF were accompanied by initial transient mobilization of Ca2+ from intracellular stores followed by a rather slow influx of Ca2+ from the extracellular medium. PAF-stimulated deacylation and phosphodiesteric hydrolysis of inositol lipids were differentially affected by cholera toxin and pertussis toxin. Pretreatment of the Kupffer cells with either of these toxins caused inhibition of phospholipase C activity. Pertussis toxin also inhibited PAF-stimulated deacylation. However, cholera toxin itself stimulated GPI release and addition of PAF to the cholera toxin-treated cells caused a further increase in GPI release. Phorbol ester inhibited PAF-induced phosphodiesteric hydrolysis of phosphoinositides, but not deacylation. PAF-induced metabolism of phosphoinositides was inhibited by the PAF antagonist, U66985. These results suggest that PAF-induced phosphodiesteric hydrolysis and deacylation of inositol phospholipids are regulated via distinct mechanisms involving activation of separate G-proteins in rat Kupffer cells. Also the regulation of phosphoinositide metabolism by Ca2+ mobilization from two separate Ca2+ pools is indicated by this study.  相似文献   

3.
Platelet-activating factor (PAF) is a lipid mediator able to induce a variety of inflammatory processes in human peripheral blood cells. We have investigated the effect of PAF on the release of chemical mediators from human basophils of allergic and normal donors. PAF (10 nM to 1 microM) caused a concentration-dependent, noncytotoxic histamine release (greater than or equal to 10% of total) in 27 of 44 subjects tested (24 atopic and 20 nonatopic donors). The release process was either very rapid (t1/2 approximately equal to 10 s) or quite slow (t 1/2 approximately equal to 10 min), temperature- and Ca2(+)-dependent (optimal at 37 degrees C and 5 mM Ca2+). Coincubation of PAF with cytochalasin B (5 micrograms/ml) enhanced the release of histamine induced by PAF and activated the release process in most donors (42 of 44). Atopics did not release significantly more histamine than normal subjects, and the percentage of PAF responders (greater than or equal to 10% of total) was nearly the same in the two groups. Histamine release was accompanied by the synthesis and release of leukotriene C4, although this lagged 1 to 2 min behind histamine secretion. Lyso-PAF (100 nM to 10 microM), alone or together with cytochalasin B, did not release significant amounts of histamine. The release of histamine activated by PAF was inhibited by the specific PAF receptor antagonist, L-652,731, with an IC50 of 0.4 microM. There was a partial desensitization to PAF when the cells were preincubated with PAF (100 nM to 1 microM) for 2 min in the absence of Ca2+, whereas the cells remained responsive to anti-IgE (0.1 micrograms/ml). If neutrophils were removed from the basophil preparation by a Percoll gradient or a countercurrent elutriation technique, there was a significant decrease in PAF-induced histamine release. PAF (1 microM) was able to induce a very rapid, transient rise (peak less than 10 s) in [Ca2+]i in purified basophils analyzed by digital video microscopy. Finally, among human histamine-containing cells, the basophils are unique in degranulating following a PAF challenge. Mast cells from human lung, skin, or uterus failed to respond to PAF (10 nM to 1 microM) regardless of the presence or absence of cytochalasin B (5 micrograms/ml). Our results demonstrate that PAF is able to induce the release of inflammatory mediators from human basophils, and that neutrophils can influence this response. It is suggested that PAF-induced basophil activation can play a role in the pathogenesis of allergic disorders.  相似文献   

4.
We studied the synergistic interaction between platelet-activating factor (PAF) and protamine sulfate, a cationic protein that causes pulmonary endothelial injury, in isolated rat lungs perfused with a physiological salt solution. A low dose of protamine (50 micrograms/ml) increased pulmonary artery perfusion pressure (Ppa) but did not increase wet lung-to-body weight ratio after 20 min. Pretreatment of the lungs with a noninjurious dose of PAF (1.6 nM) 10 min before protamine markedly potentiated protamine-induced pulmonary vasoconstriction and resulted in severe lung edema and increased lung tissue content of 6-keto-prostaglandin F1 alpha, thromboxane B2, and leukotriene C4. Pulmonary microvascular pressure (Pmv), measured by double occlusion, was markedly increased in lungs given PAF and protamine. These potentiating effects of PAF were blocked by WEB 2086 (10(-5) M), a specific PAF receptor antagonist. Pretreatment of the lungs with a high dose of histamine (10(-4) M) failed to enhance the effect of protamine on Ppa, Pmv, or wet lung-to-body weight ratio. Furthermore, PAF pretreatment enhanced elastase-, but not H2O2-, induced lung edema. To assess the role of hydrostatic pressure in edema formation, we compared lung permeability-surface area products (PS) in papaverine-treated lungs given either protamine alone or PAF + protamine and tested the effect of mechanical elevation of Pmv on protamine-induced lung edema. In the absence of vasoconstriction, PAF did not potentiate protamine-induced increase in lung PS. On the other hand, mechanically raising Pmv in protamine-treated lungs to a level similar to that measured in lungs given PAF + protamine did not result in a comparable degree of lung edema. We conclude that PAF potentiates protamine-induced lung edema predominantly by enhanced pulmonary venoconstriction. However, a pressure-independent effect of PAF on lung vasculature cannot be entirely excluded.  相似文献   

5.
We investigated the effects of two different platelet-activating factor (PAF) antagonists, SRI 63-441 and WEB 2086, on PAF-, angiotensin II-, and hypoxia-induced vasoconstrictions in isolated rat lungs perfused with a physiological salt solution. Bolus injection of PAF (0.5 micrograms) increased pulmonary arterial and microvascular pressures and caused lung edema. Both SRI 63-441, a PAF-analogue antagonist, and WEB 2086, a thienotriazolodiazepine structurally unrelated to PAF, completely blocked PAF-induced vasoconstriction and lung edema at 10(-5) M. At a lower concentration (10(-6) M), WEB 2086 was more effective than SRI 63-441. WEB 2086 also blocked the pulmonary vasodilation induced by low-dose PAF (15 ng) in blood-perfused lungs preconstricted with hypoxia. SRI 63-441 and CV 3988 (another PAF analogue antagonist), but not WEB 2086, caused acute pulmonary vasoconstriction at 10(-5) M and severe lung edema at a higher concentration (10(-4) M). PAF-induced but not SRI- or CV-induced pulmonary vasoconstriction and edema were inhibited by WEB 2086. In addition, SRI 63-441 potentiated angiotensin II- and hypoxia-induced vasoconstrictions. This effect of SRI 63-441 is not due to PAF receptor blockade because 1) addition of PAF (1.6 nM) to the perfusate likewise potentiated angiotensin II-induced vasoconstriction and 2) WEB 2086 did not cause a similar response. We conclude that both SRI 63-441 and WEB 2086 are effective inhibitors of PAF actions in the rat pulmonary circulation. However, antagonists with structures analogous to PAF (SRI 63-441 and CV 3988) can have significant pulmonary vasoactive side effects.  相似文献   

6.
In order to evaluate the role of calcium in the activation processes in eosinophils induced by platelet-activating factor (PAF), we investigated the changes in free cytoplasmatic Ca2+ concentration using fura-2. PAF causes a rapid and transitory rise of the intracellular free calcium ion concentration [( Ca2+]i) in purified guinea pig eosinophils of approx. 1000 nM above a basal level of 120.7 +/- 36.5 nM (n = 10). The effect was dose-related with a maximum rise at 1000 nM PAF and an EC50 of 17.4 nM and specifically inhibited by the PAF antagonist WEB 2086 with an IC50 of 95.5 nM. WEB 2086 did not affect either the leukotriene B4- or the fMet-Leu-Phe-induced elevation of [Ca2+]i. The response to PAF was dependent on external Ca2+ as it was significantly inhibited by EGTA (85.6 +/- 5.4%) and Ni2+ (95.8 +/- 2.1%) but not by the dihydropyridine antagonist nimodipine. We conclude that Ca2+ entry via receptor-operated Ca2+ channels may be involved in PAF-induced degranulation of eosinophils.  相似文献   

7.
The intraplantar injection of PAF-acether (PAF), induced acute oedema in the rat paw, and desensitized it to subsequent challenges with the same agonist, but not to serotonin. The desensitization was maximal (up to 80% of initial response) after seven consecutive daily injections. In this condition, PAF-induced oedema of the contralateral paw was maintained. The analogue 2-methyl carbamate-PAF (2MC-PAF) was more effective than PAF as a desensitizing agent. Furthermore, the PAF-desensitized paw was refractory to challenges with 2-MC and vice-versa. PAF-acether, but not serotonin-induced rat paw oedema was inhibited by previous intravenous injection of PAF. Intravenous injections of serotonin were also effective in inhibiting selectively serotonin-induced paw oedema, but it was not possible to induce desensitization by repeated intraplantar injections of serotonin. Desensitization to PAF or the pre-treatment with the PAF antagonist BN 52021 did not block the edematogenic response induced by carrageenan.  相似文献   

8.
We determined whether platelet-activating factor (PAF) plays a role in allergen-induced airway responses by studying the effects of a selective PAF antagonist WEB-2086 on antigen-induced early and late airway responses in allergic sheep. In seven sheep, inhaled Ascaris suum produced significant early (282%) and late (176%) increases in specific lung resistance (sRL). WEB-2086 (1 mg/kg iv) given 20 min before antigen challenge did not affect the early response, but the peak late increase in sRL was only 37% over base line (P less than 0.05 vs. control). To study the mechanism by which PAF contributes to antigen-induced responses, we evaluated the effects of pharmacological probes on PAF-induced bronchoconstriction. Inhaled PAF (dose range 75-700 micrograms) caused reproducible (r = 0.781, P less than 0.05) increases in sRL in eight sheep. The PAF-induced bronchoconstriction was blocked by WEB-2086 (1 mg/kg iv) and by the leukotriene antagonist FPL-55712 (30 mg by aerosol); however, neither the cyclooxygenase blocker indomethacin (2 mg/kg iv) nor the histamine H1-antagonist chlorpheniramine (2 mg/kg iv) blocked the PAF response. WEB-2086, however, did not block bronchoconstriction induced by aerosol leukotriene D4, indicating that PAF acts indirectly through leukotrienes. Finally, we determined whether PAF could induce late airway responses. Inhaled PAF produced an immediate increase in sRL in all seven sheep tested, but late airway responses were observed in only three of the seven sheep.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The interaction of a plasmalogenic analog of platelet-activating factor (1-O-alk-1;-enyl-2-acetyl-sn-glycero-3-phosphocholine; 1-alkenyl-PAF) with human platelets was studied. 1-Alkenyl-PAF induced an increase in intracellular Ca2+ concentration and inhibition of adenylate cyclase at significantly higher concentrations than PAF. 1-Alkenyl-PAF inhibits PAF-induced platelet aggregation but has no effect on ADP- or thrombin-induced aggregation of human platelets. In contrast to PAF, 1-alkenyl-PAF increases [3H]PGE1 binding with human platelets. The properties of 1-alkenyl-PAF as an agonist or antagonist of PAF receptors apparently depend on its concentration in the cell medium. Under physiological conditions 1-alkenyl-PAF might be a natural PAF antagonist acting in the human cardiovascular system.  相似文献   

10.
When human monocytic Mono Mac 6 cells were treated with bacterial LPS (10 ng/ml, 72 h), they showed an increase in phagocytic activity, superoxide anion production, and expression of monocyte/macrophage-associated cell surface Ag. In these more mature (LPS-treated) cells but not in untreated cells, platelet-activating factor (PAF) (100 nM) produced a three- to fourfold increase in cytosolic free Ca2+ concentration. The cytosolic free Ca2+ concentration increase was inhibited by the PAF receptor antagonist L-659,989 (10 microM) and by EGTA (2 mM), indicating receptor-dependent Ca2+ influx. Furthermore, L-659,989 (10 microM), as well as PAF (1 microM), inhibited specific [3H]PAF binding in LPS-treated but not in untreated cells. Consistent with these results, PAF (100 nM) stimulated release of arachidonic acid and thromboxane B2 only in LPS-treated cells, and this could be inhibited by L-659,989 (10 microM) and EGTA (2 mM). Our data indicate that LPS up-regulates PAF-induced Ca2+ influx, resulting in arachidonic acid and eicosanoid release in Mono Mac 6 cells.  相似文献   

11.
Due to multiple molecular species of platelet-activating factor (PAF) and the existence of high affinity binding sites in a variety of cells and tissues, possible existence of PAF receptor subtypes has been suggested. This report shows differences between specific PAF receptors in human leukocytes and platelets. Human polymorphonuclear leukocyte membranes showed high affinity binding sites for PAF with an equilibrium dissociation constant (KD) of 4.4 (+/- 0.3) x 10(-10) M. We compared the relative potencies of several PAF agonists and receptor antagonists between human platelet and human leukocyte membranes. One receptor antagonist (Ono-6240) was found to be 6-10 times less potent in inhibiting the specific [3H]PAF receptor binding, PAF-induced GTPase activity, as well as the PAF-induced aggregation in human leukocytes than in human platelets. Mg2+, Ca2+, and K+ ions potentiated the specific [3H]PAF binding in both systems. Na+ and Li+ ions inhibited the specific [3H]PAF binding to human platelets but showed no effects in human leukocytes. K+ ions decreased the Mg2+-potentiated [3H]PAF binding in human leukocytes but showed no effects in human platelets. PAF stimulates the hydrolysis of [gamma-32P] GTP with an ED50 of about 1 nM, whereas the biological inactive enantiomer shows no activity even at 10 microM in both human platelets and human leukocytes. The PAF-stimulated GTPase in human leukocytes can be abolished by the pretreatment of membranes with pertussis toxin and cholera toxin. However, the PAF-stimulated activity of GTPase in human platelets is insensitive to pertussis toxin and cholera toxin. These results suggest that there exists a second type of PAF receptor in human polymorphonuclear leukocytes, which is structurally different from the one characterized in human platelets, and that the guanine nucleotide-binding protein coupled to PAF receptors in human leukocytes is also different from the one in human platelets.  相似文献   

12.
The effects of structurally different PAF receptor blockers were investigated in platelets, neutrophils, guinea pig ileum, rat isolated lung and rat isolated pulmonary artery. PAF caused serotonin release from platelets and a characteristic shape change and adhesion of neutrophils. The antagonists (CV 3988, alprazolam, 48740 RP and Merck-Sharp and Dohme L-652, 731) inhibited platelet serotonin release but not neutrophil shape change adhesion or lysosomal enzyme release. The antagonists in high concentrations (10(-5)-10(-4)M) inhibited nonspecifically the PAF-induced (10(-8)M) guinea pig ileum contraction, but were ineffective at concentrations which inhibited platelet responses. In the rat lung the compounds, in high concentrations, partially inhibited the low dose PAF-induced pulmonary vasodilation and the high dose PAF induced pulmonary vasoconstriction and edema. Our data indicate that some platelet PAF antagonists may be ineffective in blocking the action of PAF on neutrophils and smooth muscle preparations and suggest either PAF-receptor independent actions of PAF or different classes of PAF receptors.  相似文献   

13.
Zinc ions in the micromolar range exhibited a strong inhibitory activity toward platelet activating factor (PAF)-induced human washed platelet activation, if added prior to this lipid chemical mediator. The concentration of Zn2+ required for 50% inhibition of aggregation (IC50) was inversely proportional to the concentration of PAF present. The IC50 values (in microM) for Zn2+ were 8.8 +/- 3.9, 27 +/- 5.8, and 34 +/- 1.7 against 2, 5, and 10 nM PAF, respectively (n = 3-6). Zn2+ exhibited comparable inhibitory effects on [3H]serotonin secretion and the IC50 values (in microM) were 10 +/- 1.2, 18 +/- 3.5, and 35 +/- 0.0 against 2, 5, and 10 nM PAF, respectively (n = 3). Under the same experimental conditions, aggregation and serotonin secretion induced by ADP (5 microM), arachidonic acid (3.3 microM), or thrombin (0.05 U/ml) were not inhibited. Introduction of Zn2+ within 0-2 min after PAF addition not only blocked further platelet aggregation and [3H]serotonin secretion but also caused reversal of aggregation. Analysis of [3H]PAF binding to platelets showed that Zn2+ as well as unlabeled PAF prevented the specific binding of [3H]PAF. The inhibition of [3H]PAF specific binding was proportional to the concentration of Zn2+ and the IC50 value was 18 +/- 2 microM against 1 nM [3H]PAF (n = 3). Other cations, such as Cd2+, Cu2+, and La3+, were ineffective as inhibitors of PAF at concentrations where Zn2+ showed its maximal effects. However, Cd2+ and Cu2+ at high concentrations exhibited a significant inhibition of the aggregation induced by 10 nM PAF with IC50 values being five- and sevenfold higher, respectively, than the IC50 for Zn2+, and with the IC50 values for inhibition of binding of 1 nM [3H]PAF being 5 and 19 times higher, respectively, than the IC50 for Zn2+. The specific inhibition of PAF-induced platelet activation and PAF binding to platelets suggested strongly that Zn2+ interacted with the functional receptor site of PAF or at a contiguous site.  相似文献   

14.
The ability of Y-24180, 4-(2-chlorophenyl)-2-[2-(4-isobutylphenyl)ethyl]-6,9-dimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a] [1,4]diazepine to inhibit platelet-activating factor (PAF)-induced reactions was investigated. Y-24180 (0.0003–0.003 mg/kg, i.v.) dose-dependently inhibited PAF-induced bronchoconstriction in guinea pigs, but even at a high dose of 10 mg/kg, i.v., it was either inactive or weakly active against the bronchoconstriction induced by histamine, serotonin, acetylcholine, arachidonic acid, bradykinin, or leukotriene D4. Oral doses (0.003–0.1 mg/kg) of Y-24180 also prevented hemoconcentration due to PAF in a dosedependent manner and produced a parallel shift of the PAF dose-response curve. Y-24180 (0.0003–0.1 mg/kg, i.v.) and WEB 2086 (0.03–1 mg/kg, i.v.) dose-dependently reversed PAF-induced hypotension in anesthetized rats. In mice, PAF-induced lethality was inhibited by Y-24180 and WEB 2086 with ED50 values of 0.022 and 1.42 mg/kg, p.o., and 0.023 and 0.12 mg/kg, i.v., respectively. This protective effect of Y-24180 given p.o. persisted for at least 6 hr. In actively sensitized mice lethal anaphylactic shock was prevented by oral doses of Y-24180 and WEB 2086 with ED50 values of 0.095 and 0.69 mg/kg, respectively. These results suggested that Y-24180 is an extremely potent and specific PAF antagonist with a good duration of action.  相似文献   

15.
Addition of physiological concentrations (10(-12)-10(-8)M) of platelet-activating factor (PAF) to rabbit iris muscle induced a rapid release (in 15s) of prostaglandin (PG)E2 and 6-oxo-PGF1 alpha, measured by radioimmunoassay and rapid release of 14C-labelled arachidonate and PGE2 in muscle prelabelled with [14C]arachidonic acid, measured by radiochromatography. These PAF actions are concentration- and time-dependent. The effect of PAF on PG release is not mediated through the cyclo-oxygenase pathway. The studies on the properties and mechanism of arachidonate release from phosphatidylinositol and other phospholipids in prelabelled irides by PAF suggest the involvement of a phospholipase A2. This conclusion is supported by the findings: (a) that both the removal of arachidonate and formation of lysophosphatidylinositol, from phosphatidylinositol, by PAF occur concomitantly in a time-dependent manner, (b) that Ca2+ is required for the agonist-induced release of arachidonate and PGE2, and (c) that in contrast to the rapid release of [3H]myo-inositol phosphates by carbachol and other Ca2+-mobilizing agonists previously reported in the iris muscle [Akhtar & Abdel-Latif (1984) Biochem. J. 224, 291-300], PAF (10(-12)-10(-8)M) did not appreciably enhance the release of [14C]myo-inositol phosphates and 32P labelling of phosphatidate and phosphatidylinositol in this tissue. Ca2+-channel antagonists, such as nifedipine, verapamil, diltiazem and manganese inhibited PAF-induced arachidonate and PGE2 release in a dose-dependent manner. K+ depolarization, which causes influx of extracellular Ca2+ in smooth muscle, did not increase the release of arachidonate and PGE2. The ability of Ca2+ antagonists to inhibit arachidonate release by PAF in this tissue probably reflects interference with PAF binding to its receptor. The PAF-induced release of arachidonate and PGE2 occur independently of the cyclo-oxygenase and lipoxygenase pathways. Whether the PAF-induced release of arachidonate and PG in the iris muscle is involved in the pathogenesis of inflammatory and/or physiological reactions in the eye, and how much the inhibitory effects of Ca2+-entry blockers on the PAF actions contribute to the therapeutic use of these drugs, remain to be established.  相似文献   

16.
In the isolated rat stomach perfused via the vasculature in situ under constant pressure bolus injections of platelet-activating factor (PAF, 3, 16, or 50 ng) induced dose-dependent, long-lasting reductions of flow rates and simultaneously significant increases in the release of cysteinyl-leukotrienes (cys-LT), thromboxane (TX) B2 and 6-keto-prostaglandin (PG) F1 alpha. Reversed phase high pressure liquid chromatography demonstrated the release of a mixture of comparable amounts of LTC4, LTD4 and LTE4 by PAF. Inhibition of cys-LT synthesis by the lipoxygenase inhibitors nordihydroguaiaretic acid (NDGA) and L-651,896 did not significantly affect PAF-induced flow reduction indicating that endogenous cys-LT are of minor importance for the PAF effect on gastric vascular flow. This conclusion is supported by the fact that the cys-LT receptor antagonist FPL 55712 in a concentration (1 x 10(-6) M) that completely antagonized gastric flow reduction by exogenous LTC4 (1 x 10(-7) M) had no effect on the PAF-induced reduction of flow. The cyclooxygenase inhibitor indomethacin aggravated the PAF-induced flow reduction suggesting that the endogenous vasodilator PGI2 might act as a functional PAF antagonist in the rat gastric vascular bed. In contrast to FPL 55712 the PAF antagonist BN 52021 significantly and concentration-dependently antagonized the PAF effect on gastric vascular flow. The results demonstrate that PAF and LTC4 induce flow reductions in the rat gastric vascular bed by activating different receptors and that endogenous eicosanoids released by PAF do not contribute significantly to the PAF effect on gastric vascular flow.  相似文献   

17.
The inhibitory effect of BN 52021, a specific antagonist of platelet-activating factor (PAF) on PAF-induced activation of human polymorphonuclear granulocytes (PMNL) and on the binding of [3H]-PAF to neutrophils were examined. BN 52021 over the range of 10(-9)-10(-4) M inhibited PAF-induced degranulation and superoxide production of PMNLs in a dose-dependent manner with Kd values of 0.6 +/- 0.1 x 10(-6) M and 0.4 +/- 0.1 x 10(-6) M, respectively. BN 52021 (up to 1 mM) did not show any agonistic activity and it did not affect neutrophil responses to N-formyl-methionyl-leucyl-phenylalanine or leukotriene B4. The Ki value of BN 52021 for the specific binding of [3H]-PAF to neutrophils was 1.3 +/- 0.5 x 10(-6) M versus a Ki of 1.1 +/- 0.3 x 10(-7) M for PAF itself. BN 52021 did not affect metabolism of PAF by PMNL. These studies indicate that BN 52021 inhibits neutrophil responses to PAF by inhibiting binding of PAF to its specific PMNL receptor.  相似文献   

18.
Platelet-activating factor (PAF) initiated polyphosphoinositide (polyPI) breakdown and a rise of intracellular calcium concentration ([Ca2+]i) in neuroblastoma x glioma hybrid NG 108-15 cells. The accumulation of [3H]inositol trisphosphate and [3H]inositol bisphosphate was evident within 15 s after PAF stimulation, peaked at 1 min, and then gradually decayed. The increase in [3H]inositol monophosphate level was observed at 30 s, plateaued in 5 min, and was sustained up to 10 min in the presence of 10 mM LiCl. On the other hand, the rise of [Ca2+]i evoked by PAF reached a peak within 8-12 s and returned to basal levels within 1 min as measured in fura 2-loaded cells. When cells were suspended in Ca(2+)-depleted medium, the PAF-induced [Ca2+]i rise was reduced by 80%, indicating that the increase of [Ca2+]i was predominantly due to the Ca2+ influx from an extracellular source. Both PAF-induced accumulation of 3H-labeled inositol phosphates and [Ca2+]i elevation were concentration dependent with EC50 values of approximately 1 x 10(-10) and 5 x 10(-8) M, respectively. The PAF analogs 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine and 1-O-hexadecyl-2-O-methyl-rac-glycerol-3-phosphocholine were much poorer agonists at eliciting the same responses in these cells. Pretreatment of cells with pertussis toxin caused a substantial inhibition of PAF-induced accumulation of 3H-inositol phosphates. In contrast, the rise in [Ca2+]i was not significantly affected by toxin treatment at the same concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Subplantar injection of Pilocarpus spicatus essential oil (PSEO), induced rat hindpaw oedema in a dose-dependent manner. The time course study revealed that when compared to carrageenan-induced oedema, the oedema response to PSEO was greater at 1 h post-injection, and thereafter remained relatively constant until 5 h post-injection. By 24 h, it was still at almost the 50% level. This effect of PSEO was characterized using several inhibitors of oedema formation. Pretreatment with the H(1)-receptor antagonist chlorpheniramine did not affect this response, while a significant reduction of paw oedema was achieved with the serotonin antagonist methysergide, but only 1 h and 2 h after injection of PSEO. The oedemagenic activity of PSEO was also suppressed by pretreating the rats with the eicosanoid synthesis inhibitors, phenylbutazone, EP 10161 and dexamethasone. This last drug showed the greatest potency. These findings suggested a probable injury to dermal mast cells and liberation of arachidonate metabolites and eicosanoids at the late phase of oedema induced by PSEO.  相似文献   

20.
Platelet-activating factor (PAF) is an important participant in the inflammatory process. We studied the regulation of PAF activity by capsaicin in human promyelocytic leukemia HL-60 cells. Capsaicin inhibited PAF-induced superoxide production in a concentration-dependent manner. In addition to PAF, the fMLP- and extracellular ATP-induced superoxide productions were inhibited by capsaicin, whereas PMA-induced superoxide production was not affected. In the PAF-stimulated cytosolic Ca2+ increase, capsaicin inhibited in particular the sustained portion of the raised Ca2+ level without attenuation of the peak height. In the absence of extracellular Ca2+, the PAF-induced Ca2+ elevation was not inhibited by capsaicin because capsaicin only inhibited the Ca2+ influx from the extracellular space. In addition, capsaicin did not affect PAF-induced inositol 1,4,5-trisphosphate production, suggesting that phospholipase C activation by PAF is not affected by capsaicin. Store-operated Ca2+ entry (SOCE) induced by thapsigargin was inhibited by capsaicin in a concentration-dependent manner. This capsaicin effect was also observed on thapsigargin-induced Ba2+ and Mn2+ influx. Furthermore, capsaicin's inhibitory effect on the thapsigargin-induced Ca2+ rise overlapped with that of SK&F96365, an inhibitor of SOCE. Both capsaicin and SK&F96365 also inhibited PAF-induced cytosolic superoxide generation in HL-60 cells differentiated by all-trans-retinoic acid. Our data suggest that capsaicin exerts its anti-inflammatory effect by inhibiting SOCE elicited via PLC activation, which occurs upon PAF activation and results in the subsequent superoxide production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号