首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Galanin (GAL) binding sites in coronal sections of the rat brain were demonstrated using autoradiographic methods. Scatchard analysis of 125I-GAL binding to slide-mounted tissue sections revealed saturable binding to a single class of receptors with a Kd of approximately 0.2 nM. 125I-GAL binding sites were demonstrated throughout the rat central nervous system. Dense binding was observed in the following areas: prefrontal cortex, the anterior nuclei of the olfactory bulb, several nuclei of the amygdaloid complex, the dorsal septal area, dorsal bed nucleus of the stria terminalis, the ventral pallidum, the internal medullary laminae of the thalamus, medial pretectal nucleus, nucleus of the medial optic tract, borderline area of the caudal spinal trigeminal nucleus adjacent to the spinal trigeminal tract, the substantia gelatinosa and the superficial layers of the dorsal spinal cord. Moderate binding was observed in the piriform, periamygdaloid, entorhinal, insular cortex and the subiculum, the nucleus accumbens, medial forebrain bundle, anterior hypothalamic, ventromedial, dorsal premamillary, lateral and periventricular thalamic nuclei, the subzona incerta, Forel's field H1 and H2, periventricular gray matter, medial and superficial gray strata of the superior colliculus, dorsal parts of the central gray, peripeduncular area, the interpeduncular nucleus, substantia nigra zona compacta, ventral tegmental area, the dorsal and ventral parabrachial and parvocellular reticular nuclei. The preponderance of GAL-binding in somatosensory as well as in limbic areas suggests a possible involvement of GAL in a variety of brain functions.  相似文献   

2.
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role.  相似文献   

3.
The distribution of somatostatinlike immunoreactive (SLI) perikarya, axons, and terminals was mapped in subcortical areas of the brain of the little brown bat, Myotis lucifugus, using light microscopic immunocytochemistry. A preponderance of immunoreactivity was localized in reticular, limbic, and hypothalamic areas including: 1) in the forebrain: the bed nucleus of the stria terminalis; lateral preoptic, dorsal, anterior, lateral and posterior hypothalamic areas; amygdaloid, periventricular, arcuate, supraoptic, suprachiasmatic, ventromedial, dorsomedial, paraventricular, lateral and medial mammillary, and lateral septal nuclei; the nucleus of the diagonal band of Broca and nucleus accumbens septi; 2) in the midbrain: the periaqueductal gray, interpeduncular, dorsal and ventral tegmental, pretectal, and Edinger-Westphal nuclei; and 3) in the hindbrain: the superior central and parabrachial nuclei, nucleus incertus, locus coeruleus, and nucleus reticularis gigantocellularis. Other areas containing SLI included the striatum (caudate nucleus and putamen), zona incerta, infundibulum, supramammillary and premammillary nuclei, medial and dorsal lateral geniculate nuclei, entopeduncular nucleus, lateral habenular nucleus, central medial thalamic nucleus, central tegmental field, linear and dorsal raphe nuclei, nucleus of Darkschewitsch, superior and inferior colliculi, nucleus ruber, substantia nigra, mesencephalic nucleus of V, inferior olivary nucleus, inferior central nucleus, nucleus prepositus, and deep cerebellar nuclei. While these results were similar in some respects to those previously reported in rodents, they also provided interesting contrasts.  相似文献   

4.
An antiserum raised against the synthetic tripeptide pyroglutamyl-histidyl-proline (free acid) was used to localize thyrotropin-releasing hormone (TRH) in the rat central nervous system (CNS) by immunocytochemistry. The distribution of TRH-immunoreactive structures was similar to that reported earlier; i.e., most of the TRH-containing perikarya were located in the parvicellular part of the hypothalamic paraventricular nucleus, the suprachiasmatic portion of the preoptic nucleus, the dorsomedial nucleus, the lateral basal hypothalamus, and the raphe nuclei. Several new locations for TRH-immunoreactive neurons were also observed, including the glomerular layer of the olfactory bulb, the anterior olfactory nuclei, the diagonal band of Broca, the septal nuclei, the sexually dimorphic nucleus of the preoptic area, the reticular thalamic nucleus, the lateral reticular nucleus of the medulla oblongata, and the central gray matter of the mesencephalon. Immunoreactive fibers were seen in the median eminence, the organum vasculosum of the lamina terminalis, the lateral septal nucleus, the medial habenula, the dorsal and ventral parabrachial nuclei, the nucleus of the solitary tract, around the motor nuclei of the cranial nerves, the dorsal vagal complex, and in the reticular formation of the brainstem. In the spinal cord, no immunoreactive perikarya were observed. Immunoreactive processes were present in the lateral funiculus of the white matter and in laminae V-X in the gray matter. Dense terminal-like structures were seen around spinal motor neurons. The distribution of TRH-immunoreactive structures in the CNS suggests that TRH functions both as a neuroendocrine regulator in the hypothalamus and as a neurotransmitter or neuromodulator throughout the CNS.  相似文献   

5.
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord.  相似文献   

6.
本研究用免疫细胞化学技术观察了大鼠脑内参与兴奋性突触传递的代谢型谷氨酸受体5亚型(mGluR5)的精确定位分布.mGluR5阳性浓染的神经元胞体和纤维密集地分布于大脑皮质浅层、嗅球、伏核、尾壳核、前脑基底部、隔区、苍白球、腹侧苍白球、海马CA1和CA2区、下丘中央核、被盖背侧核和三叉神经脊束核尾侧亚核浅层;淡染而稀疏的mGluR5阳性神经元胞体和纤维见于屏状核、终纹床核、杏仁中央核、丘脑部分核团、上丘浅灰质层、外侧丘系背侧核和延髓中央灰质.  相似文献   

7.
Using an antiserum directed against human calcitonin gene-related peptide (hCGRP), which fully cross reacts with rat CGRP, a sensitive radioimmunoassay was developed. The antiserum was characterized by displacement curve characteristics and high performance liquid chromatography. The assay was applied to rat brain tissue and the concentration of CGRP for 48 microdissected brain areas is presented. Highest levels (1000–4500 fmol/mg protein) were found in the central amygdaloid, caudate putamen, and spinal trigeminal nerve nucleus and tract, substantia gelatinosa, and the dorsal horn of the spinal cord. Moderate levels (200–600 fmol/mg protein) were found in the bed nucleus of the stria terminalis, the subfornical organ, the paraventricular, arcuate, dorsomedial, dorsal parabrachial, ambiguus and tractus solitarii nuclei and in the median eminence. These results coincide with those previously obtained by immunohistochemistry. The widespread distribution in the brain suggests involvement of CGRP in a variety of behavioral functions.  相似文献   

8.
Axons arising from the dorsolateral pontine tegmentum of the rat were traced in various hypothalamic and limbic nuclei by the electron microscopic degeneration method (0.5-8 day survival times) and by measuring regional norepinephrine (NE) concentrations after 12 days of survival using a radioenzymatic method. Significant reductions (41-85%) in NE contents were observed in the supraoptic, arcuate, basal and lateral amygdaloid nuclei and in the hippocampus 12 days after the bilateral electrolytic lesions of the locus coeruleus. No changes in NE concentrations were observed in the ventromedial, septal, central amygdaloid nuclei, in the median eminence and olfactory tubercle. Parabrachial lesions resulted in a decrease of NE content only in the olfactory tubercle. By means of electron microscopy terminal degeneration was found in the hypothalamic paraventricular, dorsomedial nuclei, in the median eminence, in the bed nucleus of the stria terminalis, in the central, lateral and basal amygdaloid nuclei, in the hippocampus and in the anterior ventral thalamic nucleus.  相似文献   

9.
Immunoreactivity corresponding to the C-terminus of the rat μ opiate receptor can be detected by light microscopy in fiber- and terminal-like patterns in a number of rat brain and spinal cord regions, and in immunoreactive perikarya in several of these regions. Especially abundant fiber- and terminal-like patterns were localized to superficial layers of the spinal cord dorsal horn and nucleus caudalis of the spinal tract of the trigeminal, the nucleus of the solitary tract, nucleus ambiguous, locus coeruleus, interpeduncular nucleus, medial aspect of the lateral habenular nucleus, presumed “striasomes” of the caudate-putamen and nucleus accumbens. Moderate fiber and terminal densities were found in the ventral tegmental area, more medial aspects of the thalamus and hypothalamus, and several amygdaloid nuclei. Immunostained perikarya were prominent in the nucleus accumbens and also observed in the middle layers of the cerebral cortex, septum and diagonal band, preoptic area, medial thalamic and habenular nuclei, locus coeruleus, nucleus ambiguous, nucleus of the solitary tract, trigeminal nucleus caudalis and spinal cord substantia gelatinosa zones. Many of these localizations correspond well with the previously-determined autoradiographic distributions of μ opiate receptor ligand binding, and with reports of μ opiate receptor immunoreactivity determined using other antisera. Electron microscopic immunohistochemical studies reveal details of the membrane distribution of the μ receptor in nucleus accumbens, caudate/putamen, locus coeruleus, and spinal cord. These results suggest largely neuronal and largely extrasynaptic distributions of μ receptors that show differential patterns of perikaryal, dendritic, and/or axonal immunostaining in different central nervous system zones. Identification of these distributions adds substantially to data identifying the cellular localization of the principal opiate receptor involved in both analgesic and addictive processes. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

10.
S T Chen  M S Tsai  C L Shen 《Peptides》1989,10(4):825-834
The distribution of FMRFamide-like immunoreactivity in the central nervous system of the Formosan monkey (Macaca cyclopsis) was investigated employing immunohistochemical techniques. FMRFamide-containing cells were found to be widely distributed throughout the forebrain. Principal densities of FMRFamide neuronal perikarya were observed in the following areas: the amygdaloid complex, the olfactory tubercle, the cerebral cortex, the basal ganglia, the septum, the caudate-putamen and the arcuate nucleus. A large number of immunoreactive fibers were observed in areas ranging from the cerebral cortex to the spinal cord, and were noted in the following locations: the preoptic area, the tuberal and posterior hypothalamic areas, the bed nucleus of the stria terminalis, the nuclei of the spinal trigeminal nerve, the hypoglossal nucleus, the nucleus of the solitary tract, and the dorsal horn of the spinal cord. The results generally parallel those described in the rat and guinea pig.  相似文献   

11.
Phrenic nerve afferents (PNa) have been shown to activate neurons in the spinal cord, brain stem, and forebrain regions. The c-Fos technique has been widely used as a method to identify neuronal regions activated by afferent stimulation. This technique was used to identify central neural areas activated by PNa. The right phrenic nerve of urethane-anesthetized rats was stimulated in the thorax. The spinal cord and brain were sectioned and stained for c-Fos expression. Labeled neurons were found in the dorsal horn laminae I and II of the C3-C5 spinal cord ipsilateral to the site of PNa stimulation. c-Fos-labeled neurons were found bilaterally in the medial subnuclei of the nucleus of the solitary tract, rostral ventral respiratory group, and ventrolateral medullary reticular formation. c-Fos-labeled neurons were found bilaterally in the paraventricular and supraoptic hypothalamic nuclei, in the paraventricular thalamic nucleus, and in the central nucleus of the amygdala. The presence of c-Fos suggests that these neurons are involved in PNa information processing and a component of the central mechanisms regulating respiratory function.  相似文献   

12.
The distribution of glutamate decarboxylase (GAD) and δ-amino butyric acid have been studied in the amygdaloid complex and in the stria terminalis system of the rat. The central and medial nuclei of the amygdala had significantly higher activities of GAD than the lateral olfactory tract nucleus, anterior amygdala, anterior lateral nucleus, posterior lateral nucleus, cortical nucleus, basomedial nucleus, basolateral nucleus, and pyriform cortex. The enzyme activity was about two and a half times higher in the central and medial nuclei than in the pyriform cortex. GABA was also significantly more concentratcd in these nuclei than in the pyriform cortex although this was not true for four other amino acids studied–glutamic acid, aspartic acid, taurine and glycine. GAD activity was also measured in the stria terminalis (the major afferent and efferent pathway of the amygdala) and in its bed nucleus. The enzyme activity was higher in the stria terminalis than in four other fibre tracts studied–the optic tract, anterior commissure, corpus callosum, and fimbria. GAD activity was exceptionally high in the bed nucleus of the stria terminalis particularly in its ventral part. The significance of the results are discussed in terms of what is known about the evolution and anatomy of the amygdala.  相似文献   

13.
To further understand the functions of the orexin/hypocretin system, we examined the expression and regulation of the orexin/hypocretin receptor (OX1R and OX2R) mRNA in the brain by using quantitative in situ hybridization. Expression of OX1R and OX2R mRNA exhibited distinct distribution patterns. Within the hypothalamus, expression for the OX1R mRNA was largely restricted in the ventromedial (VMH) and dorsomedial hypothalamic nuclei, while high levels of OX2R mRNA were contained in the paraventricular nucleus, VMH, and arcuate nucleus as well as in mammilary nuclei. In the amygdala, OX1R mRNA was expressed throughout the amygdaloid complex with robust labeling in the medial nucleus, while OX2R mRNA was only present in the posterior cortical nucleus of amygdala. High levels of OX2R mRNA were also observed in the ventral tegmental area. Moreover, both OX1R and OX2R mRNA were observed in the hippocampus, some thalamic nuclei, and subthalamic nuclei. Furthermore, we analyzed the effect of fasting on levels of OX1R and OX2R mRNA in the hypothalamic and amygdaloid subregions. After 20 h of fasting, levels of OX1R mRNA were significantly increased in the VMH and the medial division of amygdala. An initial decrease (14 h) and a subsequent increase (20 h) in OX1R mRNA levels after fasting were observed in the dorsomedial hypothalamic nucleus and lateral division of amygdala. Levels of OX2R mRNA were augmented in the arcuate nucleus, but remained unchanged in the dorsomedial hypothalamic nucleus, paraventricular hypothalamic nucleus, and amygdala following fasting. The time-dependent and region-specific regulatory patterns of OX1R and OX2R suggest that they may participate in distinct neural circuits under the condition of food deprivation.  相似文献   

14.
The aromatase (estrogen synthetase) enzyme catalyzes the conversion of androgens to estrogens in peripheral tissues, as well as in the brain. Our study aimed at comparing the brain distribution of aromatase-immunoreactive neurons in male and female, normal and gonadectomized rats. Light microscopic immunostaining was employed using a purified polyclonal antiserum raised against human placental aromatase. Two anatomically separate aromatase-immunoreactive neuronal systems were detected in the rat brain: A “limbic telencephalic” aromatase system was composed by a large population of labeled neurons in the lateral septal area, and by a continuous “ring” of neurons of the laterodorsal division of the bed nucleus of stria terminalis, central amygdaloid nucleus, stria terminalis, and the substantia inominata-ventral pallidum-fundus striati region. The other, “hypothalamic” aromatase system consisted of neurons scattered in a dorsolateral hypothalamic area including the paraventricular, lateral and dorsomedial hypothalamic nuclei, the subincertal nucleus as well as the zona incerta. In addition, a few axon-like processes (unresponsive to gonadectomy) were present in the preoptic-anterior hypothalamic complex, the ventral striatum, and midline thalamic regions. No sexual dimorphism was observed in the distribution or intensity of aromatase-immunostaining. However, 3 days, 2, 3, 8, 16, or 32 weeks after gonadectomy, aromatase-immunoreactive neurons disappeared from the hypothalamus, whereas they were still present in the limbic areas of both sexes. The results indicate the existence of two distinct estrogen-producing neuron systems in the rat brain: (1) a “limbic ring” of aromatase-labeled neurons of the lateral septum-bed nucleus-amygdala complex unresponsive to gonadectomy; and (2) a sex hormone-sensitive “hypothalamic” aromatase neuron system.  相似文献   

15.
The distribution of neuropeptide K (NPK), a 36-residue amidated peptide originally isolated from porcine brain, is described in the rat CNS by immunohistochemical methods. Antibodies were generated in rabbits to N-terminus and C-terminus regions of the peptide and the distribution of immunoreactive cell bodies and fibers was mapped in colchicine-treated and normal rat brains. Major areas of cell body staining included the medial habenular nucleus, the ventromedial nucleus of the hypothalamus, the interpeduncular nucleus, the lateral dorsal tegmental nucleus, the nucleus raphe pallidus, and the nucleus of the solitary tract. Some of the areas of dense NPK-fiber immunoreactivity included the ventral pallidum, the caudate-putamen, certain areas of the hypothalamus, the central and medial amygdaloid nuclei, the entopeduncular nucleus, the habenular nuclei, the substantia nigra pars reticulata, the caudal part of the spinal nucleus of the trigeminal nerve, the nucleus of the solitary tract and the dorsal horn of the spinal cord. A striking similarity exists between this pattern of immunoreactive staining and that described for substance P, suggesting that the tachykinin systems do not exist independently in the brain. The possible roles for multiple tachykinins in the brain are discussed.  相似文献   

16.
This paper describes the autoradiographic distribution of VIP binding sites in the rat central nervous system using monoiodinated 123I-labeled VIP. High densities of VIP binding sites are observed in the granular layer of the dorsal dentate gyrus of the hippocampus, the basolateral amygdaloid nucleus, the dorsolateral and median geniculate nuclei of the thalamus as well as in the ventral part of the hypothalamic dorsomedial nucleus.  相似文献   

17.
Using an antiserum directed against synthetic galanin (GAL) a sensitive radioimmunoassay was developed. The antiserum interaction with GAL was characterized by displacement curve characteristics and high performance liquid chromatography. Besides the main GAL-immunoreactive peak several small peaks with GAL-like immunoreactivity were observed. No cross-reactivity of the GAL-antiserum with several other peptides was observed. GAL-like immunoreactivity was measured in 37 microdissected areas of the rat central nervous system. High concentrations (greater than 2000 fmol/mg protein) were observed in the amygdaloid nuclei, the septum, globus pallidus, bed nuclei of the stria terminalis, all hypothalamic nuclei, the superior colliculus, locus coeruleus, the nucleus of the solitary tract and the neurointermediate lobe of the pituitary. Moderate concentrations (1000-2000 fmol/mg protein) were observed in the hippocampus, the nucleus accumbens and nucleus of the diagonal tract, the caudate-putamen, the central gray, the nucleus, tract and substantia gelatinosa of the spinal trigeminal nerve. The results generally correlate with those previously published by immunocytochemistry. The widespread distribution of GAL-like immunoreactivity in the rat central nervous system suggests an involvement of GAL in a variety of brain functions.  相似文献   

18.
The current study was designed to locate the neuronal activation in rat brain following intraperitoneal injection of Staphylococcus enterotoxin B (SEB) and observe the consequence of preliminary subdiaphragmatic vagotomy on SEB-induced brain Fos expression to clarify the role of the vagus nerve in sensation and transmission of abdominal SEB stimulation. The results showed that intraperitoneal SEB (1 mg/kg) induced a robust Fos expression in widespread brain areas. A significant increase of Fos immunoreactive cells were observed in the solitary tract nucleus, locus ceruleus, lateral parabrachial nucleus, ventrolateral part of central gray, medial amygdaloid nucleus, central amygdaloid nucleus, ventromedial part of thalamus, dorsomedial part of thalamus, hypothalamic paraventricular nucleus, lateral habenula, and lateral septum nucleus following SEB challenge. In hypothalamic paraventricular nucleus, in addition to the dense Fos expression in the parvocellular portion, some Fos-positive cells were also observed in the anterior magnocellular nucleus of the complex. Double immunofluorescence studies showed that these Fos-immunoreactive cells were mostly oxytocinergic. The results also showed that subdiaphragmatic vagotomy largely attenuated, but not totally abrogated, the brain Fos expression induced by abdominal administration of SEB. Our data suggest that peripheral SEB stimulation can induce activation of neurons in widespread brain areas and that the vagus plays a crucial role in transmitting the signal of abdominal immune stimulation to the brain.  相似文献   

19.
The endogenous opioid peptides, the opiate receptors and several related behaviours, like opioid-mediated analgesia, show daily variations in different animal species including rats. The attempt to correlate the daily rhythm of opiate receptors in the central nervous system (CNS) to opiate related rhythmic phenomena requires an experimental approach with a high anatomical resolution, as the opioid distribution is very heterogeneous. In this paper we present the study of daily variations of 3H-naloxone binding sites in the different regions of the adult male rat brain, performed by means of quantitative autoradiography. Five rats are sacrificed at each investigated time of the day (0200, 0600,1000,1400,1800 and 2200). The ligand is 3H-naloxone(4nM), the quantification is performed by means of densitometric procedures (image analyzer Tesak VDC 501, computer Digital PDP11,3H-microscale). The statistical analysis is performed according to the single Cosinor method and the one-way analysis of variance followed by the multiple range test of Duncan. We analysed 33 different regions of the rat CNS, and the daily variations of opiate receptors are regionally selective. A circadian rhythm is found in the anterior cingulate cortex, hippocampal cortex, periventricular, medial, ventral, reticular and posterior nuclei of the thalamus, rhomboid, gelatinosus and rheuniens nuclei, lateral hypothalamus, locus coeruleus, grey substance of the pons, reticular formation of medulla oblongata, inferior olivary complex, medial part of the nucleus of the solitary tract and nucleus of the spinal tract of the trigeminal nerve. An ultradian rhythm is found in the medial and lateral preoptic areas, in the medial hypothalamus, in the medial and in the lateral nuclei of habenula. No significant variations during 24 hr according to the Cosinor analysis are found in the dorsal and lateral cerebral cortex, striatum, globus pallidus, bed nucleus of the stria terminalis, septal nuclei, lateral nucleus of the thalamus, cochlear nuclei, nucleus of the solitary tract, lateral and caudal parts, dorsal motor nucleus of the vagal nerve, XII and IX nerve nuclei. The amplitude of the daily variations observed ranges from 10 to 40%. Our results demonstrate the high anatomical selectivity of the daily modifications of 3H-naloxone binding sites in the rat CNS. They also indicate that quantitative autoradiography is a suitable and sensitive technique for these studies.  相似文献   

20.
The distribution of neurons giving rise to various descending fiber systems to brain-stem structures in the basal ganglia (including amygdaloid nuclei) and hypothalamus of the cat was studied by the retrograde axonal transport of horseradish peroxidase method. Neurons in the medial part of the central nucleus and of the magnocellular part of the basal nucleus of the amygdaloid group were shown to send axons to the dorsal hippocampus, substantia nigra, lateral part of the central gray matter, and the mesencephalalic reticular formation and also to the region of the locus coeruleus and the lateral medullary reticular formation at the level of the inferior olives. The predominant source of projections to the hypothalamus and brainstem structures is the central amygdaloid nucleus, which also sends projections to the nucleus of the tractus solitarius, the dorsal motor nucleus of the vagus nerve, and the superior cervical segments of the spinal cord. Uncrossed fiber systems descending from the basal ganglia terminate at the level of the pons, whereas uncrossed and crossed fiber systems descending from the dorsal and ventromedial hypothalamus can be traced into the spinal cord. The possible role of nuclei of the amygdaloid group, the hypothalamus, and their efferent projections in the regulation of somatic and vegetative functions and also of complex behavioral reactions is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 14–23, January–February, 1981.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号