首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Simultaneous overproduction of intracellular -glucosidase and extracellular endoglucanase was attempted by constructing two artificial operon systems comprising the -glucosidase-endoglucanase gene(E) or the endoglucanase--glucosidase gene(E) under the control of a strong engineered promoter, BJ27U88 and expressing them in Bacillus subtilis DB104. Two artificial operon systems contained 30 bp or 5 bp gap between the termination codon of the upstream gene and the SD sequence of the downstream gene, respectively. These operon systems were expressed well in B. subtilis and overproduced the -glucosidase cell extract as well as the endoglucanase supernatant. The level of expression in the operon system was almost the same as that in a single expression system.  相似文献   

2.
We purified a novel -glucosidase to homogeneity from an Escherichia coli recombinant transformed with the -glucosidase gene from thermophilic Bacillus sp. SAM1606. The enzyme existed as mono- and multimeric forms of a promoter protein with a relative molecular weight of 64,000 and isoelectric point of 4.6. We isolated a monomeric form of the enzyme and characterized it. The enzyme was unique among the known -glucosidases in both broad substrate specificity and high thermostability. The enzyme hydrolysed a variety of O--d-glucopyranosides such as nigerose, maltose, isomaltose, sucrose, and trehalose efficiently. The molecular activity (k O) and the Michaelis constant (K m) values at 55°C and pH 6.0 for sucrose were 54.6 s–1 and 5.3 mm, respectively. The optimum pH and temperature for hydrolysis were pH 5.5 and 75°C, respectively. The enzyme exhibited a high transglucosylation activity: it reacted with 1.8 m sucrose at 60°C for 70 h to yield oligosaccharides containing theanderose in a maximum yield of 35% (w/w). High thermostability of the enzyme (stable up to 65°C at pH 7.2 for 10 min) permits the transglucosylation reaction at high temperatures, which would be beneficial for continuous production of oligosaccharides from sucrose.  相似文献   

3.
Summary Out of 17 strains of 14 different Bacillus species, Bacillus cereus ATCC 7064 produced the highest levels of p-nitrophenyl--D-glucopyranoside-hydrolyzing -glucosidase. Maximal enzyme yield was achieved after 6 h of cultivation, at an initial pH of 6.5–7.0, on a medium containing 2% soluble starch, 2% peptone, 0.3% yeast extract, 0.05% meat extract, 0.3% K2HPO4 and 0.1% KH2PO4. When grown on 2% starch, B. cereus synthesized -glucosidase in the cytoplasm. At a starch concentration of less than 1%, however, the enzyme appeared in the culture broth. This accumulation was maximal at 0.4% starch when the extracellular enzyme amounted to 54% of the total enzyme produced.  相似文献   

4.
Bacillus amylolyticus produces -amylase, pullulanase and -glucosidase. By selection of carbon source in the growth medium, -glucosidase was produced preferentially and with exclusion of the other two activities. The -glucosidase was highly specific for maltose and to a lesser extent maltotriose but was inactive towards a range of other substrates including p-nitrophenyl -D-glucoside and isomaltose. Optima for activity were recorded at pH 7.0 and 40° C and the enzyme was insensitive to ethylenediaminetetraacetic acid.  相似文献   

5.
Growth at 25°C and pH 5.50 favour the production of-glucosidase. De-fatted oilseed flour and Tween 80 enhanced the production of-glucosidase, Lactose, gentibiose, gentibiose-acetate, laminarabiose and xylobiose induced-glucosidase activity. Precipitation of the culture filtrate with (NH4)2SO4 resulted in 26-fold purification with 67% recovery. The optimum pH and temperature for activity were 5.0 to 5.4 and 55°C respectively. The enzyme was stable at 40°C with half-life at 12 h at 50°C. TheK m andV max for the hydrolysis ofp-nitrophenyl--d-glucoside at 40°C H 5.0 are 0.28mm and 0.60 U/mg protein, respectively.  相似文献   

6.
A recombinant plasmid pβCBD was constructed for immobilization of Cellulomonas fimi β-glucosidase (Cbg) using the cellulose-binding domain (CBD) of Bacillus subtilis BSE 616 endo-β-1,4-glucanase (Beg). The Cbg-CBD Beg fusion protein, 80 kDa, was expressed in Escherichia coli and immobilized to Avicel. Cellobiose was completely hydrolyzed with the immobilized fusion protein. The fusion protein bound to Avicel retained full activity during continuous operation for 24 h at 4°C. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

7.
8.
The gene coding for a thermostable exo--1,4-glucosidase (-glucoside glucohydrolase: EC 3.2.1.20) of Bacillus stearothermophilus ATCC 12016 was cloned within a 2.8-kb AvaI fragment of DNA using the plasmid pUC19 as a vector and Escherichia coli JM109 as a host. E. coli with the hybrid plasmid accumulated exo--1,4-glucosidase mainly in the cytoplasm. The level of enzyme production was about sevenfold higher than that observed for B. stearothermophilus. The cloned enzyme coincided absolutely with the B. stearothermophilus enzyme in its relative molecular mass (62 000), isoelectric point (5.0), amino-terminal sequence of 15 residues (Met-Lys-Lys-Thr-Trp-Trp-Lys-Glu-Gly-Val-Ala-Tyr-Gln-Ile-Tyr-), the temperature dependency of its activity and stability, and its antigenic determinants.Correspondence to: Y. Suzuki  相似文献   

9.
Bifidobacterium pseudolongum NCFB 2244 grew on starch as sole source of carbon and energy, but cell yields and specific growth rates were considerably lower than on glucose (=0.19±0.04 and 0.38±0.09 respectively). Amylase activity was not detected in cultures of this bacterium, but cell-associated -glucosidase was constitutively produced. Analysis of -glucosidase activity from cell extracts by preparative isoelectric focusing gave two peaks of activity with apparent isoelectric points of 3.9 (Enzyme I) and 4.2 (Enzyme II), corresponding to threefold and fourfold purification factors respectively. No -glucosidase activity was detected with Enzyme I after gel-filtration chromatography on Sephadex G150. However, activity was recovered in samples containing Enzyme II, indicating the protein had a molecular mass of approximately 126 kDa. This was subsequently confirmed by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). These results show that the restricted ability ofB. pseudolongum to utilize starch as a carbohydrate source is owing to synthesis of at least one, and possibly two, -glucosidase(s).  相似文献   

10.
The high-molar mass from of β-glucosidase fromAspergillus niger strain NIAB280 was purified to homogeneity with a 46-fold increase in purification by a combination of ammonium sulfate precipitation, hydrophobic interaction, ion-exchange and gel-filtration chromatography. The native and subunit molar mass was 330 and 110 kDa, respectively. The pH and temperature optima were 4.6–5.3 and 70°C, respectively. TheK m andk cat for 4-nitrophenyl β-d-glucopyranoside at 40°C and pH 5 were 1.11 mmol/L and 4000/min, respectively. The enzyme was activated by low and inhibited by high concentrations of NaCl. Ammonium sulfate inhibited the enzyme. Thermolysin periodically inhibited and activated the enzyme during the course of reaction and after 150 min of proteinase treatment only 10% activity was lost with concomitant degradation of the enzyme into ten low-molar-mass active bands. When subjected to 0–9 mol/L transverse urea-gradient-PAGE for 105 min at 12°C, the nonpurified β-glucosidase showed two major bands which denatured at 4 and 8 mol/L urea, respectively, with half-lives of 73 min.  相似文献   

11.
Massimo Aureli 《FEBS letters》2009,583(15):2469-6422
Human fibroblasts produce ceramide from sialyllactosylceramide on the plasma membranes. Sialidase Neu3 is known to be plasma membrane associated, while only indirect data suggest the plasma membrane association of β-galactosidase and β-glucosidase. To determine the presence of β-galactosidase and β-glucosidase on plasma membrane, cells were submitted to cell surface biotinylation. Biotinylated proteins were purified by affinity column and analyzed for enzymatic activities on artificial substrates. Both enzyme activities were found associated with the cell surface and were up-regulated in Neu3 overexpressing cells. These enzymes were capable to act on both artificial and natural substrates without any addition of activator proteins or detergents and displayed a trans activity in living cells.  相似文献   

12.
Coniferin -glucosidase (CBG) catalyzes the hydrolysis of monolignol glucosides to release the cinnamyl alcohols for oxidative polymerization to lignin. Utilizing the N-terminal amino acid sequence of the purified enzyme, the corresponding full-length cDNA sequence was isolated from a Pinus contorta xylem-specific library. The isolated 1909 nucleotide cDNA was confirmed to be that of CBG on the basis of its high homology to family 1 glycosyl hydrolases, the sequence identity with the N-terminal amino acid residues of the purified enzyme, and the coniferin hydrolytic activity and substrate specificity profile displayed by the recombinant protein when expressed in Escherichia coli. The presence of a 23 amino acid N-terminal signal peptide in the deduced 513 amino acid enzyme suggests that CBG is a secretory protein targeted to the ER. The isolation of CBG cDNA will facilitate the evaluation of the importance of this enzyme in the ultimate stages of lignin biosynthesis and could be a valuable tool in manipulating lignin levels in xylem cell walls.  相似文献   

13.
Further purification and characterization of the acid α-glucosidase   总被引:2,自引:0,他引:2  
1. Centrifugation of rat liver acid glucosidase, which had been purified by adsorption on dextran gel, on a density gradient of sucrose showed the enzyme to be impure. 2. Preliminary purification of the enzyme before the gel filtration improved the final degree of purity of this preparation. Disc gel electrophoresis of this preparation showed a single band of protein. 3. The sedimentation co-efficient and the molecular weight determined on a sucrose gradient were 4.9-5.1s and 76000-83000 respectively for the rat liver enzyme, and 5.6s and 97000 for the acid alpha-glucosidase purified by means of the same procedure from the human kidney. 4. The Michaelis constants of rat liver and human kidney enzyme were 4.7x10(-3)m and 13.6x10(-3)m respectively with maltose as substrate. 5. The enzyme from both tissues was inhibited by tris and by erythritol. The inhibition of the rat liver acid glucosidase by erythritol was competitive.  相似文献   

14.
Summary An -glucosidase was purified from Aspergillus carbonarious CCRC 30414 over 20 fold with 37 % recovery. Its molecular mass was estimated to be 328 kDa by gel filtration with an optimum pH from 4.2 to 5.0, and pI=5.0. The optimum temperature is at 60°C over 40 min. The enzyme was partially inhibited by 5 mM Ag+, Hg2+, Ba2+, Pb2+, and Aso4 +.  相似文献   

15.
A new series of Deacetylsarmentamide A and B derivatives, amides and sulfonamides of 3,4-dihydroxypyrrolidines as α-glucosidase inhibitors were designed and synthesized. The biological screening test against α-glucosidase showed that some of these compounds have the positive inhibitory activity against α-glucosidase. Saturated aliphatic amides were more potent than the olefinic amides. Among all the compounds, 5o/6o having polar –NH2 group, 10f/11f having polar –OH group on phenyl ring displayed 3–4-fold more potent than the standard drugs. Acarbose, Voglibose and Miglitol were used as standard references. The promising compounds 6i, 5o, 6o, 10a, 11a, 10f and 11f have been identified. Molecular docking simulations were done for compounds to identify important binding modes responsible for inhibition activity of α-glucosidase.  相似文献   

16.
This study investigated the cellular location and the contribution of individual β-glucosidase (BGL) to total BGL activity in Neurospora crassa. Among the seven bgl genes, bgl3, bgl5, and bgl7 were transcribed at basal levels, whereas bgl1, bgl2, bgl4, and bgl6 were significantly up-regulated when the wild-type strain was induced with cellulose (Avicel). BGL1 and BGL4 were found to be contributors to intracellular BGL activity, whereas the activities of BGL2 and BGL6 were mainly extracellular. Sextuple bgl deletion strains expressing one of the three basally transcribed bgls did not produce any detectable BGL activity when they were grown on Avicel. BGL6 is the major contributor to overall BGL activity, and most of its activity resides cell-bound. The sextuple bgl deletion strain containing only bgl6 utilized cellobiose at a rate similar to that of the wild type, while the strain with only bgl6 deleted utilized cellobiose much slower than that of the wild type.  相似文献   

17.
β-Glucosidase and β-galactosidase activity profile tested in different seeds during 24 h germination revealed reasonably high levels of activity inVigna radiata, Cicer arietinum, andTrigonella foenum-graecum. In all seeds tested, β-galactosidase activity was, in general, higher than that of β-glucosidase.T. foenum-graecum seedlings exhibited maximal total and specific activities for both the enzymes during 72 h germination. Se supplementation as Na2SeO3 up to 0.75 ppm was found to be beneficial to growth and revealed selective enhancement of β-galactosidase activity by 40% at 0.5 ppm Se. The activities of both the enzymes drastically decreased at 1.0 ppm level of Se supplementation. On the contrary, addition of Na2SeO3 in vitro up to 1 ppm to the enzyme extracts did not influence these activities. Hydrolytic rates of β-glucosidase in both control and Se-supplemented groups were enhanced by 20% with 0.05M glycerol in the medium and 30% at 0.1M glycerol. The rates were marginally higher in Se-supplemented seedlings than the controls, irrespective of added glycerol in the medium. In contrast, hydrolysis by β-galactosidase showed a trend of decrease in Se-supplemented seedlings compared to the control, when glycerol was present in the medium. Addition of Se in vitro in the assay medium showed no difference in the hydrolytic rate by β-galactosidase when compared to control, while the activity of β-glucosidase declined by 50%. Se-grown seedlings showed an enhancement of transglucosidation rate by 40% in the presence of 0.1M glycerol. The study reveals a differential response to Se among the β-galactosidase and β-glucosidase ofT. foenumgraecum with increase in the levels of β-galactosidase activity.  相似文献   

18.
Summary Purified -Glucosidase from Fusarium oxysporum catalysed the hydrolysis and transglycosylation reactions in the presence of cellobiose and gentiobiose. The product of the latter reaction was mainly a triose. The time of incubation, pH and substrate concentration for transglycosylation reaction were optimised. Under optimal conditions, the concentration of glucose and triose reached approximately 15–20 % of the initial substrate concentration. These results suggested that -glucosidase from F.oxysporum is an ideal enzyme for the synthesis of triose in reasonable quantities.  相似文献   

19.
A gene of β-galactosidase from Bacillus circulans ATCC 31382 was cloned and sequenced on the basis of N-terminal and internal peptide sequences isolated from a commercial enzyme preparation, Biolacta(?). Using the cloned gene, recombinant β-galactosidase and its deletion mutants were overexpressed as His-tagged proteins in Escherichia coli cells and the enzymes expressed were characterized.  相似文献   

20.
A gene of β-galactosidase from Bacillus circulans ATCC 31382 was cloned and sequenced on the basis of N-terminal and internal peptide sequences isolated from a commercial enzyme preparation, Biolacta®. Using the cloned gene, recombinant β-galactosidase and its deletion mutants were overexpressed as His-tagged proteins in Escherichia coli cells and the enzymes expressed were characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号