首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spb4 is a putative ATP-dependent RNA helicase that is required for proper processing of 27SB pre-rRNAs and therefore for 60S ribosomal subunit biogenesis. To define the timing of association of this protein with preribosomal particles, we have studied the composition of complexes that copurify with Spb4 tagged by tandem affinity purification (TAP-tagged Spb4). These complexes contain mainly the 27SB pre-rRNAs and about 50 ribosome biogenesis proteins, primarily components of early pre-60S ribosomal particles. To a lesser extent, some protein factors of 90S preribosomal particles and the 35S and 27SA pre-rRNAs also copurify with TAP-tagged Spb4. Moreover, we have obtained by site-directed mutagenesis an allele that results in the R360A substitution in the conserved motif VI of the Spb4 helicase domain. This allele causes a dominant-negative phenotype when overexpressed in the wild-type strain. Cells expressing Spb4(R360A) display an accumulation of 35S and 27SB pre-rRNAs and a net 40S ribosomal subunit defect. TAP-tagged Spb4(R360A) displays a greater steady-state association with 90S preribosomal particles than TAP-tagged wild-type Spb4. Together, our data indicate that Spb4 is a component of early nucle(ol)ar pre-60S ribosomal particles containing 27SB pre-rRNA. Apparently, Spb4 binds 90S preribosomal particles and dissociates from pre-60S ribosomal particles after processing of 27SB pre-rRNA.  相似文献   

2.
Eukaryotic ribosome maturation depends on a set of well ordered processing steps. Here we describe the functional characterization of yeast Nog2p (Ynr053cp), a highly conserved nuclear protein. Nog2p contains a putative GTP-binding site, which is essential in vivo. Kinetic and steady-state measurements of the levels of pre-rRNAs in Nog2p-depleted cells showed a defect in 5.8S and 25S maturation and a concomitant increase in the levels of both 27SB(S) and 7S(S) precursors. We found Nog2p physically associated with large pre-60S complexes highly enriched in the 27SB and 7S rRNA precursors. These complexes contained, besides a subset of ribosomal proteins, at least two additional factors, Nog1p, another putative GTP-binding protein, and Rlp24p (Ylr009wp), which belongs to the Rpl24e family of archaeal and eukaryotic ribosomal proteins. In the absence of Nog2p, the pre-60S ribosomal complexes left the nucleolus, but were retained in the nucleoplasm. These results suggest that transient, possibly GTP-dependent association of Nog2p with the pre-ribosomes might trigger late rRNA maturation steps in ribosomal large subunit biogenesis.  相似文献   

3.
The Has1 protein, a member of the DEAD-box family of ATP-dependent RNA helicases in Saccharomyces cerevisiae, has been found by different proteomic approaches to be associated with 90S and several pre-60S ribosomal complexes. Here, we show that Has1p is an essential trans-acting factor involved in 40S ribosomal subunit biogenesis. Polysome analyses of strains genetically depleted of Has1p or carrying a temperature-sensitive has1-1 mutation show a clear deficit in 40S ribosomal subunits. Analyses of pre-rRNA processing by pulse-chase labelling, Northern hybridization and primer extension indicate that these strains form less 18S rRNA because of inhibition of processing of the 35S pre-rRNA at the early cleavage sites A0, A1 and A2. Moreover, processing of the 27SA3 and 27SB pre-rRNAs is delayed in these strains. Therefore, in addition to its role in the biogenesis of 40S ribosomal subunits, Has1p is required for the optimal synthesis of 60S ribosomal subunits. Consistent with a role in ribosome biogenesis, Has1p is localized to the nucleolus. On sucrose gradients, Has1p is associated with a high-molecular-weight complex sedimenting at positions equivalent to 60S and pre-60S ribosomal particles. A mutation in the ATP-binding motif of Has1p does not support growth of a has1 null strain, suggesting that the enzymatic activity of Has1p is required in ribosome biogenesis. Finally, sequence comparisons suggest that Has1p homologues exist in all eukaryotes, and we show that a has1 null strain can be fully complemented by the Candida albicans homologue.  相似文献   

4.
Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.  相似文献   

5.
Ribosome synthesis involves the concomitance of pre-rRNA processing and ribosomal protein assembly. In eukaryotes, this is a complex process that requires the participation of specific sequences and structures within the pre-rRNAs, at least 200 trans-acting factors and the ribosomal proteins. There is little information on the function of individual 60S ribosomal proteins in ribosome synthesis. Herein, we have analysed the contribution of ribosomal protein L35 in ribosome biogenesis. In vivo depletion of L35 results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. Pulse-chase, northern hybridization and primer extension analyses show that processing of the 27SB to 7S pre-rRNAs is strongly delayed upon L35 depletion. Most likely as a consequence of this, release of pre-60S ribosomal particles from the nucleolus to the nucleoplasm is also blocked. Deletion of RPL35A leads to similar although less pronounced phenotypes. Moreover, we show that L35 assembles in the nucleolus and binds to early pre-60S ribosomal particles. Finally, flow cytometry analysis indicated that L35-depleted cells mildly delay the G1 phase of the cell cycle. We conclude that L35 assembly is a prerequisite for the efficient cleavage of the internal transcribed spacer 2 at site C2.  相似文献   

6.
Ribosome biogenesis requires >100 nonribosomal proteins, which are associated with different preribosomal particles. The substrates, the interacting partners, and the timing of action of most of these proteins are largely unknown. To elucidate the functional environment of the putative ATP-dependent RNA helicase Dbp6p from Saccharomyces cerevisiae, which is required for 60S ribosomal subunit assembly, we have previously performed a synthetic lethal screen and thereby revealed a genetic interaction network between Dbp6p, Rpl3p, Nop8p, and the novel Rsa3p. In this report, we extended the characterization of this functional network by performing a synthetic lethal screen with the rsa3 null allele. This screen identified the so far uncharacterized Npa1p (YKL014C). Polysome profile analysis indicates that there is a deficit of 60S ribosomal subunits and an accumulation of halfmer polysomes in the slowly growing npa1-1 mutant. Northern blotting and primer extension analysis shows that the npa1-1 mutation negatively affects processing of all 27S pre-rRNAs and the normal accumulation of both mature 25S and 5.8S rRNAs. In addition, 27SA(2) pre-rRNA is prematurely cleaved at site C(2). Moreover, GFP-tagged Npa1p localizes predominantly to the nucleolus and sediments with large complexes in sucrose gradients, which most likely correspond to pre-60S ribosomal particles. We conclude that Npa1p is required for ribosome biogenesis and operates in the same functional environment of Rsa3p and Dbp6p during early maturation of 60S ribosomal subunits.  相似文献   

7.
Ribosome biogenesis in eukaryotes depends on the coordinated action of ribosomal and nonribosomal proteins that guide the assembly of preribosomal particles. These intermediate particles follow a maturation pathway in which important changes in their protein composition occur. The mechanisms involved in the coordinated assembly of the ribosomal particles are poorly understood. We show here that the association of preribosomal factors with pre-60S complexes depends on the presence of earlier factors, a phenomenon essential for ribosome biogenesis. The analysis of the composition of purified preribosomal complexes blocked in maturation at specific steps allowed us to propose a model of sequential protein association with, and dissociation from, early pre-60S complexes for several preribosomal factors such as Mak11, Ssf1, Rlp24, Nog1, and Nog2. The presence of either Ssf1 or Nog2 in complexes that contain the 27SB pre-rRNA defines novel, distinct pre-60S particles that contain the same pre-rRNA intermediates and that differ only by the presence or absence of specific proteins. Physical and functional interactions between Rlp24 and Nog1 revealed that the assembly steps are, at least in part, mediated by direct protein-protein interactions.  相似文献   

8.
An extensive homology search based on the sequence of the yeast protein Brx1p (biogenesis of ribosomes in Xenopus, YOL077c) revealed that it is a member of a superfamily of proteins sharing remarkable sequence similarities. Previous work on Brx1p showed that this protein is involved in the process of ribosome biogenesis [Kaser et al., Biol. Chem. 382 (2001) 1637-1647]. Brx1p is the founding member of one of the five existing eukaryotic subfamilies which are all present in yeast. Four of them are represented by one essential gene each and one family is represented by two closely related genes which can functionally replace each other but are essential together for survival. We created conditional alleles of four of the five genes which allowed us to study the effect of depletion of the respective proteins on the ribosome profiles of the strains. In this study we show that not only Brx1p but also three additional superfamily members, namely YHR088w (Rpf1p), YKR081c (Rpf2p) and the homologous proteins Ssf1p (YHR066w)/Ssf2p (YDR312w) are all involved in the multistep process of the assembly of the large ribosomal subunit. This agrees well with the fact that these three proteins, like Brx1p, are located in the nucleolus. Moreover, all four proteins closely interact functionally, because all four mutants are suppressed by the same multicopy suppressor gene.  相似文献   

9.
Saccharomyces cerevisiae Rrs1p is a nuclear protein that is essential for the maturation of 25 S rRNA and the 60 S ribosomal subunit assembly. In two-hybrid screening, using RRS1 as bait, we have cloned YKR081c/RPF2. Rpf2p is essential for growth and is mainly localized in the nucleolus. The amino acid sequence of Rpf2p is highly conserved in eukaryotes from yeast to human. Similar to Rrs1p, Rpf2p shows physical interaction with ribosomal protein L11 and appears to associate with preribosomal subunits fairly tightly. Northern, methionine pulse-chase, and sucrose density gradient ultracentrifugation analyses reveal that the depletion of Rpf2p results in a delayed processing of pre-rRNA, a decrease of mature 25 S rRNA, and a shortage of 60 S subunits. An analysis of processing intermediates by primer extension shows that the Rpf2p depletion leads to an accumulation of 27 SB pre-rRNA, suggesting that Rpf2p is required for the processing of 27 SB into 25 S rRNA.  相似文献   

10.
Proteins Rpf2 and Rrs1 are required for 60S ribosomal subunit maturation. These proteins are necessary for the recruitment of three ribosomal components (5S ribosomal RNA [rRNA], RpL5 and RpL11) to the 90S ribosome precursor and subsequent 27SB pre-rRNA processing. Here we present the crystal structure of the Aspergillus nidulans (An) Rpf2-Rrs1 core complex. The core complex contains the tightly interlocked N-terminal domains of Rpf2 and Rrs1. The Rpf2 N-terminal domain includes a Brix domain characterized by similar N- and C-terminal architecture. The long α-helix of Rrs1 joins the C-terminal half of the Brix domain as if it were part of a single molecule. The conserved proline-rich linker connecting the N- and C-terminal domains of Rrs1 wrap around the side of Rpf2 and anchor the C-terminal domain of Rrs1 to a specific site on Rpf2. In addition, gel shift analysis revealed that the Rpf2-Rrs1 complex binds directly to 5S rRNA. Further analysis of Rpf2-Rrs1 mutants demonstrated that Saccharomyces cerevisiae Rpf2 R236 (corresponds to R238 of AnRpf2) plays a significant role in this binding. Based on these studies and previous reports, we have proposed a model for ribosomal component recruitment to the 90S ribosome precursor.  相似文献   

11.
The Saccharomyces cerevisiae gene RRP1 encodes an essential, evolutionarily conserved protein necessary for biogenesis of 60S ribosomal subunits. Processing of 27S pre-ribosomal RNA to mature 25S rRNA is blocked and 60S subunits are deficient in the temperature-sensitive rrp1-1 mutant. We have used recent advances in proteomic analysis to examine in more detail the function of Rrp1p in ribosome biogenesis. We show that Rrp1p is a nucleolar protein associated with several distinct 66S pre-ribosomal particles. These pre-ribosomes contain ribosomal proteins plus at least 28 nonribosomal proteins necessary for production of 60S ribosomal subunits. Inactivation of Rrp1p inhibits processing of 27SA(3) to 27SB(S) pre-rRNA and of 27SB pre-rRNA to 7S plus 25.5S pre-rRNA. Thus, in the rrp1-1 mutant, 66S pre-ribosomal particles accumulate that contain 27SA(3) and 27SB(L) pre-ribosomal RNAs.  相似文献   

12.
The essential, conserved yeast nucleolar protein Ytm1 is one of 17 proteins in ribosome assembly intermediates that contain WD40 protein-protein interaction motifs. Such proteins may play key roles in organizing other molecules necessary for ribosome biogenesis. Ytm1 is present in four consecutive 66S preribosomes containing 27SA2, 27SA3, 27SB, and 25.5S plus 7S pre-rRNAs plus ribosome assembly factors and ribosomal proteins. Ytm1 binds directly to Erb1 and is present in a heterotrimeric subcomplex together with Erb1 and Nop7, both within preribosomes and independently of preribosomes. However, Nop7 and Erb1 assemble into preribosomes prior to Ytm1. Mutations in the WD40 motifs of Ytm1 disrupt binding to Erb1, destabilize the heterotrimer, and delay pre-rRNA processing and nuclear export of preribosomes. Nevertheless, 66S preribosomes lacking Ytm1 remain otherwise intact.  相似文献   

13.
Ribosome biogenesis is a complex multistep process that involves alternating steps of folding and processing of pre-rRNAs in concert with assembly of ribosomal proteins. Recently, there has been increased interest in the roles of ribosomal proteins in eukaryotic ribosome biogenesis in vivo, focusing primarily on their function in pre-rRNA processing. However, much less is known about participation of ribosomal proteins in the formation and rearrangement of preribosomal particles as they mature to functional subunits. We have studied ribosomal proteins L7 and L8, which are required for the same early steps in pre-rRNA processing during assembly of 60S subunits but are located in different domains within ribosomes. Depletion of either leads to defects in processing of 27SA(3) to 27SB pre-rRNA and turnover of pre-rRNAs destined for large ribosomal subunits. A specific subset of proteins is diminished from these residual assembly intermediates: six assembly factors required for processing of 27SA(3) pre-rRNA and four ribosomal proteins bound to domain I of 25S and 5.8S rRNAs surrounding the polypeptide exit tunnel. In addition, specific sets of ribosomal proteins are affected in each mutant: In the absence of L7, proteins bound to domain II, L6, L14, L20, and L33 are greatly diminished, while proteins L13, L15, and L36 that bind to domain I are affected in the absence of L8. Thus, L7 and L8 might establish RNP structures within assembling ribosomes necessary for the stable association and function of the A(3) assembly factors and for proper assembly of the neighborhoods containing domains I and II.  相似文献   

14.
Assembly of eukaryotic ribosome is a complicated and dynamic process that involves a series of intermediates.It is unknown how the highly intertwined structure of 60S large ribosomal subunits is established.Here,we report the structure of an early nucleolar pre-60S ribosome determined by cryo-electron microscopy at 3.7 A resolution,revealing a half-assembled subunit.DomainsⅠ,ⅡandⅣof 25S/5.8S rRNA pack tightly into a native-like substructure,but domains Ⅲ,ⅣandⅤare not assembled.The structure contains 12 assembly factors and 19 ribosomal proteins,many of which are required for early processing of large subunit rRNA.The Brx1-Ebp2 complex would interfere with the assembly of domains Ⅳ and Ⅴ.Rpf1,Mak16,Nsa1 and Rrp1 form a cluster that consolidates the joining of domainsⅠandⅡ.Our structure reveals a key intermediate on the path to establishing the global architecture of 60S subunits.  相似文献   

15.
The pathway and complete collection of factors that orchestrate ribosome assembly are not clear. To address these problems, we affinity purified yeast preribosomal particles containing the nucleolar protein Nop7p and developed means to separate their components. Nop7p is associated primarily with 66S preribosomes containing either 27SB or 25.5S plus 7S pre-rRNAs. Copurifying proteins identified by mass spectrometry include ribosomal proteins, nonribosomal proteins previously implicated in 60S ribosome biogenesis, and proteins not known to be involved in ribosome production. Analysis of strains mutant for eight of these proteins not previously implicated in ribosome biogenesis showed that they do participate in this pathway. These results demonstrate that proteomic approaches in concert with genetic tools provide powerful means to purify and characterize ribosome assembly intermediates.  相似文献   

16.
17.
We report the characterization of the yeast Npa2p (Urb2p) protein, which is essential for 60S ribosomal subunit biogenesis. We identified this protein in a synthetic lethal screening with the rsa3 null allele. Rsa3p is a genetic partner of the putative RNA helicase Dbp6p. Mutation or depletion of Npa2p leads to a net deficit in 60S subunits and a decrease in the levels all 27S pre-rRNAs and mature 25S and 5.8S rRNAs. This is likely due to instability of early pre-60S particles. Consistent with a role of Npa2p in 60S subunit biogenesis, green fluorescent protein-tagged Npa2p localizes predominantly to the nucleolus and TAP-tagged Npa2p sediments with large complexes in sucrose gradients and is associated mainly with 27SA(2) pre-rRNA-containing preribosomal particles. In addition, we reveal a genetic synthetic interaction between Npa2p, several factors required for early steps of 60S subunit biogenesis (Dbp6p, Dbp7p, Dbp9p, Npa1p, Nop8p, and Rsa3p), and the 60S protein Rpl3p. Furthermore, coimmunoprecipitation and gel filtration analyses demonstrated that at least Npa2p, Dbp6p, Npa1p, Nop8p, and Rsa3p are present together in a subcomplex of low molecular mass whose integrity is independent of RNA. Our results support the idea that these five factors work in concert during the early steps of 60S subunit biogenesis.  相似文献   

18.
We report the characterization of a novel factor, Rsa4p (Ycr072cp), which is essential for the synthesis of 60S ribosomal subunits. Rsa4p is a conserved WD-repeat protein that seems to localize in the nucleolus. In vivo depletion of Rsa4p results in a deficit of 60S ribosomal subunits and the appearance of half-mer polysomes. Northern hybridization and primer extension analyses of pre-rRNA and mature rRNAs show that depletion of Rsa4p leads to the accumulation of the 27S, 25.5S and 7S pre-rRNAs, resulting in a reduction of the mature 25S and 5.8S rRNAs. Pulse–chase analyses of pre-rRNA processing reveal that, at least, this is due to a strong delay in the maturation of 27S pre-rRNA intermediates to mature 25S rRNA. Furthermore, depletion of Rsa4p inhibited the release of the pre-60S ribosomal particles from the nucleolus to the nucleoplasm, as judged by the predominantly nucleolar accumulation of the large subunit Rpl25-eGFP reporter construct. We propose that Rsa4p associates early with pre-60S ribosomal particles and provides a platform of interaction for correct processing of rRNA precursors and nucleolar release of 60S ribosomal subunits.  相似文献   

19.
The YlqF/YawG families are important GTPases involved in ribosome biogenesis, cell proliferation, or cell growth, however, no plant homologs have yet to be characterized. Here we isolated rice (Oryza sativa) and Arabidopsis nuclear/nucleolar GTPase 2 (OsNug2 and AtNug2, respectively) that belong to the YawG subfamily and characterized them for pre-60S ribosomal subunit maturation. They showed typical intrinsic YlqF/YawG family GTPase activities in bacteria and yeasts with k(cat) values 0.12 ± 0.007 min(-1) (n = 6) and 0.087 ± 0.002 min(-1) (n = 4), respectively, and addition of 60S ribosomal subunits stimulated their activities in vitro. In addition, OsNug2 rescued the lethality of the yeast nug2 null mutant through recovery of 25S pre-rRNA processing. By yeast two-hybrid screening five clones, including a putative one of 60S ribosomal proteins, OsL10a, were isolated. Subcellular localization and pulldown assays resulted in that the N-terminal region of OsNug2 is sufficient for nucleolar/nuclear targeting and association with OsL10a. OsNug2 is physically associated with pre-60S ribosomal complexes highly enriched in the 25S, 5.8S, and 5S rRNA, and its interaction was stimulated by exogenous GTP. Furthermore, the AtNug2 knockdown mutant constructed by the RNAi method showed defective growth on the medium containing cycloheximide. Expression pattern analysis revealed that the distribution of AtNug2 mainly in the meristematic region underlies its potential role in active plant growth. Finally, it is concluded that Nug2/Nog2p GTPase from mono- and didicotyledonous plants is linked to the pre-60S ribosome complex and actively processed 27S into 25S during the ribosomal large subunit maturation process, i.e. prior to export to the cytoplasm.  相似文献   

20.
Spb4p is a putative ATP-dependent RNA helicase that is required for synthesis of 60S ribosomal subunits. Polysome analyses of strains genetically depleted of Spb4p or carrying the cold-sensitive spb4-1 mutation revealed an underaccumulation of 60S ribosomal subunits. Analysis of pre-rRNA processing by pulse-chase labeling, northern hybridization, and primer extension indicated that these strains exhibited a reduced synthesis of the 25S/5.8S rRNAs, due to inhibition of processing of the 27SB pre-rRNAs. At later times of depletion of Spb4p or following transfer of the spb4-1 strain to more restrictive temperatures, the early pre-rRNA processing steps at sites A0, Al, and A2 were also inhibited. Sucrose gradient fractionation showed that the accumulated 27SB pre-rRNAs are associated with a high-molecular-weight complex, most likely the 66S pre-ribosomal particle. An HA epitope-tagged Spb4p is localized to the nucleolus and the adjacent nucleoplasmic area. On sucrose gradients, HA-Spb4p was found almost exclusively in rapidly sedimenting complexes and showed a peak in the fractions containing the 66S pre-ribosomes. We propose that Spb4p is involved directly in a late and essential step during assembly of 60S ribosomal subunits, presumably by acting as an rRNA helicase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号