首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 223 毫秒
1.

Background

Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood.

Principal Findings

Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction.

Conclusions

We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology.  相似文献   

2.
3.
The hepatitis C virus (HCV) nonstructural protein (NS) 5A is a phosphoprotein that associates with various cellular proteins and participates in the replication of the HCV genome. Human vesicle-associated membrane protein-associated protein (VAP) subtype A (VAP-A) is known to be a host factor essential for HCV replication by binding to both NS5A and NS5B. To obtain more information on the NS5A protein in HCV replication, we screened human brain and liver libraries by a yeast two-hybrid system using NS5A as bait and identified VAP-B as an NS5A-binding protein. Immunoprecipitation and mutation analyses revealed that VAP-B binds to both NS5A and NS5B in mammalian cells and forms homo- and heterodimers with VAP-A. VAP-A interacts with VAP-B through the transmembrane domain. NS5A interacts with the coiled-coil domain of VAP-B via 70 residues in the N-terminal and 341 to 344 amino acids in the C-terminal polyproline cluster region. NS5A was colocalized with VAP-B in the endoplasmic reticulum and Golgi apparatus. The specific antibody to VAP-B suppressed HCV RNA replication in a cell-free assay. Overexpression of VAP-B, but not of a mutant lacking its transmembrane domain, enhanced the expression of NS5A and NS5B and the replication of HCV RNA in Huh-7 cells harboring a subgenomic replicon. In the HCV replicon cells, the knockdown of endogenous VAP-B by small interfering RNA decreased expression of NS5B, but not of NS5A. These results suggest that VAP-B, in addition to VAP-A, plays an important role in the replication of the HCV genome.  相似文献   

4.
Recently, a production system for infectious particles of hepatitis C virus (HCV) utilizing the genotype 2a JFH1 strain has been developed. This strain has a high capacity for replication in the cells. Cyclosporine (CsA) has a suppressive effect on HCV replication. In this report, we characterize the anti-HCV effect of CsA. We observe that the presence of viral structural proteins does not influence the anti-HCV activity of CsA. Among HCV strains, the replication of genotype 1b replicons was strongly suppressed by treatment with CsA. In contrast, JFH1 replication was less sensitive to CsA and its analog, NIM811. Replication of JFH1 did not require the cellular replication cofactor, cyclophilin B (CyPB). CyPB stimulated the RNA binding activity of NS5B in the genotype 1b replicon but not the genotype 2a JFH1 strain. These findings provide an insight into the mechanisms of diversity governing virus-cell interactions and in the sensitivity of these strains to antiviral agents.  相似文献   

5.
Hepatitis C virus (HCV) NS5B protein has been shown to have RNA-dependent RNA polymerase (RdRp) activity by itself and is a key enzyme involved in viral replication. Using analyses with the yeast two-hybrid system and in vitro binding assay, we found that human eukaryotic initiation factor 4AII (heIF4AII), which is a component of the eIF4F complex and RNA-dependent ATPase/helicase, interacted with NS5B protein. These two proteins were shown to be partially colocalized in the perinuclear region. The binding site in HCV NS5B protein was localized within amino acid residues 495 to 537 near the C terminus. Since eIF4A has a helicase activity and functions in a bidirectional manner, the binding of HCV NS5B protein to heIF4AII raises the possibility that heIF4AII facilitates the genomic RNA synthesis of NS5B protein by unwinding the secondary structure of the HCV genome and is a host component of viral replication complex.  相似文献   

6.
Hepatitis C virus (HCV) is a major causative agent of hepatocellular carcinoma. HCV genome replication occurs in the replication complex (RC) around the endoplasmic reticulum membrane. However, the mechanisms regulating the HCV RC remain widely unknown. Here, we used a chemical biology approach to show that estrogen receptor (ESR) is functionally associated with HCV replication. We found that tamoxifen suppressed HCV genome replication. Part of ESRalpha resided on the endoplasmic reticulum membranes and interacted with HCV RNA polymerase NS5B. RNA interference-mediated knockdown of endogenous ESRalpha reduced HCV replication. Mechanistic analysis suggested that ESRalpha promoted NS5B association with the RC and that tamoxifen abrogated NS5B-RC association. Thus, ESRalpha regulated the presence of NS5B in the RC and stimulated HCV replication. Moreover, the ability of ESRalpha to regulate NS5B was suggested to serve as a potential novel target for anti-HCV therapeutics.  相似文献   

7.
The 65 kDa RNA-dependent RNA polymerase (NS5B), encoded by the hepatitis C virus (HCV) genome, is a key component involved in viral replication. Here we provide the direct evidence that purified HCV polymerase catalyzed de novo RNA synthesis in a primer-independent manner using homopolymers and HCV RNA as templates. The enzyme could utilize both polyC and polyU as templates for de novo RNA synthesis, suggesting that NS5B specifically recognized pyrimidine bases for initiation. More importantly, NS5B also catalyzed de novo RNA synthesis with an HCV RNA template; the resulting nascent RNA products, smaller than the template used, contained ATP as the first nucleotide. These results indicate that the newly synthesized RNAs did not result from template self-priming and suggest that a replication initiation site in the HCV RNA genome is a uridylate.  相似文献   

8.
More effective therapies are urgently needed against hepatitis C virus (HCV), a major cause of viral hepatitis. We used in vitro protein expression and microfluidic affinity analysis to study RNA binding by the HCV transmembrane protein NS4B, which plays an essential role in HCV RNA replication. We show that HCV NS4B binds RNA and that this binding is specific for the 3' terminus of the negative strand of the viral genome with a dissociation constant (Kd) of approximately 3.4 nM. A high-throughput microfluidic screen of a compound library identified 18 compounds that substantially inhibited binding of RNA by NS4B. One of these compounds, clemizole hydrochloride, was found to inhibit HCV RNA replication in cell culture that was mediated by its suppression of NS4B's RNA binding, with little toxicity for the host cell. These results yield new insight into the HCV life cycle and provide a candidate compound for pharmaceutical development.  相似文献   

9.
Nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) possesses an RNA-dependent RNA polymerase activity responsible for viral genome RNA replication. Despite several reports on the characterization of this essential viral enzyme, little is known about the reaction pathway of NS5B-catalyzed nucleotide incorporation due to the lack of a kinetic system offering efficient assembly of a catalytically competent polymerase/template/primer/nucleotide quaternary complex. In this report, specific template/primer requirements for efficient RNA synthesis by HCV NS5B were investigated. For intramolecular copy-back RNA synthesis, NS5B utilizes templates with an unstable stem-loop at the 3' terminus which exists as a single-stranded molecule in solution. A template with a stable tetraloop at the 3' terminus failed to support RNA synthesis by HCV NS5B. Based on these observations, a number of single-stranded RNA templates were synthesized and tested along with short RNA primers ranging from two to five nucleotides. It was found that HCV NS5B utilized di- or trinucleotides efficiently to initiate RNA replication. Furthermore, the polymerase, template, and primer assembled initiation-competent complexes at the 3' terminus of the template RNA where the template and primer base paired within the active site cavity of the polymerase. The minimum length of the template is five nucleotides, consistent with a structural model of the NS5B/RNA complex in which a pentanucleotide single-stranded RNA template occupies a groove located along the fingers subdomain of the polymerase. This observation suggests that the initial docking of RNA on NS5B polymerase requires a single-stranded RNA molecule. A unique beta-hairpin loop in the thumb subdomain may play an important role in properly positioning the single-stranded template for initiation of RNA synthesis. Identification of the template/primer requirements will facilitate the mechanistic characterization of HCV NS5B and its inhibitors.  相似文献   

10.
We have previously reported that the NS3 helicase (N3H) and NS5B-to-3′X (N5BX) regions are important for the efficient replication of hepatitis C virus (HCV) strain JFH-1 and viral production in HuH-7 cells. In the current study, we investigated the relationships between HCV genome replication, virus production, and the structure of N5BX. We found that the Q377R, A450S, S455N, R517K, and Y561F mutations in the NS5B region resulted in up-regulation of J6CF NS5B polymerase activity in vitro. However, the activation effects of these mutations on viral RNA replication and virus production with JFH-1 N3H appeared to differ. In the presence of the N3H region and 3′ untranslated region (UTR) of JFH-1, A450S, R517K, and Y561F together were sufficient to confer HCV genome replication activity and virus production ability to J6CF in cultured cells. Y561F was also involved in the kissing-loop interaction between SL3.2 in the NS5B region and SL2 in the 3′X region. We next analyzed the 3′ structure of HCV genome RNA. The shorter polyU/UC tracts of JFH-1 resulted in more efficient RNA replication than J6CF. Furthermore, 9458G in the JFH-1 variable region (VR) was responsible for RNA replication activity because of its RNA structures. In conclusion, N3H, high polymerase activity, enhanced kissing-loop interactions, and optimal viral RNA structure in the 3′UTR were required for J6CF replication in cultured cells.  相似文献   

11.
RNA-dependent RNA polymerase, NS5B protein, catalyzes replication of viral genomic RNA, which presumably initiates from the 3'-end. We have previously shown that NS5B can utilize the 3'-end 98-nucleotide (nt) X region of the hepatitis C virus (HCV) genome as a minimal authentic template. In this study, we used this RNA to characterize the mechanism of RNA synthesis by the recombinant NS5B. We first showed that NS5B formed a complex with the 3'-end of HCV RNA by binding to both the poly(U-U/C)-rich and X regions of the 3'-untranslated region as well as part of the NS5B-coding sequences. Within the X region, NS5B bound stem II and the single-stranded region connecting stem-loops I and II. Truncation of 40 nt or more from the 3'-end of the X region abolished its template activity, whereas X RNA lacking 35 nt or less from the 3'-end retained template activity, consistent with the NS5B-binding site mapped. Furthermore, NS5B initiated RNA synthesis from a specific site within the single-stranded loop I. All of the RNA templates that have a double-stranded stem at the 3'-end had the same RNA initiation site. However, the addition of single-stranded nucleotides to the 3'-end of X RNA or removal of double-stranded structure in stem I generated RNA products of template size. These results indicate that HCV NS5B initiates RNA synthesis from a single-stranded region closest to the 3'-end of the X region. These results have implications for the mechanism of HCV RNA replication and the nature of HCV RNA templates in the infected cells.  相似文献   

12.
Cai Z  Yi M  Zhang C  Luo G 《Journal of virology》2005,79(18):11607-11617
Hepatitis C virus (HCV) nonstructural protein 5B (NS5B) is the virus-encoded RNA-dependent RNA polymerase (RdRp) essential for HCV RNA replication. An earlier crystallographic study identified a rGTP-specific binding site lying at the surface between the thumb domain and the fingertip about 30 A away from the active site of the HCV RdRp (S. Bressanelli, L. Tomei, F. A. Rey, and R. De Francesco, J. Virol 76:3482-3492, 2002). To determine its physiological importance, we performed a systematic mutagenesis analysis of the rGTP-specific binding pocket by amino acid substitutions. Effects of mutations of the rGTP-specific binding site on enzymatic activity were determined by an in vitro RdRp assay, while effects of mutations on HCV RNA replication were examined by cell colony formation, as well as by transient replication of subgenomic HCV RNAs. Results derived from these studies demonstrate that amino acid substitutions of the rGTP-specific binding pocket did not significantly affect the in vitro RdRp activity of purified recombinant NS5B proteins, as measured by their abilities to synthesize RNA on an RNA template containing the 3' untranslated region of HCV negative-strand RNA. However, most mutations of the rGTP-specific binding site either impaired or completely ablated the ability of subgenomic HCV RNAs to induce cell colony formation. Likewise, these mutations caused either reduction in or lethality to transient replication of the human immunodeficiency virus Tat-expressing HCV replicon RNAs in the cell. Collectively, these findings demonstrate that the rGTP-specific binding site of the HCV NS5B is not required for in vitro RdRp activity but is important for HCV RNA replication in vivo.  相似文献   

13.
With the advent of subgenomic hepatitis C virus (HCV) replicons, studies of the intracellular steps of the viral replication cycle became possible. These RNAs are capable of self-amplification in cultured human hepatoma cells, but save for the genotype 2a isolate JFH-1, efficient replication of these HCV RNAs requires replication enhancing mutations (REMs), previously also called cell culture adaptive mutations. These mutations cluster primarily in the central region of non-structural protein 5A (NS5A), but may also reside in the NS3 helicase domain or at a distinct position in NS4B. Most efficient replication has been achieved by combining REMs residing in NS3 with distinct REMs located in NS4B or NS5A. However, in spite of efficient replication of HCV genomes containing such mutations, they do not support production of infectious virus particles. By using the genotype 1b isolate Con1, in this study we show that REMs interfere with HCV assembly. Strongest impairment of virus formation was found with REMs located in the NS3 helicase (E1202G and T1280I) as well as NS5A (S2204R), whereas a highly adaptive REM in NS4B still allowed virus production although relative levels of core release were also reduced. We also show that cells transfected with the Con1 wild type genome or the genome containing the REM in NS4B release HCV particles that are infectious both in cell culture and in vivo. Our data provide an explanation for the in vitro and in vivo attenuation of cell culture adapted HCV genomes and may open new avenues for the development of fully competent culture systems covering the therapeutically most relevant HCV genotypes.  相似文献   

14.
The hepatitis C virus (HCV) NS5B is an RNA-dependent RNA polymerase (RdRP), a central catalytic enzyme of HCV RNA replication. We previously identified five novel residues of NS5B in a JK-1 isolate indispensable for RdRP activity in vitro (Qin, W., Yamashita, T., Shirota, Y., Lin, Y., Wei, W., and Murakami, S. (2001) Hepatology 33, 728-737). We addressed the role of these residues in HCV RNA replication using a HCV replicon system derived from an M1LE isolate (Kishine, H., Sugiyama, K., Hijikata, M., Kato, N., Takahashi, H., Noshi, T., Nio, Y., Hosaka, M., Miyanari, Y., and Shimotohno, K. (2002) Biochem. Biophys. Res. Commun. 293, 993-999). The five residues of NS5B in M1LE were found to be critical for HCV replication in vivo and also indispensable for RdRP activity in vitro along with purified bacterial recombinant proteins. We also found a chimeric replicon of JK-1 and M1LE in which only the NS5B sequence derived from JK-1 could not replicate in Huh-7 cells. The residues responsible for the phenomenon were mapped by several chimeric and substituted forms of NS5B M1LE and/or JK-1 isolates in the HCV RNA replicon. Two residues, amino acids 220 and 288, were critical, and two residues, amino acids 213 and 231, were important for efficient HCV replication. Mutant JK-1 NS5B harboring all four residues of M1LE was replication-competent in the chimeric replicon and was as efficient as the original M1LE replicon. By comparing the replication competence in vivo and RdRP activity in vitro with various chimeric and mutated versions of NS5B, the HCV replication ability was found to correlate well with the RdRP activity. However, heat- and dilution-sensitive NS5Bs exhibiting weaker RdRP activity in vitro were found to be replication-incompetent, suggesting that HCV replication requires RdRP activity higher than a certain critical threshold.  相似文献   

15.
The hepatitis C virus (HCV) NS5B protein is the viral RNA-dependent RNA polymerase required for replication of the HCV RNA genome. We have identified a peptide that most closely resembles a short region of the protein kinase C-related kinase 2 (PRK2) by screening of a random 12-mer peptide library displayed on the surface of the M13 bacteriophage with NS5B proteins immobilized on microwell plates. Competitive phage enzyme-linked immunosorbent assay with a synthetic peptide showed that the phage clone displaying this peptide could bind HCV RNA polymerase with a high affinity. Coimmunoprecipitation and colocalization studies demonstrated in vivo interaction of NS5B with PRK2. In vitro kinase assays demonstrated that PRK2 specifically phosphorylates NS5B by interaction with the N-terminal finger domain of NS5B (amino acids 1-187). Consistent with the in vitro NS5B-phosphorylating activity of PRK2, we detected the phosphorylated form of NS5B by metabolic cell labeling. Furthermore, HCV NS5B immunoprecipitated from HCV subgenomic replicon cells was specifically recognized by an antiphosphoserine antibody. Knock-down of the endogenous PRK2 expression using a PRK2-specific small interfering RNA inhibited HCV RNA replication. In contrast, PRK2 overexpression, which was accompanied by an increase of in the level of its active form, dramatically enhanced HCV RNA replication. Altogether, our results indicate that HCV RNA replication is regulated by NS5B phosphorylation by PRK2.  相似文献   

16.
Hepatitis C virus (HCV) NS5B protein is the viral RNA-dependent RNA polymerase capable of directing RNA synthesis. In this study, an electrophoretic mobility shift assay demonstrated the interaction between a partially purified recombinant NS5B protein and a 3' viral genomic RNA with or without the conserved 98-nucleotide tail. The NS5B-RNA complexes were specifically competed away by the unlabeled homologous RNA but not by the viral 5' noncoding region and very poorly by the 3' conserved 98-nucleotide tail. A 3' coding region with conserved stem-loop structures rather than the 3' noncoding region of the HCV genome is critical for the specific binding of NS5B. Nevertheless, no direct interaction between the 3' coding region and the HCV NS5A protein was detected. Furthermore, two independent RNA-binding domains (RBDs) of NS5B were identified, RBD1, from amino acid residues 83 to 194, and RBD2, from residues 196 to 298. Interestingly, the conserved motifs of RNA-dependent RNA polymerase for putative RNA binding (220-DxxxxD-225) and template/primer position (282-S/TGxxxTxxxNS/T-292) are present in the RBD2. Nevertheless, the RNA-binding activity of RBD2 was abolished when it was linked to the carboxy-terminal half of the NS5B. These results provide some clues to understanding the initiation of HCV replication.  相似文献   

17.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) has been shown to antagonize numerous cellular pathways, including the antiviral interferon-alpha response. However, the capacity of this protein to interact with the viral polymerase suggests a more direct role for NS5A in genome replication. In this study, we employed two bacterially expressed, soluble derivatives of NS5A to probe for novel functions of this protein. We find that NS5A has the capacity to bind to the 3'-ends of HCV plus and minus strand RNAs. The high affinity binding site for NS5A in the 3'-end of plus strand RNA maps to the polypyrimidine tract, an element known to be essential for genome replication and infectivity. NS5A has a preference for single-stranded RNA containing stretches of uridine or guanosine. Values for the equilibrium dissociation constants for high affinity binding sites were in the 10 nM range. Two-dimensional gel electrophoresis followed by Western blotting revealed the presence of unphosphorylated NS5A in Huh-7 cells stably expressing the subgenomic replicon. Moreover, RNA immunoprecipitation and NS5A pull-down experiments showed the capacity of replicon-derived NS5A to bind to synthetic RNA and the HCV genome, respectively. Deletion of all of the casein kinase II phosphorylation sites in NS5A supported stable replication of a subgenomic replicon in Huh-7. However, this derivative could not be labeled with inorganic phosphate, suggesting that extensive phosphorylation of NS5A is not required for the replication functions of NS5A. The discovery that NS5A is an RNA-binding protein defines a new functional target for development of agents to treat HCV infection and a new structural class of RNA-binding proteins.  相似文献   

18.
RNA interference (RNAi) is a phenomenon in which small interfering RNA (siRNA), an RNA duplex 21 to 23 nucleotides (nt) long, or short hairpin RNA (shRNA) resembling siRNA, mediates degradation of the target RNA molecule in a sequence-specific manner. RNAi is now expected to be a useful therapeutic strategy for hepatitis C virus (HCV) infection. In the present study we compared the efficacy of a number of shRNAs directed against different target regions of the HCV genome, such as 5'-untranslated region (5'UTR) (nt 286 to 304), Core (nt 371 to 389), NS3-1 (nt 2052 to 2060), NS3-2 (nt 2104 to 2122), and NS5B (nt 7326 to 7344), all of which except for NS5B are conserved among most, if not all, HCV subtype 1b (HCV-1b) isolates in Japan. We utilized two methods to express shRNAs, one utilizing an expression plasmid (pAVU6+27) and the other utilizing a recombinant lentivirus harboring the pAVU6+27-derived expression cassette. Although 5'UTR has been considered to be the most suitable region for therapeutic siRNA and/or shRNA because of its extremely high degree of sequence conservation, we observed only a faint suppression of an HCV subgenomic replicon by shRNA against 5'UTR. In both plasmid-and lentivirus-mediated expression systems, shRNAs against NS3-1 and NS5B suppressed most efficiently the replication of the HCV replicon without suppressing host cellular gene expression. Synthetic siRNA against NS3-1 also inhibited replication of the HCV replicon in a dose-dependent manner. Taken together, the present results imply the possibility that the recombinant lentivirus expressing shRNA against NS3-1 would be a useful tool to inhibit HCV-1b infection.  相似文献   

19.
The hepatitis C virus (HCV) genotype 2a isolate JFH1 represents the only cloned HCV wild-type sequence capable of efficient replication in cell culture as well as in vivo. Previous reports have pointed to NS5B, the viral RNA-dependent RNA polymerase (RdRp), as a major determinant for efficient replication of this isolate. To understand the contribution of the JFH1 NS5B gene at the molecular level, we aimed at conferring JFH1 properties to NS5B from the closely related J6 isolate. We created intragenotypic chimeras in the NS5B regions of JFH1 and J6 and compared replication efficiency in cell culture and RdRp activity of the purified proteins in vitro, revealing more than three independent mechanisms conferring the role of JFH1 NS5B in efficient RNA replication. Most critical was residue I405 in the thumb domain of the polymerase, which strongly stimulated replication in cell culture by enhancing overall de novo RNA synthesis. A structural comparison of JFH1 and J6 at high resolution indicated a clear correlation of a closed-thumb conformation of the RdRp and the efficiency of the enzyme at de novo RNA synthesis, in accordance with the proposal that I405 enhances de novo initiation. In addition, we identified several residues enhancing replication independent of RdRp activity in vitro. The functional properties of JFH1 NS5B could be restored by a few single-nucleotide substitutions to the J6 isolate. Finally, we were able to enhance the replication efficiency of a genotype 1b isolate with the I405 mutation, indicating that this mechanism of action is conserved across genotypes.  相似文献   

20.
The hepatitis C virus (HCV) nonstructural protein 5B (NS5B) is believed to be the central catalytic enzyme responsible for HCV replication but there are many unanswered questions about how its activity is controlled. In this study we reveal that two other HCV proteins, NS3 (a protease/helicase) and NS4B (a hydrophobic protein of unknown function), physically and functionally interact with the NS5B polymerase. We describe a new procedure for generating highly pure NS4B, and use this protein in biochemical studies together with NS5B and NS3. To study the functional effects of the protein-protein interactions, we have developed an in vitro replication assay using the natural noncoding 3' regions of the respective positive ((+)-3'-untranslated region) and negative ((-)-3'-terminal region) RNA strands of the HCV genome. Our studies show that NS3 dramatically modulates template recognition by NS5B and changes the synthetic products generated by this enzyme. The use of an NTPase-deficient mutant form of NS3 demonstrates that the NTPase activity (and thus helicase activity) of this protein is specifically required for these effects. Moreover, NS4B is found to be a negative regulator of the NS3-NS5B replication complex. Overall, these results reveal that NS3, NS4B, and NS5B can interact to form a regulatory complex that could feature in the process of HCV replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号