首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We isolated a cDNA clone from Arabidopsis thaliana encoding the TCA cycle enzyme, citrate synthase. The plant enzyme displays 48% and 44% amino acid residue similarity with the pig, and yeast polypeptides, respectively. Many proteins, including citrate synthase, which are destined to reside in organelles such as mitochondria and chloroplasts, are the products of the nucleocytoplasmic protein synthesizing machinery and are imported post-translationally to the site of function. We present preliminary investigations toward the establishment of an in vitro plant mitochondrial import system allowing for future studies to dissect this process in plants where the cell must differentiate between mitochondria and chloroplast and direct their polypeptides appropriately.  相似文献   

2.
Myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1.) is in Brassicaceae species such as Brassica napus and Sinapis alba encoded by two differentially expressed gene families, MA and MB, consisting of about 4 and 10 genes, respectively. Southern blot analysis showed that Arabidopsis thaliana contains three myrosinase genes. These genes were isolated from a genomic library and two of them, TGG1 and TGG2, were sequenced. They were found to be located in an inverted mode with their 3 ends 4.4 kb apart. Their organization was highly conserved with 12 exons and 11 short introns. Comparison of nucleotide sequences of TGG1 and TGG2 exons revealed an overall 75% similarity. In contrast, the overall nucleotide sequence similarity in introns was only 42%. In intron 1 the unusual 5 splice border GC was used. Phylogenetic analyses using both distance matrix and parsimony programs suggested that the Arabidopsis genes could not be grouped with either MA or MB genes. Consequently, these two gene families arose only after Arabidopsis had diverged from the other Brassicaceae species. In situ hybridization experiments showed that TGG1 and TGG2 expressing cells are present in leaf, sepal, petal, and gynoecium. In developing seeds, a few cells reacting with the TGG1 probe, but not with the TGG2 probe, were found indicating a partly different expression of these genes.  相似文献   

3.
4.
A cDNA encoding for a 68 kDa GTP-binding protein was isolated from Arabidopsis thaliana (aG68). This clone is a member of a gene family that codes for a class of large GTP-binding proteins. This includes the mammalian dynamin, yeast Vps1p and the vertebrate Mx proteins. The predicted amino acid sequence was found to have high sequence conservation in the N-terminal GTP-binding domain sharing 54% identity to yeast Vps1p, 56% amino acid identity to rat dynamin and 38% identity to the murine Mx1 protein. The northern analysis shows expression in root, leaf, stem and flower tissues, but in mature leaves at lower levels. Southern analysis indicates that it may be a member of a small gene family or the gene may contain an intron.  相似文献   

5.
An Arabidopsis thaliana gene (UBC6) encoding a homologue to ubiquitin-conjugating enzymes has been isolated which is capable of encoding a protein of 183 amino acids of ca. 21 kDa. Northern analysis indicates that the gene is expressed in flowers, seeds and, to a somewhat lesser extent, in 10-day seedlings but not in mature leaves, callus and pre-flowering plants. This pattern of expression is confirmed using transgenic Arabidopsis plants containing a UBC6 promoter-GUS gene fusion construct. These plants displey GUS activity in mature anthers prior to dehiscence, in developing embryos, sepals and the style after pollination.  相似文献   

6.
Summary The gene family encoding the Arabidopsis thaliana translation elongation factor (EF-1) was analysed. This family contains four genes (A1-A4) organized in a similar manner in different varieties of Arabidopsis. Based upon both their physical separation and a comparison of their sequences, it is suggested that the A4 gene and the A1, A2, and A3 genes constitute two distinct subfamilies within the genome. By introducing chimaeric gene constructs into Arabidopsis cells, we showed that the Al gene promoter mediates a transient expression about twofold higher than that obtained using the CaMV 35 S promoter. This expression depends on a 348 by DNA fragment extending from –982 to –634 by upstream of the initiation codon. This element contains a characteristic telomeric sequence (AACCCTAA) which is also found in the promoters of the A2 and A4 genes as well as in the promoters of the Drosophila EF-1 F1 gene and of several highly expressed plant genes.  相似文献   

7.
The age of the Arabidopsis thaliana genome duplication   总被引:3,自引:0,他引:3  
We estimate the timing of the Arabidopsis thaliana whole-genome duplication by means of phylogenetic and statistical analysis, and propose two possible scenarios for the duplication. The first one, based on the assumption that the duplicated segments diverged from an autotetraploid form, places the duplication at about 38 million years ago, after the Arabidopsislineage diverged from that of soybean (Glycine max) and before it diverged from its sister genus, Brassica. The second scenario assumes that the ancestor was allotetraploid, and suggests that the duplication is younger than 38 million years and may have contributed to the Arabidopsis-Brassica divergence. In each case, our estimate places the age of the genome duplication as significantly younger than previously reported.  相似文献   

8.
Numerous Arabidopsis genes have been cloned that correspond to putative pathogen defense-related genes identified in parsley (Petroselinum crispum). Treatment of Arabidopsis cells with fungal elicitor leads to rapid accumulation of the respective mRNAs with time courses comparable to those observed for their counterparts in parsley. Evolutionary sequence conservation of many of these genes in several plant species suggests they code for important plant functions.  相似文献   

9.
10.
We have examined the expression of a maize nucleartuf gene(tufA) coding for the chloroplast translation elongation factor EF-Tu. Southern analysis revealed that the maize chloroplast EF-Tu was encoded by at least two distinct genes in the nuclear genome. In order to know the effect of light on the expression of thetufA gene during maize chloroplast biogenesis, we have analyzed the steady-state level of thetufA mRNAs by Northern analysis. The steady-state level of thetufA mRNAs was similar in both continuous light- and dark-grown seedlings. The level of thetufA mRNAs also maintained at relatively same level during light-induced greening of etiolated seedlings and all examined developmental stages. These results indicate that the gene expression of the maize chloroplast EF-Tu is rarely light-regulated at it’s mRNA level during chloroplast biogenesis.  相似文献   

11.
We have examined the cold-induced enhancement of freezing tolerance and expression of cold-regulated (cor) genes in Arabidopsis thaliana (L.) Heynh (Landsberg erecta) and abscisic acid (ABA)-deficient (aba) and ABA-insensitive (abi) mutants derived from it. The results indicate that the abi mutations had no apparent effect on freezing tolerance, while the aba mutations did: cold-acclimated aba mutants were markedly impaired in freezing tolerance compared to wild-type plants. In addition, it was observed that non-frozen leaves from both control and cold-treated aba mutant plants were more ion-leaky than those from corresponding wild-type plants. These data are consistent with previous observations indicating that ABA levels can affect freezing tolerance. Whether ABA has a direct role in the enhancement of freezing tolerance that occurs during cold acclimation, however, is uncertain. Several studies have suggested that ABA might mediate certain changes in gene expression that occur during cold acclimation. Our data indicate that the ABA-induced expression of three ABA-regulated Arabidopsis cor genes was unaffected in the abi2, abi3, and aba-1 mutants, but was dramatically impaired in the abi1 mutant. Cold-regulated expression of all three cor genes, however, was nearly the same in wild-type and abi1 mutant plants. These data suggest that the cold-regulated and ABA-regulated expression of the three cor genes may be mediated through independent control mechanisms.  相似文献   

12.
13.
Four new independent lines that exhibit co-suppression of an introduced cab140::tms2 gene and the native cab140 gene have been isolated in Arabidopsis thaliana. These lines are of particular interest because the homology shared between the introduced and native genes is 1.3 kb of promoter DNA that only contains 14 bp of transcribed region. Most other reported examples of co-suppression involve homologies between transcribed portions of genes. A similar line, lct, had been isolated previously from EMS-mutagenized seeds, and we concluded that this example of co-suppression was probably due to a mutation that mapped at or near the introduced cab140::tms2 gene [Brusslan JA, Karlin-Neumann GA, Huang L, Tobin EM: Plant Cell 5: 667–677 (1993)]. Our observations with these four new lines, however, suggest that an epigenetic event(s) rather than a mutation might be the cause of co-suppression in these and the lct line.  相似文献   

14.
Mitochondria contain a nuclear-encoded heat shock protein, HSP60, which functions as a chaperonin in the post-translational assembly of multimeric proteins encoded by both nuclear and mitochondrial genes. We have isolated and sequenced full-length complementary DNAs coding for this mitochondrial chaperonin in Arabidopsis thaliana and Zea mays. Southern-blot analysis indicates the presence of a single hsp60 gene in the genome of A. thaliana. There is a high degree of homology at the predicted amino acid levels (43 to 60%) between plant HSP60s and their homologues in prokaryotes and other eukaryotes which indicates that these proteins must have similar evolutionarily conserved functions in all organisms. Northern- and western-blot analyses indicate that the expression of the hsp60 gene is developmentally regulated during seed germination. It is also heat-inducible. Developmental regulation of the (-subunit) of F1-ATPase, an enzyme complex that is involved in the cyanide-sensitive mitochondrial electron transport system, indicates that imbibed embryos undergo rapid mitochondrial biogenesis through the early stages of germination. Based on the functional role of HSP60 in macromolecular assembly, these data collectively suggest that the presence of higher levels of HSP60 is necessary during active mitochondrial biogenesis, when the need for this protein is greatest in assisting the rapid assembly of the oligomeric protein structures.  相似文献   

15.
A gene encoding a proto-oncogene, a myb-related gene named Atmyb1, was cloned from Arabidopsis thaliana, and its nucleotide sequence was determined. The Atmyb1 gene contains an intron of 494 bp, and there are no highly homologous sequences present in the A. thaliana genome, but evidence was found that other myb-related genes exist. In the 5 flanking region, we found several typical cis-acting elements found in plant promoters. Sequence comparisons revealed that the ATMYB1 protein has a putative DNA-binding domain with two repeats of tryptophan clusters, which is common in MYB-related proteins in plants, while animal MYB-related proteins contain DNA-binding domains with three repeats of tryptophan clusters. The putative DNA-binding domain of the ATMYB1 protein has higher homology with that of the human c-MYB protein than with those of other plant MYB proteins.  相似文献   

16.
17.
18.
19.
Genes homologous to the auxin-inducible Nt103 glutathione S-transferase (GST) gene of tobacco, were isolated from a genomic library of Arabidopsis thaliana. We isolated a clone containing an auxin-inducible gene, At103-1a, and part of a constitutively expressed gene, At103-1b. The coding regions of the Arabidopsis genes were highly homologous to each other and to the coding region of the tobacco gene but distinct from the GST genes that have been isolated from arabidopsis thusfar. Overexpression of a cDNA clone in Escherichia coli revealed that the AT103-1A protein had GST activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号