首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The processes of membrane transport exhibiting permeability coefficients depending on the species activities do not obey the "independence principle" and are assumed to take place by a mechanism of discrete nature, analyzable by a kinetic formalism. In this article, we study the dependence of the osmotic permeability coefficient on the water activities, from the steady-state analysis of a kinetic model of single-file water transport that simultaneously incorporates the vacancy-mediated and "knock-on" mechanisms into the state diagram. In particular, we study the relation between the near-equilibrium osmotic permeability (Pe) and the equilibrium water activity of the compartments (w). The analysis and numerical calculations performed for a simple case of the model show that, for values of the parameters consistent with experimental data, Pe exhibits only a small variation with w within the physiological range in the majority of the situations considered here. It is not possible to predict, from the study of these simple models, whether more complicated kinetic diagrams of water transport may be characterized by permeability coefficients with a more evident dependence on the water activities. Nevertheless, the results obtained here suggest that, for the case of physiological water pores, the analysis of the kinetic dependence of the permeability coefficients on the water activities may not yield evidence pointing to a discrete nature for the transport process.  相似文献   

3.
In the search for the mechanisms whereby water is transported across biological membranes, we hypothesized that in the airways, the hydration of the periciliary fluid layer is regulated by luminal-to-basolateral water transport coupled to active transepithelial sodium transport. The luminal-to-basolateral (JWL-->B) and the basolateral-to-luminal (JWB-->L) transepithelial water fluxes across ovine tracheal epithelia were measured simultaneously. The JWL-->B (6.1 microliter/min/cm2) was larger than JWB-->L (4.5 microliter/min/cm2, p < 0.05, n = 30). The corresponding water diffusional permeabilities were PdL-->B = 1.0 x 10(-4) cm/s and PdB-->L = 7.5 x 10(-5) cm/s. The activation energy (Ea) of JWL-->B (11.6 kcal/mol) was larger than the Ea of JWB-->L (6.5 kcal/mol, p < 0.05, n = 5). Acetylstrophanthidin (100 microM basolateral) reduced JWL-->B from 6.1 to 4.4 microliter/min/cm2 (p < 0. 05, n = 5) and abolished the PD. Amiloride (10 microM luminal) reduced JWL-->B from 5.7 to 3.7 microliter/min/cm2 (p < 0.05, n = 5) and reduced PD by 44%. Neither of these agents significantly changed JWB-->L. These data indicate that in tracheal epithelia under homeostatic conditions, JWB-->L was dominated by diffusion (Ea = 4.6 kcal/mol), whereas approximately 30% of JWL-->B was coupled to the active Na+,K+-ATPase pump (Ea = 27 kcal/mol).  相似文献   

4.
Mechanism of electroporative dye uptake by mouse B cells.   总被引:3,自引:0,他引:3       下载免费PDF全文
The color change of electroporated intact immunoglobulin G receptor (Fc gammaR-) mouse B cells (line IIA1.6) after direct electroporative transfer of the dye SERVA blue G (Mr 854) into the cell interior is shown to be dominantly due to diffusion of the dye after the electric field pulse. Hence the dye transport is described by Fick's first law, where, as a novelty, time-integrated flow coefficients are introduced. The chemical-kinetic analysis uses three different pore states (P) in the reaction cascade (C <==> P1 <==> P2 <==> P3), to model the sigmoid kinetics of pore formation as well as the biphasic pore resealing. The rate coefficient for pore formation k(p) is dependent on the external electric field strength E and pulse duration tE. At E = 2.1 kV cm(-1) and tE = 200 micros, k(p) = (2.4 +/- 0.2) x 10(3) s(-1) at T = 293 K; the respective (field-dependent) flow coefficient and permeability coefficient are k(f)0 = (1.0 +/- 0.1) x 10(-2) s(-1) and P0 = 2 cm s(-1), respectively. The maximum value of the fractional surface area of the dye-conductive pores is 0.035 +/- 0.003%, and the maximum pore number is Np = (1.5 +/- 0.1) x 10(5) per average cell. The diffusion coefficient for SERVA blue G, D = 10(-6) cm2 s(-1), is slightly smaller than that of free dye diffusion, indicating transient interaction of the dye with the pore lipids during translocation. The mean radii of the three pore states are r(P1) = 0.7 +/- 0.1 nm, r(P2) = 1.0 +/- 0.1 nm, and r(P3) = 1.2 +/- 0.1 nm, respectively. The resealing rate coefficients are k(-2) = (4.0 +/- 0.5) x 10(-2) s(-1) and k(-3) = (4.5 +/- 0.5) x 10)(-3) s(-1), independent of E. At zero field, the equilibrium constant of the pore states (P) relative to closed membrane states (C) is K(p)0 = [(P)]/[C] = 0.02 +/- 0.002, indicating 2.0 +/- 0.2% water associated with the lipid membrane. Finally, the results of SERVA blue G cell coloring and the new analytical framework may also serve as a guideline for the optimization of the electroporative delivery of drugs that are similar in structure to SERVA blue G, for instance, bleomycin, which has been used successfully in the new discipline of electrochemotherapy.  相似文献   

5.

Background

The relation between osmotic permeability, Pf, diffusion permeability, Pd, and the number of water molecules, Np, in the single-file membrane pore remains an open question. Theoretical analyses, empirical studies on aquaporins and nanotubes, and molecular dynamics simulations have yet to provide a consensus view.

Results

This paper presents a new combinatorial analysis of the different pore states formed from water molecules and the presence of a vacancy that differs from the several previous combinatorial approaches to analyzing pore states. It is the first such analysis to show that Pf / Pd?=?Np. It is rooted in the concept of different classes of pore occupancy states, tracer states and tracer exit states, present in the pore. This includes pores with and without a single vacancy. The concepts of knock-on collisions and concerted Brownian fluctuations provide the mechanisms underlying the behaviors of the tracer and vacancy as each moves through the pore during osmotic or diffusive flow. It develops the important role of the knock-on collision mechanism for osmotic flow. An essential feature of the model is the presence, or absence, of a single vacancy in the pore. The vacancy slows down tracer translocation through the pore. Its absence facilitates osmotic flow.

Conclusions

The full pore states and the single vacancy states together with the knock-on and Brownian mechanisms account for the relative values of Pf and Pd during osmotic and diffusive flow through the single-file pore. The new approach to combinatorial analysis differs from previous approaches and is the first to show a simple intuitive basis for the relation Pf / Pd?=?Np. This resolves a long persisting dichotomy.
  相似文献   

6.
7.
In membranes containing aqueous pores (channels), the osmotic water permeability coefficient, P f, is greater than the diffusive water permeability coefficient, P d. In fact, the magnitude of P f/P d is commonly used to determine pore radius. Although, for membranes studied to date, P f/P d monotonically declines with decreasing pore radius, there is controversy over the value it theoretically assumes when that radius is so small that water molecules cannot overtake one another within the channel (single-file transport). In one view it should equal 1, and in another view it should equal N, the number of water molecules in the pore. Gramicidin A forms, in lipid bilayer membranes, narrow aqueous channels through which single-file transport may occur. For these channels we find that P f/P d approximately 5. In contrast, for the wider nystatin and amphotericin B pores, P f/P d approximately 3. These findings offer experimental support for the view that P f/P d = N for single-file transport, and we therefore conclude that there are approximately five water molecules in a gramicidin A channel. A similar conclusion was reached independently from streaming potential data. Using single-channel conductance data, we calculate the water permeability of an individual gramicidin A channel. In the Appendix we report that there is a wide range of channel sizes and lifetimes in cholesterol-containing membranes.  相似文献   

8.
Obese women have an increased risk to deliver large babies. However, the mechanisms underlying fetal overgrowth in these pregnancies are not well understood. Obese pregnant women typically have elevated circulating lipid levels. We tested the hypothesis that fatty acids stimulate placental amino acid transport, mediated via toll-like receptor 4 (TLR4) and mammalian target of rapamycin (mTOR) signaling pathways. Circulating NEFA levels and placental TLR4 expression were assessed in women with varying prepregnancy body mass index (BMI). The effects of oleic acid on system A and system L amino acid transport, and on the activation of the mTOR (4EBP1, S6K1, rpS6), TLR4 (IĸBɑ, JNK, p38 MAPK), and STAT3 signaling pathways were determined in cultured primary human trophoblast cells. Maternal circulating NEFAs (n = 33), but not placental TLR4 mRNA expression (n = 16), correlated positively with BMI (P < 0.05). Oleic acid increased trophoblast JNK and STAT3 phosphorylation (P < 0.05), whereas mTOR activity was unaffected. Furthermore, oleic acid doubled trophoblast system A activity (P < 0.05), without affecting system L activity. siRNA-mediated silencing of TLR4 expression prevented the stimulatory effect of oleic acid on system A activity. Our data suggest that maternal fatty acids can increase placental nutrient transport via TLR4, thereby potentially affecting fetal growth.  相似文献   

9.
Polyanionic 5'-cholesteryl-phosphorothioate oligodeoxynucleotides of varying polymer length and nucleobase composition were examined for an effect on methotrexate transport via the reduced-folate carrier of L1210 mouse cells. Methotrexate transport was inhibited by each of the oligodeoxynucleotide analogs tested. Inhibition was most pronounced (IC50 = 0.21 microM, standard assay) for a 5'-cholesteryl heteropolymer consisting of 15 phosphorothioate deoxynucleotides with alternating deoxycytosine and deoxyadenosine (Chol-PS-d(CA)7C). Homopolymers with 15 deoxycytosine (Chol-PS-dC15) or deoxythymidine (Chol-PS-dT15) residues were approximately 2-fold less inhibitory than Chol-PS-d(CA)7C. The relative potency of transport inhibition by deoxycytosine oligomers of varying length was: Chol-PS-dC5 > Chol-PS-dC15 > Chol-PS-dC28 > Chol-PS-dC3. Substantial inhibition was retained in cells preincubated with inhibitors and washed prior to transport determinations and the inhibitor sensitivity could be increased substantially by reducing the concentration of cells. Mixed competitive and non-competitive inhibition was observed for each analog. In standard high-folate medium, Chol-PS-oligodeoxynucleotides (5.0 microM) had minimal effects on the growth of L1210 cells, but antagonized the cytotoxicity of methotrexate. The response to methotrexate (IC50 = 12 nM) decreased to the greatest extent (20.8-fold) in the presence of Chol-PS-d(CA)7C (IC50 = 250 nM). Under limiting folate conditions, Chol-PS-d(CA)7C alone inhibited cells growth by a process which could be reversed by folic acid. The results show that Chol-PS-oligodeoxynucleotides are among the most potent known inhibitors of the reduced-folate carrier. Direct growth inhibition of folate-deficient cells and antagonism of methotrexate cytotoxicity indicate that Chol-PS-oligodeoxynucleotides retain the ability to inhibit the reduced-folate carrier for several days in cultured cells.  相似文献   

10.
Comparative simulations of aquaporin family: AQP1, AQPZ, AQP0 and GlpF   总被引:4,自引:0,他引:4  
Hashido M  Ikeguchi M  Kidera A 《FEBS letters》2005,579(25):5549-5552
Molecular dynamics simulations were performed for four members of the aquaporin family (AQP1, AQPZ, AQP0, and GlpF) in the explicit membrane environment. The single-channel water permeability, pf, was evaluated to be GlpF approximately AQPZ > AQP1 > AQP0, while their relative pore sizes were GlpF > AQP1 > AQPZ > AQP0. This relation between pf and pore size indicates that water permeability was determined not only by the channel radius, but also another competing factor. Analysis of water dynamics revealed that this factor was the single-file nature of water transport.  相似文献   

11.
Environmental enteric dysfunction (EED) is a subclinical condition of intestinal inflammation, barrier dysfunction and malabsorption associated with growth faltering in children living in poverty. This study explores association of altered duodenal permeability (lactulose, rhamnose and their ratio) with higher burden of enteropathogen in the duodenal aspirate, altered histopathological findings and higher morbidity (diarrhea) that is collectively associated with linear growth faltering in children living in EED endemic setting. In a longitudinal birth cohort, 51 controls (WHZ > 0, HAZ > −1.0) and 63 cases (WHZ< -2.0, refractory to nutritional intervention) were recruited. Anthropometry and morbidity were recorded on monthly bases up to 24 months of age. Dual sugar assay of urine collected after oral administration of lactulose and rhamnose was assessed in 96 children from both the groups. Duodenal histopathology (n = 63) and enteropathogen analysis of aspirate via Taqman array card (n = 60) was assessed in only cases. Giardia was the most frequent pathogen and was associated with raised L:R ratio (p = 0.068). Gastric microscopy was more sensitive than duodenal aspirate in H. pylori detection. Microscopically confirmed H. pylori negatively correlated with HAZ at 24 months (r = −0.313, p = 0.013). Regarding histopathological parameters, goblet cell reduction significantly correlated with decline in dual sugar excretion (p< 0.05). Between cases and controls, there were no significant differences in the median (25th, 75th percentile) of urinary concentrations (μg/ml) of lactulose [27.0 (11.50, 59.50) for cases vs. 38.0 (12.0, 61.0) for controls], rhamnose [66.0 (28.0, 178.0) vs. 86.5 (29.5, 190.5)] and L:R ratio [0.47 (0.24, 0.90) vs. 0.51 (0.31, 0.71)] respectively. In multivariable regression model, 31% of variability in HAZ at 24 months of age among cases and controls was explained by final model including dual sugars. In conclusion, enteropathogen burden is associated with altered histopathological features and intestinal permeability. In cases and controls living in settings of endemic enteropathy, intestinal permeability test may predict linear growth. However, for adoption as a screening tool for EED, further validation is required due to its complex intestinal pathophysiology.  相似文献   

12.
Using the methods described in the preceding paper (Levine et al., 1984) for measuring the magnitude of the water-permeable barriers in series with the luminal membrane, we correct measured values of Pd(w) in bladders stimulated with low doses of antidiuretic hormone (ADH) or 8-bromo cyclic AMP to obtain their true values in the luminal membrane. Simultaneously, we also determine Pf. We thus are able to calculate Pf/Pd(w) for the hormone-induced water permeation pathway in the luminal membrane. Our finding is that Pf/Pd(w) approximately equal to 17. Two channel models consistent both with this value and the impermeability of the ADH-induced water permeation pathway to small nonelectrolytes are: (a) a long (approximately equal to 50 A), small- radius (approximately equal to 2 A) pore through which 17 water molecules pass in single-file array, and (b) a shower-head-like structure in which the stem is long and of large radius (approximately equal to 20 A) and the cap has numerous short, small-radius (approximately equal to 2 A) pores. A third possibility is that whereas the selective permeability to H2O results from small-radius (approximately equal to 2 A) pores, the large value of Pf/Pd(w) arises from their location in the walls of long tubular vesicles (approximately 2 micron in length and 0.1 micron in diameter) that are functionally part of the luminal membrane after having fused with it. Aggregate-containing tubular vesicles of these dimensions have been reported to fuse with the luminal membrane in response to ADH stimulation and have been implicated in the ADH-induced hydroosmotic response.  相似文献   

13.
Permeability of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel to polyatomic anions of known dimensions was studied in stably transfected Chinese hamster ovary cells by using the patch clamp technique. Biionic reversal potentials measured with external polyatomic anions gave the permeability ratio (PX/PCl) sequence NO3 > Cl > HCO3 > formate > acetate. The same selectivity sequence but somewhat higher permeability ratios were obtained when anions were tested from the cytoplasmic side. Pyruvate, propanoate, methane sulfonate, ethane sulfonate, and gluconate were not measurably permeant (PX/PCl < 0.06) from either side of the membrane. The relationship between permeability ratios from the outside and ionic diameters suggests a minimum functional pore diameter of ∼5.3 Å. Permeability ratios also followed a lyotropic sequence, suggesting that permeability is dependent on ionic hydration energies. Site-directed mutagenesis of two adjacent threonines in TM6 to smaller, less polar alanines led to a significant (24%) increase in single channel conductance and elevated permeability to several large anions, suggesting that these residues do not strongly bind permeating anions, but may contribute to the narrowest part of the pore.  相似文献   

14.
While thiamin and riboflavin in breast milk have been analyzed for over 50 years, less attention has been given to the different forms of each vitamin. Thiamin-monophosphate (TMP) and free thiamin contribute to total thiamin content; flavin adenine-dinucleotide (FAD) and free riboflavin are the main contributors to total riboflavin. We analyzed milk collected at 2 (n = 258) or 6 (n = 104), and 24 weeks (n = 362) from HIV-infected Malawian mothers within the Breastfeeding, Antiretrovirals and Nutrition (BAN) study, randomly assigned at delivery to lipid-based nutrient supplements (LNS) or a control group, to investigate each vitamer’s contribution to total milk vitamin content and the effects of supplementation on the different thiamin and riboflavin vitamers at early and later stages of lactation, and obtain insight into the transport and distribution of these vitamers in human milk. Thiamin vitamers were derivatized into thiochrome-esters and analyzed by high-performance liquid-chromatography-fluorescence-detection (HPLC-FLD). Riboflavin and FAD were analyzed by ultra-performance liquid-chromatography-tandem-mass-spectrometry (ULPC-MS/MS). Thiamin-pyrophosphate (TPP), identified here for the first time in breast milk, contributed 1.9–4.5% to total thiamin. Free thiamin increased significantly from 2/6 to 24 weeks regardless of treatment indicating an active transport of this vitamer in milk. LNS significantly increased TMP and free thiamin only at 2 weeks compared to the control: median 170 versus 151μg/L (TMP), 13.3 versus 10.5μg/L (free thiamin, p<0.05 for both, suggesting an up-regulated active mechanism for TMP and free thiamin accumulation at early stages of lactation. Free riboflavin was consistently and significantly increased with LNS (range: 14.8–19.6μg/L (LNS) versus 5.0–7.4μg/L (control), p<0.001), shifting FAD:riboflavin relative amounts from 92–94:6–8% to 85:15%, indicating a preferred secretion of the free form into breast milk. The continuous presence of FAD in breast milk suggests an active transport and secretion system for this vitamer or possibly formation of this co-enymatic form in the mammary gland.  相似文献   

15.
A charge-pulse technique was designed to measure charge movements in the Na-transport mode of the Na,K-ATPase in membrane fragments adsorbed to a planar lipid bilayer with high time resolution. 1) Na+ transport was measured as a function of membrane potential, and 2) voltage-dependent extracellular ion binding and release were analyzed as a function of Na+ concentration and membrane potential. The results could be fitted and explained on the basis of a Post-Albers cycle by simulations with a mathematical model. The minimal reaction sequence explaining the electrogenicity of the pump consists of the following steps: (Na3)E1-P <--> P-E2(Na3) <--> P-E2(Na2) <--> P-E2(Na) <--> P-E2. The conformational change, E1 to E2, is electrogenic (beta 0 < or = 0.1) and the rate-limiting step of forward Na+ transport with a rate constant of 25 s-1 (T = 20 degrees C). The first ion release step, P-E2(Na3) <--> P-E2(Na2), is the major charge translocating process (delta 0 = 0.65). It is probably accompanied by a protein relaxation in which the access structure between aqueous phase and binding site reduces the dielectric distance. The release of the subsequent Na+ ions has a significantly lower dielectric coefficient (delta1 = delta 2 = 0.2). Compared with other partial reactions, the ion release rates are fast (1400 s-1, 700 s-1, and 4000 s-1). On the basis of these findings, a refined electrostatic model of the transport cycle is proposed.  相似文献   

16.
The aim of the present study was to assess the prevalence of Haemophilus influenzae type b (Hib) nasopharyngeal (NP) colonisation among healthy children where Hib vaccination using a 3p+0 dosing schedule has been routinely administered for 10 years with sustained coverage (> 90%). NP swabs were collected from 2,558 children who had received the Hib vaccine, of whom 1,379 were 12-< 24 months (m) old and 1,179 were 48-< 60 m old. Hi strains were identified by molecular methods. Hi carriage prevalence was 45.1% (1,153/2,558) and the prevalence in the 12-< 24 m and 48-< 60 m age groups were 37.5% (517/1,379) and 53.9% (636/1,179), respectively. Hib was identified in 0.6% (16/2,558) of all children in the study, being 0.8% (11/1,379) and 0.4% (5/1,179) among the 12-< 24 m and 48-< 60 m age groups, respectively. The nonencapsulate Hi colonisation was 43% (n = 1,099) and was significantly more frequent at 48-< 60 m of age (51.6%, n = 608) compared with that at 12-< 24 m of age (35.6%, n = 491). The overall resistance rates to ampicillin and chloramphenicol were 16.5% and 3.7%, respectively; the co-resistance was detected in 2.6%. Our findings showed that the Hib carrier rate in healthy children under five years was very low after 10 years of the introduction of the Hib vaccine.  相似文献   

17.
To study the pore-mediated transport of ionic species across a lipid membrane, a series of molecular dynamics simulations have been performed of a dipalmitoyl-phosphatidyl-choline bilayer containing a preformed water pore in the presence of sodium and chloride ions. It is found that the stability of the transient water pores is greatly reduced in the presence of the ions. Specifically, the binding of sodium cations at the lipid/water interface increases the pore line tension, resulting in a destabilization of the pore. However, the application of mechanical stress opposes this effect. The flux of ions through these mechanically stabilized pores has been analyzed. Simulations indicate that the transport of the ions through the pores depends strongly on the size of the water channel. In the presence of small pores (radius <1.5 nm) permeation is slow, with both sodium and chloride permeating at similar rates. In the case in which the pores are larger (radius >1.5 nm), a crossover is observed to a regime where the anion flux is greatly enhanced. Based on these observations, a mechanism for the basal membrane permeability of ions is discussed.  相似文献   

18.
H Qian 《Biophysical journal》1994,67(1):349-355
A simple thermodynamic formalism is presented to model the conformational transition between a random-coil monomeric peptide and a coiled-coil helical dimer. The coiled-coil helical dimer is the structure of a class of proteins also called leucine zipper, which has been studied intensively in recent years. Our model, which is appropriate particularly for short peptides, is an alternative to the theory developed by Skolnick and Holtzer. Using the present formalism, we discuss the multi-equilibriatory nature of this transition and provide an explanation for the apparent two-state behavior of coiled-coil formation when the helix-coil transition is coupled to dimerization. It is found that such coupling between multi-equilibria and a true two-state transition can simplify the data analysis, but care must be taken in using the overall association constant to determine helix propensities (w) of single residues. Successful use of the two-state model does not imply that the helix-coil transition is all-or-none. The all-or-none assumption can provide good numerical estimates when w is around unity (0.35 < or = w < or = 1.35), but when w is small (w < 0.01), similar estimations can lead to large errors. The theory of the helix-coil transition in denaturation experiments is also discussed.  相似文献   

19.
The purpose of this research was to identify amino acid residues that mediate substrate recognition in the lactose carrier of Escherichia coli. The lactose carrier transports the alpha-galactoside sugar melibiose as well as the beta-galactoside sugar lactose. Mutants from cells containing the lac genes on an F factor were selected by the ability to grow on succinate in the presence of the toxic galactoside beta-thio-o-nitrophenylgalactoside. Mutants that grew on melibiose minimal plates but failed to grow on lactose minimal plates were picked. In sugar transport assays, mutant cells showed the striking result of having low levels of lactose downhill transport but high levels of melibiose downhill transport. Accumulation (uphill) of melibiose was completely defective in all of the mutants. Kinetic analysis of melibiose transport in the mutants showed either no change or a greater than normal apparent affinity for melibiose. PCR was used to amplify the lacY DNA of each mutant, which was then sequenced by the Sanger method. The following six mutations were found in the lacY structural genes of individual mutants: Tyr-26-->Asp, Phe-27-->Tyr, Phe-29-->Leu, Asp-240-->Val, Leu-321-->Gln, and His-322-->Tyr. We conclude from these experiments that Tyr-26, Phe-27, Phe-29 (helix 1), Asp-240 (helix 7), Leu-321, and His-322 (helix 10) either directly or indirectly mediate sugar recognition in the lactose carrier of E. coli.  相似文献   

20.
The roles of acyl chain unsaturation and curvature in the excimer formation efficiency (EFE) of site-specific conjugated pyrene molecules in lipid membranes have been investigated by steady-state and time-resolved fluorescence spectroscopy. Six 1-2-(pyrenyl-n-acyl)-phosphatidylcholine (dipy(n)PC) probes, with pyrenyl chains of varying methylene units n from 4 to 14 carbons, were incorporated separately into dioleoylphosphatidylcholine (DOPC) or dioleoylphosphatidylethanolamine (DOPE) lipid membranes at 0.1 mol%. Both the excimer-to-monomer fluorescence intensity ratio and association-to-dissociation rate constant ratio of conjugated pyrenes were used to quantify EFE. At all temperatures (T = 0-30 degrees C) and for n = 4 and 6, the EFE for DOPE was always smaller than EFE for DOPC. At T < 10 degrees C (where DOPE and DOPC are in the liquid crystalline L alpha phase) and for n > 8, the EFE for curvature frustrated DOPE was significantly greater than EFE for nonfrustrated DOPC (control), and the difference increased gradually with n. At T> 18 degrees C (where DOPE is in the inverted hexagonal H(II) phase and DOPC is in the L alpha phase) and for n > 8, EFE for the curvature-relaxed DOPE was again smaller than the EFE for DOPC control. The contributions of splay conformation and internal dynamics of pyrenyl chains to EFE were examined separately using a lattice model. Our results suggest that i) the cis double bonds of the host lipid matrix strongly perturb both the conformation and dynamics of conjugated pyrenes at the specific location around n = 8, and ii) the lateral stress at the upper part (n < 8) of the curvature frustrated bilayer membranes (DOPE) may be significantly relaxed once the membrane surface adopts a favorable negative interfacial curvature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号