首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《Gene》1996,168(2):217-221
We have isolated 52 mouse cardiac troponin-T-encoding cDNA clones (TnT) by specific antibody screening of a λZAPII expression library. Sequencing data from the large sample of independent cDNAs demonstrated relationships among the expression of four alternatively-spliced exons of the cardiac TnT gene, producing seven classes of cDNAs encoding four protein isoforms differing in two variable regions. In the N-terminal variable region and next to the embryonic-specific exon 4, an alternatively spliced exon 3a was identified in 20% of the adult isoforms. The alternatively spliced exon 12, corresponding to a central variable region between the two functional domains of TnT, was found in approx. 79% of the 52 mouse cardiac TnT cDNAs with a single base mutation completely abolishing the splicing at an internal acceptor site. Three novel alternative splicing acceptor sites in the 5'-untranslated portion of exon 2 have been identified with different frequencies.  相似文献   

2.
Defects in the XPG DNA repair endonuclease gene can result in the cancer-prone disorders xeroderma pigmentosum (XP) or the XP-Cockayne syndrome complex. While the XPG cDNA sequence was known, determination of the genomic sequence was required to understand its different functions. In cells from normal donors, we found that the genomic sequence of the human XPG gene spans 30 kb, contains 15 exons that range from 61 to 1074 bp and 14 introns that range from 250 to 5763 bp. Analysis of the splice donor and acceptor sites using an information theory-based approach revealed three splice sites with low information content, which are components of the minor (U12) spliceosome. We identified six alternatively spliced XPG mRNA isoforms in cells from normal donors and from XPG patients: partial deletion of exon 8, partial retention of intron 8, two with alternative exons (in introns 1 and 6) and two that retained complete introns (introns 3 and 9). The amount of alternatively spliced XPG mRNA isoforms varied in different tissues. Most alternative splice donor and acceptor sites had a relatively high information content, but one has the U12 spliceosome sequence. A single nucleotide polymorphism has allele frequencies of 0.74 for 3507G and 0.26 for 3507C in 91 donors. The human XPG gene contains multiple splice sites with low information content in association with multiple alternatively spliced isoforms of XPG mRNA.  相似文献   

3.
cDNAs that code for mouse organic anion transporting polypeptide 2 (oatp2) have been cloned. At least three forms of mouse oatp2 cDNAs containing the same coding sequence were isolated. The common coding sequence is for a protein of 670 amino acids with 12 putative transmembrane domains. The deduced amino acid sequence of the mouse oatp2 shares 89% identity with the reported rat oatp2. Cloning and analysis of mouse oatp2 gene indicates that these isoforms are alternatively spliced products from the same gene. Heterogeneity was observed in the 5'-untranslated region of the cDNAs. Two of the three isoforms lacked the noncoding exon 3 sequence. Northern-blot hybridization analysis using the exon 3-specific probes demonstrated that mouse oatp2 mRNA containing exon 3 sequence is expressed in heart and lung, whereas exon 1-, 2-, and 17-specific probes detected mRNA only in brain and liver. The mouse oatp2 gene consists of 17 exons, including three noncoding exons, and 16 introns. All of the introns are flanked by GT-AG splice sequences except for intron 10 that is flanked by GC-AG splice sequence.  相似文献   

4.
5.
6.
López Ribera I  Puigdomènech P 《Gene》1999,240(2):1649-359
The maize genomic DNA sequence encoding the eukaryotic translation initiation factor 5 (eIF-5) has been isolated from genomic library of maize seedlings and the exon–intron structure determined (accession number AJ132240). The length of genomic DNA sequenced was about 7 kb and contained two exons with the translation start site in exon 2. The only intron is located in the non-coding 5′ region and it is 1298 bp long with the splice acceptor and donor sites conforming to the AG/GT rules. Repetitive sequence fragments are located in the 5′ and 3′ intergenic region. The accumulation of eIF-5 mRNA was studied by RNA blot and in situ hybridization. The observed distribution of mRNA may correlate with the function of the protein, as it appears to be highly abundant in tissues where the proportion of cells actively dividing is very high, such as meristematic regions.  相似文献   

7.
Huang QQ  Chen A  Jin JP 《Gene》1999,229(1-2):1-10
Three muscle type-specific troponin T (TnT) genes are present in vertebrate to encode a number of protein isoforms via alternative mRNA splicing. While the genomic structures of cardiac and fast skeletal muscle TnT genes have been documented, this study cloned and characterized the slow skeletal muscle TnT (sTnT) gene. Complete nucleotide sequence and genomic organization revealed that the mouse sTnT gene spans 11.1kb and contains 14 exons, which is smaller and simpler than the fast skeletal muscle and cardiac TnT genes. Potentially representing a prototype of the TnT gene family, the 5'-region of the sTnT gene contains fewer unsplit large exons, among which two alternatively spliced exons are responsible for the NH2-terminal variation of three sTnT isoforms. The sTnT gene structure shows that the alternatively spliced central segment found in human sTnT cDNAs may be a result from splicing using an alternative acceptor site at the intron 11-exon 12 boundary. Together with the well-conserved protein structure, the highly specific expression of sTnT in slow skeletal muscles indicates a differentiated function of this member of the TnT gene family. The determination of genomic structure and alternative splicing pathways of sTnT gene lays a foundation to further understand the TnT structure-function evolution as well as contractile characteristics of different types of muscle fiber.  相似文献   

8.
9.
Mammalian genes are characterized by relatively small exons surrounded by variable lengths of intronic sequence. Sequences similar to the splice signals that define the 5' and 3' boundaries of these exons are also present in abundance throughout the surrounding introns. What causes the real sites to be distinguished from the multitude of pseudosites in pre-mRNA is unclear. Much progress has been made in defining additional sequence elements that enhance the use of particular sites. Less work has been done on sequences that repress the use of particular splice sites. To find additional examples of sequences that inhibit splicing, we searched human genomic DNA libraries for sequences that would inhibit the inclusion of a constitutively spliced exon. Genetic selection experiments suggested that such sequences were common, and we subsequently tested randomly chosen restriction fragments of about 100 bp. When inserted into the central exon of a three-exon minigene, about one in three inhibited inclusion, revealing a high frequency of inhibitory elements in human DNA. In contrast, only 1 in 27 Escherichia coli DNA fragments was inhibitory. Several previously identified silencing elements derived from alternatively spliced exons functioned weakly in this constitutively spliced exon. In contrast, a high-affinity site for U2AF65 strongly inhibited exon inclusion. Together, our results suggest that splicing occurs in a background of repression and, since many of our inhibitors contain splice like signals, we suggest that repression of some pseudosites may occur through an inhibitory arrangement of these sites.  相似文献   

10.
11.
We report the cloning of a cDNA for the mouse unconventional myosin Myo9b, the orthologue of the rat myr5 and human MYOIXb genes. A full-length spleen cDNA of 7087 bp encoding a protein of 1961 amino acids was isolated. By RT–PCR, we show that Myo9b is expressed in a wide range of tissues, including heart, brain, muscle and inner ear. In addition, we have identified two alternatively spliced exons. Equivalent exons have not been previously reported for either the human or rat homologues. These exons are located in the Myo9b specific actin-binding site insert of the head domain and in the tail region. A third splice form utilizing an alternative reading frame within the 3′UTR is also described. Several polymorphisms within the coding region were identified; of interest is an in-frame 33 bp imperfect duplication within the tail region that was observed only in the C57Bl/6 strain. Myo9b has been previously mapped to mouse chromosome 8 and is a candidate for the mouse mutations myodystrophy and quinky.  相似文献   

12.
13.
The genes encoding mouse and human acetylcholinesterases have been cloned from genomic and cosmid libraries. Restriction analysis and a comparison of sequence with the cDNAs have defined the exon-intron boundaries. In mammals, three invariant exons encode the signal peptide and the amino-terminal 535 amino acids common to all forms of the enzyme whereas alternative exon usage of the next exon accounts for the structural divergence in the carboxyl termini of the catalytic subunits. mRNA protection studies show that the cDNA encoding the hydrophilic catalytic subunits represents the dominant mRNA species in mammalian brain and muscle whereas divergent mRNA species are evident in cells of hematopoietic origin (bone marrow cells and a erythroleukemia cell line). Analyses of mRNA species in these cells and the genomic sequence have enabled us to define two alternative exons in addition to the one found in the cDNAs; they encode unique carboxyl-terminal sequences. One mRNA consists of a direct extension through the intervening sequence between the common exon and the 3' exon deduced from the cDNA. This sequence encodes a subunit lacking the cysteine critical to oligomer formation. Another mRNA results from a splice that encodes a stretch of hydrophobic amino acids immediately upstream of a stop codon. This exon, when spliced to the upstream invariant exons, should encode glycophospholipid-linked species of the enzyme. Homologous sequence, identity of exon-intron junctions, and identity of position of the stop codon are seen for this region in mouse and human. Polymerase chain reactions carried out across the expected intron region and mRNA protection studies show that this splice occurs in mouse bone marrow and erythroleukemia cells yielding the appropriate cDNA.  相似文献   

14.
15.
16.
17.
Protein 4.1 is a globular 80-kDa component of the erythrocyte membrane skeleton that enhances spectrin–actin interaction via its internal 10-kDa domain. Previous studies have shown that protein 4.1 mRNA is expressed as multiple alternatively spliced isoforms, resulting from the inclusion or exclusion of small cassette sequences called motifs. By tissue screening for protein 4.1 isoforms, we have observed new features of an already complex pattern of alternative splicing within the spectrin/actin binding domain. In particular, we found a new 51-nt exon that is present almost exclusively in muscle tissue. In addition, we have isolated multiple genomic clones spanning over 200 kb, containing the entire erythroid and nonerythroid coding sequence of the human locus. The exon/intron structure has now been characterized; with the exception of a 17-nt motif, all of the alternatively spliced motifs correspond to individual exons. The 3′-untranslated region (UTR) has also been completely sequenced using various PCR and genomic-sequencing methods. The 3′ UTR, over 3 kb, accounts for one-half of the mature mRNA.  相似文献   

18.
19.
20.
Human internal exons have an average size of 147 nt, and most are <300 nt. This small size is thought to facilitate exon definition. A small number of large internal exons have been identified and shown to be alternatively spliced. We identified 1115 internal exons >1000 nt in the human genome; these were found in 5% of all protein-coding genes, and most were expressed and translated. Surprisingly, 40% of these were expressed at levels similar to the flanking exons, suggesting they were constitutively spliced. While all of the large exons had strong splice sites, the constitutively spliced large exons had a higher ratio of splicing enhancers/silencers and were more conserved across mammals than the alternatively spliced large exons. We asked if large exons contain specific sequences that promote splicing and identified 38 sequences enriched in the large exons relative to small exons. The consensus sequence is C-rich with a central invariant CA dinucleotide. Mutation of these sequences in a candidate large exon indicated that these are important for recognition of large exons by the splicing machinery. We propose that these sequences are large exon splicing enhancers (LESEs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号