首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The products resulting from reaction of cis-Pt(NH3)2Cl2 with d(CpCpGpG), d(GpCpG), d(pCpGpCpG), d(pGpCpGpC) and d(CpGpCpG) and from reaction of [Pt(dien)Cl]Cl with d(CpCpGpG) and d(GpCpG) have been characterized with the aid of proton NMR spectroscopy, circular dichroic spectroscopy and Pt analysis. The binding sites of the Pt compounds were determined by pH-dependent NMR spectroscopy. Binding of the two Pt compounds invariably occurs at the guanine N7 atoms. In all compounds containing [cis-Pt(NH3)2]2+ chelates are formed by coordination of platinum to two guanines of the same oligonucleotide. The resulting intrastrand-cross-linked oligonucleotides contain either d(GpG) . cisPt units, or d(GpCpG) . cisPt units. In the latter case the middle cytosine is not coordinated to platinum. As a result the conformational changes originating from these two chelates are different from each other. In the case of [Pt(dien)Cl]Cl as a starting product, two types of oligonucleotide adducts are formed, i.e. those with one Pt atom/molecule and those with two Pt atoms/molecule. The NMR spectra of the adducts containing only one Pt(dien)2+ show that only one adduct is formed, although two guanine bases are present. This indicates a preference for one of the N7 atoms in the molecule.  相似文献   

2.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

3.
The circular dichroism (CD) spectra of a series of DNA . platinum complexes are presented. The following platinum compounds, [Pt(dien)Cl]Cl, cis-Pt(NH3)2Cl2, cis-Pt(en)Cl2, trans-Pt-(NH3)2Cl2, K[Pt(NH3)Cl3] and K2[PtCl4] were complexed with the DNA extracted from bacteria Micrococcus lysodeikticus (72% dG + dC), Escherichia coli (50% dG + dC), Clostridium perfringens (32% dG + dC) and salmon sperm (41% dG + dC). Strong differences were found between the different DNA . Pt complexes. Three types of spectra clearly demonstrate the different platinum binding modes on DNA. In the first type, the platinum compound, i.e. [Pt(dien)Cl]Cl, is fixed to DNA with only one bond (monofunctional complex formation) and no significant change of the CD positive band of DNA is found. The main feature of the second type is a continuous intensity decrease of the positive band as observed for trans-Pt(NH3)2Cl2 (trans-bidentate complex formation). The third type concerns the cis-bidentate platinum fixation obtained with cis-Pt(NH3)2Cl2, cis-Pt(en)Cl2, K[Pt(NH3)Cl3] and K2[PtCl4]. The CD spectra are in this case characterized by an increase in the positive Cotton effect which is dG + dC-dependent up to an rb value around 0.10 (where rb = number of platinum atoms bound per nucleotide), followed by a decrease until DNA saturation with platinum is reached. A linear decrease in the amplitude of the negative band is detected in all the complexes except in the case of the monofunctional DNA . Pt complexes. For the cis-bidentate and trans-bidentate platinum fixation, a continuous bathochromic shift occurs.  相似文献   

4.
The reaction of [Pt(dien)Cl1Cl (dien = NH2CH2CH2NHCH2CH2NH2) with nucleotides has been studied by nuclear magnetic resonance. It has been found that the CMP (cytidine 5'-monophosp-ate) and GMP (guanosine 5'-monophosphate/coordinate to the platinum atom through N3 and N7, respectively. The reaction of the platinum salt with the nucleotide is complete when one to one ratio of platinum to nucleotide is used and no evidence of phosphate group binding to platinum has been found. No additional binding sites have been detected except the N7 site on the guanylic group of GMP even in the presence of a large excess of [Pt(dien) Cl1Cl. The AMP (adenosine 5'monophosphate] coordinates to the platinum at the N1 and/or N7 sites. The reaction of AMP and platinum is complete is complete at a ratio of four platinum to one AMP.  相似文献   

5.
The products of the reaction between [Pt(dien)Cl]Cl and salmon sperm DNA have been purified and their structures determined. [Pt(dien)Cl]Cl binds at the N7 position of guanine for levels of fixation below 0.1 platinum per DNA base. Above this level of binding, [Pt(dien)Cl]Cl also reacts at the N7 position of adenine. 1,7-[Pt(dien)]2Ade was observed when more than 0.3 platinum per base were bound to the DNA. Platination at the N7 position of guanosine, unlike alkylation, stabilized the glycosyl linkage and did not lead to fission of the imidazole ring at high pH.  相似文献   

6.
A comparative study of the binding of square planar cis- and trans-[Pt(NH3)2Cl2] complexes and the octahedral [Ru(NH3)5(H2O)]3+ complex to tRNAphe from yeast was carried out by X-ray crystallography. Both of the carcinostatic compounds, cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ show similarities in their mode of binding to tRNA. These complexes bind specifically to the N(7) positions of guanines G15 and G18 in the dihydrouridine loop. [Ru(NH3)5(H2O)]3+ has an additional binding site at N(7) of residue G1 after extensive soaking times (58 days). A noncovalent binding site for ruthenium is also observed in the deep groove of the acceptor stem helix with shorter (25 days) soaking time. The major binding site for the inactive trans-[Pt(NH3)Cl2] complex is at the N(1) position of residue A73, with minor trans-Pt binding sites at the N(7) positions of residues Gm34, G18 and G43. The similarities in the binding modes of cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ are expected to be related to their carcinostatic properties.  相似文献   

7.
Reaction products of 9-methyladenine (mAde) with [Pt(dien)Cl]Cl and cis-Pt(NH3)2Cl2 have been separated using CM-Sephadex C25 cation exchange chromatography. NMR and UV characteristics are presented; the platinum binding sites were established by studying the pH dependence of the 1H-NMR chemical shifts and of UV difference absorption. It is shown that the N 1 atom of the ligand can be protonated in Pt(mAde-N7) adducts, while the N7 atom can be protonated in Pt(mAde-N1).  相似文献   

8.
A high melting cis-[Pt(NH3)2[d(GpG)]]adduct of a decanucleotide duplex   总被引:2,自引:0,他引:2  
The [cis-Pt(NH3)2(d(GCCGGATCGC)-N7(4), N7(5))]-d(GCGATCCGGC) duplex has been prepared with Tm = 49 degrees C (vs 58 degrees C for the unplatinated form). NMR of the ten observable imino protons supports a kinked structure with intact base pairing of the duplex on the 3'-side of the d(GpG).cis-Pt chelate (relative to the platinated strand) The modification of the B-DNA type CD spectrum, due to the platinum chelate, is comparable to that observed for the platination (at a 0.05 Pt:base ratio) of the Micrococcus Lysodeikticus DNA (72% GC).  相似文献   

9.
N Farrell  Y Qu  L Feng  B Van Houten 《Biochemistry》1990,29(41):9522-9531
The properties of a new bis(platinum) complex containing two monodentate coordination spheres, [(trans-PtCl(NH3)2)2H2N(CH2)4NH2]Cl2 (1,1/t,t), are reported. Comparison is made with respect to chemical reactivity, in vitro biological activity in murine and tumor cells, DNA conformational changes, cross-linking efficiency, and sequence specificity between this complex and the previously reported complex containing two bidentate platinum atoms, [(Pt(mal)(NH3))2H2N(CH2)4NH2] (2,2/c,c), as well as with their respective monomeric analogues, [PtCl(dien)]Cl and cis-[PtCl2(NH3)2](cis-DDP). While both bis(platinum) complexes are active against cis-DDP-resistant cells, the monodentate bis(platinum) complex (1,1/t,t) has a lower resistance factor than the complex with bidentate coordination spheres (2,2/c,c). More importantly, this property is repeated in a human ovarian carcinoma cell line. DNA-binding studies show that DNA interstrand cross-linking is more efficient for the 1,1/t,t complex. DNA sequencing studies employing the exonuclease activity of T4-polymerase demonstrate that there are a variety of binding sites; some are common to all complexes and some common to both bis(platinum) complexes, while the monodentate 1,1/t,t species also reacts at unique sites, not attacked by any of the other complexes studied. The circular dichroism of CT DNA modified by the 1,1/t,t complex is also unique and is not seen for any of the other agents.  相似文献   

10.
The optical properties of the DNA complexes with divalent platinum compounds of the cis-diamine type differing both in the nature of anionic and neutral ligands and in the spatial arrangement about the platinum atom were studied. The platinum compounds cis-[Pt(NH3)2Cl2], [Pt(en)Cl2], [Pt(tetrameen)Cl2], cis-[Pt(NH3)2NO2Cl], and cis-[PtNH3(Bz)Cl2] at small values of r (r is the molar ratio of a platinum compound to DNA nucleotides in the reaction mixture) were found to induce an increase in the amplitude of the positive band in the circular dichroic (CD) spectrum of linear DNA. All the compounds listed except cis-[Pt(NH3)2NO2Cl] caused a sharp decrease of the amplitude of the negative band in the CD spectrum of a liquid crystalline microphase of DNA formed in solution in the presence of poly(ethylene glycol). All these platinum compounds (except [Pt(tetrameen)Cl2]) exhibit biological (antimitotic, antitumour, etc.) activity. The platinum compounds trans-[Pt(NH3)Cl2], trans-[Pt(NH3)2NO2Cl], cis-[PtNH3PyCl2], cis-[Pt(NH3)2(NO2)2], and [Pt(NH3)3Cl]Cl exhibiting a low (if any) biological activity, either induced a decrease of the amplitude of the positive band in the CD spectrum of linear DNA, or did not affect the CD spectrum at all. The effect of these platinum compounds on the CD spectrum of the liquid crystalline microphase of DNA was either weak or absent. It is assumed that the specific biological action of platinum compounds of the cis-diamine type is determined by the polydentate binding to DNA: in addition to the cis-bidentate covalent binding of platinum to DNA nitrogen bases, a hydrogen bond formation between the DNA and cis-amino ligands occurs by means of protons at nitrogen atoms.  相似文献   

11.
Duplex oligonucleotides containing a single intrastrand [Pt(NH3)2]2+ cross-link or monofunctional adduct and either 15 or 22 bp in length were synthesized and chemically characterized. The platinum-modified and unmodified control DNAs were polymerized in the presence of DNA ligase and the products studied on 8% native polyacrylamide gels. The extent of DNA bending caused by the various platinum-DNA adducts was revealed by their gel mobility shifts relative to unplatinated controls. The bifunctional adducts cis-[Pt(NH3)2[d(GpG)]]+, cis-[Pt(NH3)2[d(ApG)]]+, and cis-[Pt(NH3)2[d(G*pTpG*)]], where the asterisks denote the sites of platinum binding, all bend the double helix, whereas the adduct trans-[Pt(NH3)2[d(G*pTpG*)]] imparts a degree of flexibility to the duplex. When modified by the monofunctional adduct cis-[Pt(NH3)2(N3-cytosine)(dG)]Cl the helix remains rod-like. These results reveal important structural differences in DNAs modified by the antitumor drug cisplatin and its analogs that could be important in the biological processing of the various adducts in vivo.  相似文献   

12.
A factor has been identified in extracts from human HeLa and hamster V79 cells that retards the electrophoretic mobility of several DNA restriction fragments modified with the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin). Binding of the factor to cisplatin-modified DNA was sensitive to pretreatment with proteinase K, establishing that the factor is a protein. Gel mobility shifts were observed with probes containing as few as seven Pt atoms per kilobase of duplex DNA. By competition experiments the dissociation constant, Kd, of the protein from cisplatin-modified DNA was estimated to be (1-20) X 10(-10) M. Protein binding is selective for DNA modified with cisplatin, [Pt(en)Cl2] (en, ethylenediamine), and [Pt(dach)Cl2] (dach, 1,2-diaminocyclohexane) but not with chemotherapeutically inactive trans-diamminedichloroplatinum(II) or monofunctionally coordinating [Pt(dien)Cl]Cl (dien, diethylenetriamine) complexes. The protein also does not bind to DNA containing UV-induced photoproducts. The protein binds specifically to 1,2-intrastrand d(GpG) and d(ApG) cross-links formed by cisplatin, as determined by gel mobility shifts with synthetic 110-bp duplex oligonucleotides; these modified oligomers contained five equally spaced adducts of either cis-[Pt(NH3)2d(GpG) or cis-[Pt(NH3)2d(ApG)]. Oligonucleotides containing the specific adducts cis-[Pt(NH3)2d(GpTpG)], trans-[Pt(NH3)2d(GpTpG)], or cis-[Pt(NH3)2(N3-cytosine)d(G)] were not recognized by the protein. The apparent molecular weight of the protein is 91,000, as determined by sucrose gradient centrifugation of a preparation partially purified by ammonium sulfate fractionation. Binding of the protein to platinum-modified DNA does not require cofactors but is sensitive to treatment with 5 mM MnCl2, CdCl2, CoCl2, or ZnCl2 and with 1 mM HgCl2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The optical properties of the DNA complexes with the compounds of bivalent platinum were studied. The compounds differed by the nature of the anionic and neutral ligands and their spatial arrangement about the platinum atom. It was shown that the same as cis-[Pt (NH3)2Cl2] the platinum compounds with the biological activity, i.e. [Pt (en) Cl2], cis-[PtNH3 (Bz) Cl2] and cis-[Pt (NH3)2NO2Cl] induced at low values of r (a ratio of the number of the platinum moles added to the number of the DNA nucleotide moles in the solution) an increase in the amplitude of the positive band in the spectrum of the circular dichroism (CD) of the linear DNA and a marked decrease in the amplitude of the negative band in the spectrum of the CD of the liquid crystalline microphase of DNA formed in the presence of polyethyleneglycol. By the character of the action on the CD spectrum of the linear and condensed DNA [Pt (tetrameen)Cl2] which had no selective antimitotic effect might be referred to the above platinum compounds. Trans-[Pt (NH3)2NO2Cl], [PtNH3PyCl2], cis-[Pt (NH3)2(NO2)2] and [Pt (NH3)3Cl]Cl having no biological activity either induced only a decrease in the amplitude of the positive band in the CD spectrum of the linear DNA or had no effect on the CD spectrum. The effect of these compounds on the CD spectrum of the liquid crystalline microphase of DNA was slightly pronounced or not observed.  相似文献   

14.
6-methylated guanine dinucleotides were used to study the influence of hydrogen bonding on the specific binding of the antitumor drug cDDP, cis-PtCl2(NH3)2, to DNA. In this interaction, the guanine-06 site appears to be important in explaining the preference for a pGpG-N7(1),N7(2) chelate, which results from H-bridge formation with the ammine ligand of cDDP. Guanine-06 methylated dinucleotides and the nonmodified dinucleotides were reacted with [Pt(dien)Cl]+, cis-PtCl2(NH3)2, and cis-[Pt(NH3)2(H2O)2]2+ and the reaction products were characterized by 1H NMR using pH titrations. Methylation at guanine-06 clearly reduces the preference for the guanine. In competition experiments monitored by NMR and experiments using UV spectrophotometry a decreasing reactivity towards [Pt(dien)(H2O)]2+ and cis-[Pt(NH3)2(H2O)2]2+ was found, in the order of d(GpG) greater than d(GomepG) greater than d(GpGome) greater than d(GomepGome). The difference in reactivity between 5' guanine methylation and 3' guanine methylation is ascribed to differences in the H-bond formation with the backbone phosphate. The resulting reduced stacking of the bases in both modified dinucleotides, compared to the bases in d(GpG), results in a preference for the 3' guanine over 5'.  相似文献   

15.
The binding energies of nitrogen, oxygen, phosphorus, chlorine and Pt in several DNA - Pt (II) complexes are reported and discussed. The nitrogen band of DNA is slightly shifted upon complexation with Pt. Oxygen binding energies in the complexes studied clearly show that cis-Pt(NH3)2Cl2 forms a specific chelate N7(Gua) - O6 (Gua) with DNA as opposed to trans-Pt(NH3)2Cl2 and the other Pt compounds which react only with the N7(Gua) site of DNA.  相似文献   

16.
The enzyme fumarase is inhibited by [cis-Pt(NH3)2(H2O)2] (NO3)2. The Pt compound most likely binds at a S-methionine site. Sodium diethyldithiocarbamate (Naddtc) appears to be a powerful regenerator of enzymatic activity. Thiourea is less active, while sodium thiosulfate (STS) is almost inactive in restoring the activity of the enzyme. The regeneration phenomena are based on the dissociation of the Pt-S bonds of the methionine type, and formation of species like [Pt(ddtc)2]. In the model adduct [Pt(dien)GS-Me]2+ Naddtc, thiourea and STS easily break the Pt-S bond of the methionine type. It is concluded that the model system for Naddtc and thiourea does resemble fumarase quite well. S-donor ligands, which may be used as rescue agents in Pt antitumor therapy, are known to suppress nephrotoxicity caused by [cis-PtCl2(NH3)2]. A parallel is drawn between the enzyme reactivation, modeled by fumarase, and the [cis-PtCl2(NH3)2] nephrotoxicity suppression by rescue agents. It is proposed that a Pt-methionine type binding is broken by the rescue agents Naddtc and thiourea, but that the rescue agent STS only inhibits the nephrotoxicity by inactivating unbound Pt species in the cell.  相似文献   

17.
The nonamer 5'd(CTCAGCCTC) 3' 1 has been reacted with cis-diamminediaquaplatinum(II) in water at pH 4.2. The major reaction product was shown by enzymatic digestion and 1H NMR to be the d(ApG)cis-Pt(NH3)2 chelate [cis-Pt(NH3)2[d(CTCAGCCTC)-N7(4),N7(5)]] 1-Pt. When mixed with its complementary strand 2, 1-Pt forms a B DNA type duplex 3-Pt with a Tm of 35 degrees C (versus 58 degrees C for the unplatinated duplex). The NMR study of the exchangeable protons of 3-Pt revealed that the helix distortion is localized on the CA*G*-CTG moiety (the asterisks indicating the platinum chelation sites) with a strong perturbation of the A*(4)T(15) base pair related to a large tilt of A*(4).  相似文献   

18.
The distribution of platinum ions within Escherichia coli after the induction of filaments with cis-Pt(NH(3))(2)Cl(4), and after growth inhibition by PtCl(6) (2-), has been determined with radioactive metal compounds ((191)Pt, with a half-life of approximately 3 days) by the simple chemical procedure of Roberts et al. In the filamentous cells, the platinum metal is associated with metabolic intermediates, nucleic acids, and cytoplasmic proteins; whereas, in inhibited cells, the platinum is combined only with the cytoplasmic protein. Similar experiments with gram-positive cells of Bacillus cereus and Staphyloccus aureus, which show no filamentous growth in the presence of cis-Pt(NH(3))(2)Cl(4), reveal that the metal complex does penetrate the cell wall and subsequently becomes bound predominantly by metabolic intermediates.  相似文献   

19.
Proton NMR studies at 500 MHz in aqueous solution were carried out on the G-G chelated deoxytrinucleosidediphosphate platinum complex cis-Pt(NH3)2[d(GpCpG], on the uncoordinated trinucleotide d(GpCpG) and on the constituent monomers cis-Pt(NH3)2[d(Gp)]2, cis-Pt(NH3)2[d(pG)]2, d(Gp), d(pCp) and d(pG). Complete NMR spectral assignments are given and chemical shifts and coupling constants are analysed to obtain an impression of the detailed structure of d(GpCpG) and the distortion of the structure due to chelation with [cis-Pt(NH3)2]2+. Platination of the guanosine monophosphates affects the sugar conformational equilibrium to favour the N conformation of the deoxyribose ring. This feature is also apparent in ribose mononucleotides and is possibly caused by an increased anomeric effect. In cis-Pt(NH3)2[d(pG)]2 the phase angle of pseudorotation of the S-type sugar ring is 20 degrees higher than in 'free' d(pG) which might be an indication for an ionic interaction between the positive platinum and the negatively charged phosphate. It appears that d(GpCpG) reverts from a predominantly random coil to a normal right-handed B-DNA-like single-helical structure at lower temperatures, whereas the conformational features of cis-Pt(NH3)2[d(GpCpG)] are largely temperature-independent. In the latter compound much conformational freedom along the backbone angles is seen. The cytosine protons and deoxyribose protons exhibit almost no shielding effect as should normally be exerted by the guanine bases in stacking positions. This is interpreted in terms of a 'turning away' of the cytosine residue from both chelating guanines. Conformational features of cis-Pt(NH3)2[d(GpCpG)[ are compared with the 'bulge-out' of the ribose-trinucleotide m6(2)ApUpm6(2)A.  相似文献   

20.
The reactions of Na2PtCl4 with pyridine-2-carbaldehyde and 2-acetyl pyridine N(4)-ethyl-thiosemicarbazones, HFo4Et and HAc4Et respectively, afforded the complexes [Pt(Fo4Et)Cl], [Pt(HFo4Et)2]Cl2, [Pt(Fo4Et)2] and [Pt(Ac4Et)Cl], [Pt(HAc4Et)2]Cl2 x 2H2O, [Pt(Ac4Et)2]. The new complexes have been characterized by elemental analyses and spectroscopic studies. The crystal structure of the complex [Pt(Ac4Et)Cl] has been solved. The anion of Ac4E coordinates in a planar conformation to the central platinum(II) through the pyridyl N, azomethine N and thiolato S atoms. Intermolecular hydrogen, non-hydrogen bonds, pi-pi and weak Pt-pi contacts lead to aggregation and a supramolecular assembly. The cytotoxic activity for the platinum(II) complexes in comparison to that of cisplatin and thiosemicarbazones was evaluated in a pair of cisplatin-sensitive and -resistant ovarian cancer cell lines A2780 and A2780/Cp8. The platinum(II) complexes showed a cytotoxic potency in a very low micromolar range and were found able to overcome the cisplatin resistance of A2780/Cp8 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号