首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In earlier studies, we and others have established that activation of EGFR can promote survival in association with upregulation of Bcl-x(L). However, the mechanism responsible for upregulation of Bcl-x(L) is unknown. For the current studies we have chosen pro-apoptotic, c-Myc-overexpressing murine mammary epithelial cells (MMECs) derived from MMTV-c-Myc transgenic mouse tumors. We now demonstrate that EGFR activation promotes survival through Akt and Erk1/2. Blockade of EGFR kinase activity and the PI3-K/Akt and MEK/Erk pathways with pharmacological inhibitors resulted in a significant induction of cellular apoptosis, paralleled by a downregulation of both Akt and Erk1/2 proteins. Consistent with a survival-promoting role of Akt, we observed that constitutively activated Akt (Myr-Akt) inhibited apoptosis of pro-apoptotic, c-Myc-overexpressing cells following the inhibition of EGFR tyrosine kinase activity. In addressing possible downstream effectors of EGFR through activated Akt, we detected significant upregulation of Bcl-x(L) protein, suggesting this pro-survival protein is a target of Akt in MMECs. By using pharmacological inhibitors of PI3-K/Akt and MEK/Erk together with dominant-negative Akt and Erk1 we observed the decrease in Bcl-x(L) protein. Our findings may be of importance for understanding the emerging role of Bcl-x(L) as a potential marker of poor prognosis in breast cancer.  相似文献   

2.
Exposure of the skin to UVB light results in the formation of DNA photolesions that can give rise to cell death, mutations, and the onset of carcinogenic events. Specific proteins are activated by UVB and then trigger signal transduction pathways that lead to cellular responses. An alteration of these signaling molecules is thought to be a fundamental event in tumor promotion by UVB irradiation. RhoB, encoding a small GTPase has been identified as a DNA damage-inducible gene. RhoB is involved in epidermal growth factor (EGF) receptor trafficking, cytoskeletal organization, cell transformation, and survival. We have analyzed the regulation of RhoB and elucidated its role in the cellular response of HaCaT keratinocytes to relevant environmental UVB irradiation. We report here that the activated GTP-bound form of RhoB is increased rapidly within 5 min of exposure to UVB, and then RhoB protein levels increased concomitantly with EGF receptor (EGFR) activation. Inhibition of UVB-induced EGFR activation prevents RhoB protein expression and AKT phosphorylation but not the early activation of RhoB. Blocking UVB-induced RhoB expression with specific small interfering RNAs inhibits AKT and glycogen synthase kinase-3beta phosphorylation through inhibition of EGFR expression. Moreover, down-regulation of RhoB potentiates UVB-induced cell apoptosis. In contrast, RhoB overexpression protects keratinocytes against UVB-induced apoptosis. These results indicated that RhoB is regulated upon UVB exposure by a two-step process consisting of an early EGFR-independent RhoB activation followed by an EGFR-dependent induction of RhoB expression. Moreover, we have demonstrated that RhoB is essential in regulating keratinocyte cell survival after UVB exposure, suggesting its potential role in photocarcinogenesis.  相似文献   

3.
Paf (1-o-alkyl-2-acetyl-sn-gylcero-3-phosphocholine) is a putative autocrine survival factor for the preimplantation embryo. It acts to induce receptor-mediated calcium transients in the early embryo. Inhibitors of 1-o-phosphatidylinositol-3-kinase (PI3kinase), such as wortmannin and LY 294002, blocked these calcium transients, implicating the generation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in autocrine signal transduction in the early embryo. Perfusion of the embryo cytoplasm with a blocking antibody to PIP3 inhibited paf-induced calcium transients and hyperpolarization of the membrane potential. Furthermore, direct infusion of PIP3 into the embryo induced a nifedipine (10 micromol/L)- and diltiazem (10 micromol/L)-sensitive calcium current in the 2-cell embryo. PIP3 acts as a docking site on membranes for proteins that contain pleckstrin homology domains, such as the thymoma viral proto-oncogene protein (AKT) and phospholipase C gamma. The 2-cell embryo expressed three genes for AKT (Akt 1-3) and two genes for phospholipase C gamma (Plcg1 and Plcg2), and we confirmed the expression of both AKT and phospholipase C gamma 1 by immunolocalization. Paf induced increased accumulation of serine 473-phosphorylated AKT in the region of the plasma membrane, consistent with its recruitment to membrane PIP3. Inhibitors of PI3kinase, such as LY294002, and of AKT, e.g., deguelin and AKT-inhibitor, reduced zygote development in a dose-dependent manner, and this inhibition was partially reversed by the addition of paf to the culture medium. These results provide the first direct evidence that PIP3 and its responsive signaling pathways act in the 2-cell embryo. Since signal transduction via PI3kinase has important roles in governing the cell survival pathways, these results support the hypothesis that autocrine embryotropins, such as paf, act as survival factors.  相似文献   

4.
Bcl-x(S), a pro-apoptotic member of the Bcl-2 protein family, is localized in the mitochondrial outer membrane and induces caspase-dependent and nerve growth factor (NGF)-inhibitable apoptosis in PC12 cells. The mechanism of action of Bcl-x(S) and how NGF inhibits this death are not fully understood. It is still unknown whether Bcl-x(S) induces mitochondrial cytochrome c release, and which apoptotic step NGF inhibits. We show that Bcl-x(S) induces cytochrome c release and caspase-3 activation in several cell types, and that in PC12 cells, these events are inhibited by NGF treatment. The survival effect of NGF was inhibited by inhibitors of protein kinase C (PKC), phosphatidylinositol-3-kinase (PI 3-kinase), and the mitogen-activated protein kinase kinase (MEK) inhibitors GF109203X, LY294002, and U0126. These findings show that cytochrome c release and caspase-3 activation participate in Bcl-x(S)-induced apoptosis, and that NGF inhibits Bcl-x(S)-induced apoptosis at the mitochondrial level via the PKC, PI 3-kinase, and MEK signaling pathways.  相似文献   

5.
Regulation of proliferation and differentiation in keratinocyte is a complex and dynamic process that involves activation of multiple signaling pathways triggered by different growth factors. Keratinocyte growth factor (KGF) is not only a potent mitogen, but differently from other growth factors, is a potent inducer of differentiation. The MAP kinase and AKT pathways are involved in proliferation and differentiation of many cell types including keratinocytes. We investigated here the role of KGF in modulating AKT and MAPK activity during differentiation of human keratinocytes. Our results show that the mechanisms of action of KGF are dose-dependent and that a sustained activation of the MAPK signaling cascade causes a negative regulation of AKT. We also demostrated increasing expression of KGFR substrates, such as PAK4 during keratinocyte differentiation parallel to the receptor upregulation.  相似文献   

6.
Na(+) absorption is a vital process present in all living organisms. We have reported previously that lysophosphatidic acid (LPA) acutely stimulates Na(+) and fluid absorption in human intestinal epithelial cells and mouse intestine by stimulation of Na(+)/H(+) exchanger 3 (NHE3) via LPA(5) receptor. In the current study, we investigated the mechanism of NHE3 activation by LPA(5) in Caco-2bbe cells. LPA(5)-dependent activation of NHE3 was blocked by mitogen-activated protein kinase kinase (MEK) inhibitor PD98059 and U0126, but not by phosphatidylinositol 3-kinase inhibitor LY294002 or phospholipase C-β inhibitor U73122. We found that LPA(5) transactivated the epidermal growth factor receptor (EGFR) and that inhibition of EGFR blocked LPA(5)-dependent activation of NHE3, suggesting an obligatory role of EGFR in the NHE3 regulation. Confocal immunofluorescence and surface biotinylation analyses showed that LPA(5) was located mostly in the apical membrane. EGFR, on the other hand, showed higher expression in the basolateral membrane. However, inhibition of apical EGFR, but not basolateral EGFR, abrogated LPA-induced regulation of MEK and NHE3, indicating that LPA(5) selectively activates apical EGFR. Furthermore, transactivation of EGFR independently activated the MEK-ERK pathway and proline-rich tyrosine kinase 2 (Pyk2). Similarly to MEK inhibition, knockdown of Pyk2 blocked activation of NHE3 by LPA. Furthermore, we showed that RhoA and Rho-associated kinase (ROCK) are involved in activation of Pyk2. Interestingly, LPA(5) did not directly activate RhoA but was required for transactivation of EGFR. Together, these results unveil a pivotal role of apical EGFR in NHE3 regulation by LPA and show that the RhoA-ROCK-Pyk2 and MEK-ERK pathways converge onto NHE3.  相似文献   

7.
Ligand-induced internalization of the epidermal growth factor receptor (EGFR) is an important process for regulating signal transduction, cellular dynamics, and cell-cell communication. Here, we demonstrate that nonmuscle myosin II (NM II) is required for the internalization of the EGFR and to trigger the EGFR-dependent activation of ERK and AKT. The EGFR was identified as a protein that interacts with NM II by co-immunoprecipitation and mass spectrometry analysis. This interaction requires both the regulatory light chain 20 (RLC20) of NM II and the kinase domain of the EGFR. Two paralogs of NM II, NM II-A, and NM II-B can act to internalize the EGFR, depending on the cell type and paralog content of the cell line. Loss (siRNA) or inhibition (25 μm blebbistatin) of NM II attenuates the internalization of the EGFR and impairs EGFR-dependent activation of ERK and AKT. Both internalization of the EGFR and downstream signaling to ERK and AKT can be partially restored in siRNA-treated cells by introduction of wild type (WT) GFP-NM II, but cannot be restored by motor mutant NM II. Taken together, these results suggest that NM II plays a role in the internalization of the EGFR and EGFR-mediated signaling pathways.  相似文献   

8.
Two splice variants derived from the Bcl-x gene via alternative 5' splice site selection (5'SS) are proapoptotic Bcl-x(s) and antiapoptotic Bcl-x(L). Previously, our laboratory showed that apoptotic signaling pathways regulated the alternative 5'SS selection via protein phosphatase-1 and de novo ceramide. In this study, we examined the elusive prosurvival signaling pathways that regulate the 5'SS selection of Bcl-x pre-mRNA in cancer cells. Taking a broad-based approach by using a number of small-molecule inhibitors of various mitogenic/survival pathways, we found that only treatment of non-small cell lung cancer (NSCLC) cell lines with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (50 μmol/L) or the pan-protein kinase C (PKC) inhibitor G?6983 (25 μmol/L) decreased the Bcl-x(L)/(s) mRNA ratio. Pan-PKC inhibitors that did not target the atypical PKCs, PKCι and PKCζ, had no effect on the Bcl-x(L)/(s) mRNA ratio. Additional studies showed that downregulation of the proto-oncogene, PKCι, in contrast to PKCζ, also resulted in a decrease in the Bcl-x(L)/(s) mRNA ratio. Furthermore, downregulation of PKCι correlated with a dramatic decrease in the expression of SAP155, an RNA trans-acting factor that regulates the 5'SS selection of Bcl-x pre-mRNA. Inhibition of the PI3K or atypical PKC pathway induced a dramatic loss of SAP155 complex formation at ceramide-responsive RNA cis-element 1. Finally, forced expression of Bcl-x(L) "rescued" the loss of cell survival induced by PKCι siRNA. In summary, the PI3K/PKCι regulates the alternative splicing of Bcl-x pre-mRNA with implications in the cell survival of NSCLC cells.  相似文献   

9.
Rat liver epithelial cells were exposed to three quinones with different properties: menadione (2-methyl-1,4-naphthoquinone, vitamin K3), an alkylating as well as redox-cycling quinone, the strongly alkylating p-benzoquinone (BQ), and the non-arylating redox-cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). All three quinones induced the activation of extracellular signal-regulated kinase (ERK) 1 and ERK 2 via the activation of epidermal growth factor receptor (EGFR) and MAPK/ERK kinases (MEK) 1/2. ERK activation resulted in phosphorylation at Ser-279 and Ser-282 of the gap junctional protein, connexin-43, known to result in the loss of gap junctional intercellular communication. Another EGFR-dependent pathway was stimulated, leading to the activation of the antiapoptotic kinase Akt via phosphoinositide 3-kinase. The activation of EGFR-dependent signaling by these quinones was by different mechanisms: (i) menadione, but not BQ or DMNQ, inhibited a protein-tyrosine phosphatase regulating the EGFR, as concluded from an EGFR dephosphorylation assay; (ii) although menadione-induced activation of ERK was unimpaired by pretreatment of cells with N-acetyl cysteine, activation by BQ and DMNQ was prevented; (iii) cellular glutathione (GSH) levels were strongly depleted by BQ. The mere depletion of GSH by application of diethyl maleate EGFR-dependently activated ERK and Akt, thus mimicking BQ effects. GSH levels were only moderately decreased by menadione and not affected by DMNQ. In summary, EGFR-dependent signaling was mediated by protein-tyrosine phosphatase inactivation (menadione), GSH depletion (BQ), and redox-cycling (DMNQ), funneling into the same signaling pathway.  相似文献   

10.
11.
Bladder cancer evolves via the accumulation of numerous genetic alterations, with loss of p53 and p16 function representing key events in the development of malignant disease. In addition, components of the epidermal growth factor receptor (EGFR) signaling pathway are frequently overexpressed, providing potential chemotherapeutic targets. We have previously described the generation of "paramalignant" human urothelial cells with disabled p53 or p16 functions. In this study, we investigated the relative responses of normal, paramalignant, and malignant human urothelial cells to EGFR tyrosine kinase inhibitors (PD153035 and GW572016), a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) kinase (MEK) inhibitor (U0126), and a phosphatidylinositol 3-kinase inhibitor (LY294002). The proliferation of normal human urothelial cells was dependent on signaling via the EGFR and MEK pathways and was abolished reversibly by inhibitors of EGFR or downstream MEK signaling pathways. Inhibitors of phosphatidylinositol 3-kinase resulted in only transient cytostasis, which was most likely mediated via cross-talk with the MEK pathway. These responses were maintained in cells with disabled p16 function, whereas cells with loss of p53 function displayed reduced sensitivity to PD153035 and malignant cell lines were the most refractory to PD153035 and U0126. These results indicate that urothelial cells acquire insensitivity to inhibitors of EGFR signaling pathways as a result of malignant transformation. This has important implications for the use of EGFR inhibitors for bladder cancer therapy, as combination treatments with conventional chemotherapy or radiotherapy may protect normal cells and enable better selective targeting of malignant cells.  相似文献   

12.
To better understand the roles of TGF-β in bone metabolism, we investigated osteoclast survival in response TGF-β and found that TGF-β inhibited apoptosis. We examined the receptors involved in promotion of osteoclast survival and found that the canonical TGF-β receptor complex is involved in the survival response. The upstream MEK kinase TAK1 was rapidly activated following TGF-β treatment. Since osteoclast survival involves MEK, AKT, and NFκB activation, we examined TGF-β effects on activation of these pathways and observed rapid phosphorylation of MEK, AKT, IKK, IκB, and NFκB. The timing of activation coincided with SMAD activation and dominant negative SMAD expression did not inhibit NFκB activation, indicating that kinase pathway activation is independent of SMAD signaling. Inhibition of TAK1, MEK, AKT, NIK, IKK, or NFκB repressed TGF-β-mediated osteoclast survival. Adenoviral-mediated TAK1 or MEK inhibition eliminated TGF-β-mediated kinase pathway activation and constitutively active AKT expression overcame apoptosis induction following MEK inhibition. TAK1/MEK activation induces pro-survival BclXL expression and TAK1/MEK and SMAD pathway activation induces pro-survival Mcl-1 expression. These data show that TGF-β-induced NFκB activation is through TAK1/MEK-mediated AKT activation, which is essential for TGF-β to support of osteoclast survival.  相似文献   

13.
Two Ras effector pathways leading to the activation of Raf-1 and phosphatidylinositol 3-kinase (PI3K) have been implicated in the survival signaling by the interleukin 3 (IL-3) receptor. Analysis of apoptosis suppression by Raf-1 demonstrated the requirement for mitochondrial translocation of the kinase in this process. This could be achieved either by overexpression of the antiapoptotic protein Bcl-2 or by targeting Raf-1 to the mitochondria via fusion to the mitochondrial protein Mas p70. Mitochondrially active Raf-1 is unable to activate extracellular signal-related kinase 1 (ERK1) and ERK2 but suppresses cell death by inactivating the proapoptotic Bcl-2 family member BAD. However, genetic and biochemical data also have suggested a role for the Raf-1 effector module MEK-ERK in apoptosis suppression. We thus tested for MEK requirement in cell survival signaling using the interleukin 3 (IL-3)-dependent cell line 32D. MEK is essential for survival and growth in the presence of IL-3. Upon growth factor withdrawal the expression of constitutively active MEK1 mutants significantly delays the onset of apoptosis, whereas the presence of a dominant negative mutant accelerates cell death. Survival signaling by MEK most likely results from the activation of ERKs since expression of a constitutively active form of ERK2 was as effective in protecting NIH 3T3 fibroblasts against doxorubicin-induced cell death as oncogenic MEK. The survival effect of activated MEK in 32D cells is achieved by both MEK- and PI3K-dependent mechanisms and results in the activation of PI3K and in the phosphorylation of AKT. MEK and PI3K dependence is also observed in 32D cells protected from apoptosis by oncogenic Raf-1. Additionally, we also could extend these findings to the IL-3-dependent pro-B-cell line BaF3, suggesting that recruitment of MEK is a common mechanism for survival signaling by activated Raf. Requirement for the PI3K effector AKT in this process is further demonstrated by the inhibitory effect of a dominant negative AKT mutant on Raf-1-induced cell survival. Moreover, a constitutively active form of AKT synergizes with Raf-1 in apoptosis suppression. In summary these data strongly suggest a Raf effector pathway for cell survival that is mediated by MEK and AKT.  相似文献   

14.
Calcium induces epidermal keratinocyte differentiation, but the mechanism is not completely understood. We have previously demonstrated that calcium-induced human keratinocyte differentiation requires an intracellular calcium rise caused by phosphatidylinositol 3-kinase (PI3K)-dependent activation of phospholipase C-gamma1. In this study we sought to identify the upstream signaling pathway necessary for calcium activation of PI3K and its subsequent activation of phospholipase C-gamma1. We found that calcium induces the recruitment of PI3K to the E-cadherin-catenin complex at the plasma membrane of human keratinocytes. Knocking-down E-cadherin, beta-catenin, or p120-catenin expression blocked calcium activation of PI3K and phospholipase C-gamma1 and calcium-induced keratinocyte differentiation. However, knocking-down gamma-catenin expression had no effect. Calcium-induced PI3K recruitment to E-cadherin stabilized by p120-catenin at the plasma membrane requires beta-catenin but not gamma-catenin. These data indicate that the recruitment of PI3K to the E-cadherin/beta-catenin/p120-catenin complex via beta-catenin at the plasma membrane is required for calcium-induced phospholipase C-gamma1 activation and, ultimately, keratinocyte differentiation.  相似文献   

15.
Farnesyltransferase inhibitors (FTIs) represent a novel class of anticancer drugs that exhibit a remarkable ability to inhibit malignant transformation without toxicity to normal cells. However, the mechanism by which FTIs inhibit tumor growth is not well understood. Here, we demonstrate that FTI-277 inhibits phosphatidylinositol 3-OH kinase (PI 3-kinase)/AKT2-mediated growth factor- and adhesion-dependent survival pathways and induces apoptosis in human cancer cells that overexpress AKT2. Furthermore, overexpression of AKT2, but not oncogenic H-Ras, sensitizes NIH 3T3 cells to FTI-277, and a high serum level prevents FTI-277-induced apoptosis in H-Ras- but not AKT2-transformed NIH 3T3 cells. A constitutively active form of AKT2 rescues human cancer cells from FTI-277-induced apoptosis. FTI-277 inhibits insulin-like growth factor 1-induced PI 3-kinase and AKT2 activation and subsequent phosphorylation of the proapoptotic protein BAD. Integrin-dependent activation of AKT2 is also blocked by FTI-277. Thus, a mechanism for FTI inhibition of human tumor growth is by inducing apoptosis through inhibition of PI 3-kinase/AKT2-mediated cell survival and adhesion pathway.  相似文献   

16.
Summary Epidermal growth factor receptor (EGFR) signaling regulates a variety of cellular functions, including proliferation, gene expression, and differentiation. Infection of laryngeal epithelial cells by human papillomaviruses causes recurrent respiratory papillomas, benign tumors characterized by an altered pattern of differentiation. Papilloma cells overexpress the EGFR and have constitutively active extracellular signal-regulated kinase (ERK) and enhanced phosphatidylinositol 3-kinase (PI3K) activity, but overexpression of the lipid phosphatase PTEN (Phosphatase and Tensin Homolog) reduces activation of Akt by PI3K. We hypothesized that the altered differentiation of papillomas reflects these changes in signaling from the EGFR-ERK and PI3K-Akt pathways and that one or both of these pathways is required for the normal differentiation process in mucosal epithelium. Inhibiting either the enzymatic activity or the synthesis of PI3K in uninfected laryngeal cells blocked expression of keratin-13 (K13), a protein induced during normal differentiation. In contrast, inhibiting activation of ERK had minimal effect. Using ribonucleic acid interference to reduce protein levels of integrinlinked kinase 1 or phosphoinositide-dependent protein kinase 1, intermediates in the activation of Akt by PI3K, or reducing levels of Akt-1 itself did not inhibit K13 expression by normal laryngeal keratinocytes. We conclude that PI3K activation is an important regulator of expression of K13, a marker for the normal differntiation process in human mucosal keratinocytes, that this function does not require activation of Akt-1, and that the failure to express K13 in papilloma cells is not because of reduction in activated Akt.  相似文献   

17.
Although prostaglandin E2 (PGE2) has been shown by pharmacologic and genetic studies to be important in skin cancer, the molecular mechanism(s) by which it contributes to tumor growth is not well understood. In this study, we investigated the mechanisms by which PGE2 stimulates murine keratinocyte proliferation using in vitro and in vivo models. In primary mouse keratinocyte cultures, PGE2 activated the epidermal growth factor receptor (EGFR) and its downstream signaling pathways as well as increased cyclic AMP (cAMP) production and activated the cAMP response element binding protein (CREB). EGFR activation was not significantly inhibited by pretreatment with a c-src inhibitor (PP2), nor by a protein kinase A inhibitor (H-89). However, PGE2-stimulated extracellularly regulated kinase 1/2 (ERK1/2) activation was completely blocked by EGFR, ERK1/2, and phosphatidylinositol 3-kinase (PI3K) pathway inhibitors. In addition, these inhibitors attenuated the PGE2-induced proliferation, nuclear factor-kappa B, activator protein-1 (AP-1), and CREB binding to the promoter regions of the cyclin D1 and vascular endothelial growth factor (VEGF) genes and expression of cyclin D1 and VEGF in primary mouse keratinocytes. Similarly, in vivo, we found that WT mice treated with PGE2 and untreated cyclooxygenase-2-overexpressing transgenic mice had higher levels of cell proliferation and expression of cyclin D1 and VEGF, as well as higher levels of activated EGFR, nuclear factor-kappa B, AP-1, and CREB, than vehicle-treated WT mice. Our findings provide evidence for a link between cyclooxygenase-2 overexpression and EGFR-, ERK-, PI3K-, cAMP-mediated cell proliferation, and the tumor-promoting activity of PGE2 in mouse skin.  相似文献   

18.
Upon ligand binding, epidermal growth factor (EGF) receptor (R) autophosphorylates on COOH-terminal tyrosines, generating docking sites for signaling partners that stimulate proliferation, restitution, and chemotaxis. Specificity for individual EGFR tyrosines in cellular responses has been hypothesized but not well documented. Here we tested the requirement for particular tyrosines, and associated downstream pathways, in mouse colon epithelial cell chemotactic migration. We compared these requirements to those for the phenotypically distinct restitution (wound healing) migration. Wild-type, Y992/1173F, Y1045F, Y1068F, and Y1086F EGFR constructs were expressed in EGFR(-/-) cells; EGF-induced chemotaxis or restitution were determined by Boyden chamber or modified scratch wound assay, respectively. Pharmacological inhibitors of p38, phospholipase C (PLC), Src, MEK, JNK/SAPK, phosphatidylinositol 3-kinase (PI 3-kinase), and protein kinase C (PKC) were used to block EGF-stimulated signaling. Pathway activation was determined by immunoblot analysis. Unlike wild-type EGFR, Y992/1173F and Y1086F EGFR did not stimulate colon epithelial cell chemotaxis toward EGF; Y1045F and Y1068F EGFR partially stimulated chemotaxis. Only wild-type EGFR promoted colonocyte restitution. Inhibition of p38, PLC, and Src, or Grb2 knockdown, blocked chemotaxis; JNK, PI 3-kinase, and PKC inhibitors or c-Cbl knockdown blocked restitution but not chemotaxis. All four EGFR mutants stimulated downstream signaling in response to EGF, but Y992/1173F EGFR was partially defective in PLCγ activation whereas both Y1068F and Y1086F EGFR failed to activate Src. We conclude that specific EGFR tyrosines play key roles in determining cellular responses to ligand. Chemotaxis and restitution, which have different migration phenotypes and physiological consequences, have overlapping but not identical EGFR signaling requirements.  相似文献   

19.
Recombinant expression of a chimeric EGFR/ErbB-3 receptor in NIH 3T3 fibroblasts allowed us to investigate cytoplasmic events associated with ErbB-3 signal transduction upon ligand activation. An EGFR/ErbB-3 chimera was expressed on the surface of NIH 3T3 transfectants as two classes of receptors possessing epidermal growth factor (EGF) binding affinities comparable to those of the wild-type EGF receptor (EGFR). EGF induced autophosphorylation in vivo of the chimeric receptor and DNA synthesis of EGFR/ErbB-3 transfectants with a dose response similar to that of EGFR transfectants. However, the ErbB-3 and EGFR cytoplasmic domains exhibited striking differences in their interactions with several known tyrosine kinase substrates. We demonstrated strong association of phosphatidylinositol 3-kinase activity with the chimeric receptor upon ligand activation comparable in efficiency with that of the platelet-derived growth factor receptor, while the EGFR exhibited a 10- to 20-fold-lower efficiency in phosphatidylinositol 3-kinase recruitment. By contrast, both phospholipase C gamma and GTPase-activating protein failed to associate with or be phosphorylated by the ErbB-3 cytoplasmic domain under conditions in which they coupled with the EGFR. In addition, though certain signal transmitters, including Shc and GRB2, were recruited by both kinases, EGFR and ErbB-3 elicited tyrosine phosphorylation of distinct sets of intracellular substrates. Thus, our findings show that ligand activation of the ErbB-3 kinase triggers a cytoplasmic signaling pathway that hitherto is unique within this receptor subfamily.  相似文献   

20.
Fibroblast growth factors (FGFs) regulate long bone development by affecting the proliferation and differentiation of chondrocytes. FGF treatment inhibits the proliferation of chondrocytes both in vitro and in vivo, but the signaling pathways involved have not been clearly identified. In this report we show that both the MEK-ERK1/2 and p38 MAPK pathways, but not phospholipase C gamma or phosphatidylinositol 3-kinase, play a role in FGF-mediated growth arrest of chondrocytes. Chemical inhibitors of the MEK1/2 or the p38 MAPK pathways applied to rat chondrosarcoma (RCS) chondrocytes significantly prevented FGF-induced growth arrest. The retinoblastoma family members p107 and p130 were previously shown to be essential effectors of FGF-induced growth arrest in chondrocytes. The dephosphorylation of p107, one of the earliest events in RCS growth arrest, was significantly blocked by MEK1/2 inhibitors but not by the p38 MAPK inhibitors, whereas that of p130, which occurs later, was partially prevented both by the MEK and p38 inhibitors. Furthermore, by expressing the nerve growth factor (NGF) receptor, TrkA, and the epidermal growth factor (EGF) receptor, ErbB1, in RCS cells we show that NGF treatment of the transfected cells caused growth inhibition, whereas EGF did not. FGF- and NGF-induced growth inhibition is accompanied by a strong and sustained activation of ERK1/2 and p38 MAPK and a decrease of AKT phosphorylation, whereas EGF induces a much more transient activation of p38 and ERK1/2 and increases AKT phosphorylation. These results indicate that inhibition of chondrocyte proliferation by FGF requires both ERK1/2 and p38 MAPK signaling and also suggest that sustained activation of these pathways is required to achieve growth inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号