首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Deficiencies in DNA mismatch repair (MMR) have been found in hereditary colon cancers (hereditary non-polyposis colon cancer, HNPCC) as well as in sporadic cancers, illustrating the importance of MMR in maintaining genomic integrity. We have examined the interactions of specific mismatch repair proteins in human nuclear extracts. Western blot and co-immunoprecipitation studies indicate two complexes as follows: one consisting of hMSH2, hMSH6, hMLH1, and hPMS2 and the other consisting of hMSH2, hMSH6, hMLH1, and hPMS1. These interactions occur without the addition of ATP. Furthermore, the protein complexes specifically bind to mismatched DNA and not to a similar homoduplex oligonucleotide. The protein complex-DNA interactions occur primarily through hMSH6, although hMSH2 can also become cross-linked to the mismatched substrate when not participating in the MMR protein complex. In the presence of ATP the binding of hMSH6 to mismatched DNA is decreased. In addition, hMLH1, hPMS2, and hPMS1 no longer interact with each other or with the hMutSalpha complex (hMSH2 and hMSH6). However, the ability of hMLH1 to co-immunoprecipitate mismatched DNA increases in the presence of ATP. This interaction is dependent on the presence of the mismatch and does not appear to involve a direct binding of hMLH1 to the DNA.  相似文献   

2.
3.
DNA mismatch repair (MMR) plays a role in promoting genetic stability by repairing DNA replication errors, inhibiting recombination between nonidentical DNA sequences, and participating in responses to DNA damage. Although the role of MMR in prostate carcinogenesis remains unclear, MMR deficiency in Carcinoma Prostate (Pca) could prove to be clinically significant. Thus, the present study investigated the gene expression profile of six major MMR genes, viz. hMLH1, hMSH2, hPMS1, hPMS2, hMSH3, and hMSH6, and polymorphism in hMLH1 and hMSH2 in Pca in Indian population. Further, correlation with clinicopathological parameters was evaluated to establish their role as a potential prognostic marker. A significant downregulation of hMLH1, hMSH2, and hPMS2 expression was observed in Pca compared to benign prostatic hyperplasia (BPH). A greater loss of hPMS2 protein in poorly differentiated tumors was demonstrated, which was in concordance with a significant inverse correlation of hPMS2 gene expression with the Gleason score indicating its significance as a marker for Pca progression. An important association of hMLH1-93G>A polymorphism with the risk of Pca was also identified. The results of the present study suggest that an altered MMR has important biological and clinical significance in Pca in Indian population.  相似文献   

4.
DNA damage caused by alkylating agents results in a G2 checkpoint arrest. DNA mismatch repair (MMR) deficient cells are resistant to killing by alkylating agents and are unable to arrest the cell cycle in G2 phase after alkylation damage. We investigated the response of two MMR-deficient prostate cancer cell lines DU145 and LNCaP to the alkylating agent MNNG. Our studies reveal that DU145 cancer cells are more sensitive to killing by MNNG than LNCaP. Investigation of the underlying reasons for lower resistance revealed that the DU145 cells contain low endogenous levels of cyclin B1. We provide direct evidence that the endogenous level of cyclin B1 modulates the sensitivity of MMR-deficient prostate cancer cells to alkylating agents.  相似文献   

5.
Exonucleolytic degradation of DNA is an essential part of many DNA metabolic processes including DNA mismatch repair (MMR) and recombination. Human exonuclease I (hExoI) is a member of a family of conserved 5' --> 3' exonucleases, which are implicated in these processes by genetic studies. Here, we demonstrate that hExoI binds strongly to hMLH1, and we describe interaction regions between hExoI and the MMR proteins hMSH2, hMSH3, and hMLH1. In addition, hExoI forms an immunoprecipitable complex with hMLH1/hPMS2 in vivo. The study of interaction regions suggests a biochemical mechanism of the involvement of hExoI as a downstream effector in MMR and/or DNA recombination.  相似文献   

6.
Bloom's syndrome (BS) is a rare genetic disorder characterised by genome instability and cancer susceptibility. BLM, the BS gene product, belongs to the highly-conserved RecQ family of DNA helicases. Although the exact function of BLM in human cells remains to be defined, it seems likely that BLM eliminates some form of homologous recombination (HR) intermediate that arises during DNA replication. Similarly, the mismatch repair (MMR) system also plays a crucial role in the maintenance of genomic stability, by correcting DNA errors generated during DNA replication. Recent evidence implicates components of the MMR system also in HR repair. We now show that hMSH6, a component of the heterodimeric mismatch recognition complex hMSH2/hMSH6 (hMutS(alpha)), interacts with the BLM protein both in vivo and in vitro. In agreement with these findings, BLM and hMSH6 co-localise to discrete nuclear foci following exposure of the cells to ionising radiation. However, the purified recombinant MutS(alpha) complex does not affect the helicase activity of BLM in vitro. As BLM has previously been shown to interact with the hMLH1 component of the hMLH1/hPMS2 (hMutL(alpha)) heterodimeric MMR complex, our present findings further strengthen the link between BLM and processes involving correction of DNA mismatches, such as in the regulation of the fidelity of homologous recombination events.  相似文献   

7.
Human DNA mismatch repair (MMR) proteins correct DNA errors and regulate cellular response to DNA damage by signaling apoptosis. Mutations of MMR genes result in genomic instability and cancer development. Nonetheless, how MMR proteins are regulated has not yet been determined. While hMLH1, hPMS2, and hMLH3 are known to participate in MMR, the function of another member of MutL-related proteins, hPMS1, remains unclear. Here we show that DNA damage induces the accumulation of hPMS1, hPMS2, and hMLH1 through ataxia-telangiectasia-mutated (ATM)-mediated protein stabilization. The subcellular localization of PMS proteins is also regulated during DNA damage, which induces nuclear localization of hPMS1 and hPMS2 in an hMLH1-dependent manner. The induced levels of hMLH1 and hPMS1 are important for the augmentation of p53 phosphorylation by ATM in response to DNA damage. These observations identify hMutL proteins as regulators of p53 response and demonstrate for the first time a function of hMLH1-hPMS1 complex in controlling the DNA damage response.  相似文献   

8.
The DNA mismatch repair (MMR) system is highly conserved and vital for preserving genomic integrity. Current mechanistic models for MMR are mainly derived from in vitro assays including reconstitution of strand-specific MMR and DNA binding assays using short oligonucleotides. However, fundamental questions regarding the mechanism and regulation in the context of cellular DNA replication remain. Using synchronized populations of HeLa cells we demonstrated that hMSH2, hMLH1 and PCNA localize to the chromatin during S-phase, and accumulate to a greater extent in cells treated with a DNA alkylating agent. In addition, using small interfering RNA to deplete hMSH2, we demonstrated that hMLH1 localization to the chromatin is hMSH2-dependent. hMSH2/hMLH1/PCNA proteins, when associated with the chromatin, form a complex that is greatly enhanced by DNA damage. The DNA damage caused by high doses of alkylating agents leads to a G2 arrest after only one round of replication. In these G2-arrested cells, an hMSH2/hMLH1 complex persists on chromatin, however, PCNA is no longer in the complex. Cells treated with a lower dose of alkylating agent require two rounds of replication before cells arrest in G2. In the first S-phase, the MMR proteins form a complex with PCNA, however, during the second S-phase PCNA is missing from that complex. The distinction between these complexes may suggest separate functions for the MMR proteins in damage repair and signaling. Additionally, using confocal immunofluorescence, we observed a population of hMSH6 that localized to the nucleolus. This population is significantly reduced after DNA damage suggesting that the protein is shuttled out of the nucleolus in response to damage. In contrast, hMLH1 is excluded from the nucleolus at all times. Thus, the nucleolus may act to segregate a population of hMSH2–hMSH6 from hMLH1–hPMS2 such that, in the absence of DNA damage, an inappropriate response is not invoked.  相似文献   

9.
To detect the incidence of loss of heterozygosity (LOH) in DNA mismatch repair genes (MMR) occurring in atherosclerosis, fifty human autopsy cases of atherosclerosis were examined for LOH using 19 microsatellite markers, in three single and four tetraplex microsatellite assays. The markers used are located on or close to MMR genes. Fourteen specimens (28%) showed allelic imbalance in at least one locus. Loci hMSH2 (2p22.3–p16.1), hPMS1 (2q24.1–q32.1), and hMLH1 (3p21.32–p21.1) exhibited LOH (10, 10, and 12% respectively). We found that loss of heterozygosity on hMSH2, hPMS1, and hMLH1, occurs in atherosclerosis. The occurrence of such genomic alterations may represent important events in the development of atherosclerosis.  相似文献   

10.
Germline mutations in two human mismatch repair (MMR) genes, hMSH2 and hMLH1, appear to account for approximately 70% of the common cancer susceptibility syndrome hereditary nonpolyposis colorectal cancer (HNPCC). Although the hMLH1 protein has been found to copurify with another MMR protein hPMS2 as a heterodimer, their function in MMR is unknown. In this study, we have identified the physical interaction regions of both hMLH1 with hPMS2. We then examined the effects of hMLH1 missense alterations found in HNPCC kindreds for their interaction with hPMS2. Four of these missense alterations (L574P, K616Delta, R659P, and A681T) displayed >95% reduction in binding to hPMS2. Two additional missense alterations (K618A and K618T) displayed a >85% reduction in binding to hPMS2, whereas three missense alterations (S44F, V506A, and E578G) displayed 25-65% reduction in binding to hPMS2. Interestingly, two HNPCC missense alterations (Q542L and L582V) contained within the consensus interaction region displayed no effect on interaction with hPMS2, suggesting that they may affect other functions of hMLH1. These data confirm that functional deficiencies in the interaction of hMLH1 with hPMS2 are associated with HNPCC as well as suggest that other unknown functional alteration of the human MutL homologues may lead to tumorigenesis in HNPCC kindreds.  相似文献   

11.
12.
目的:分析hMLH1、hMSH2、hMSH6和hPMS2四种错配修复基因蛋白在结直肠癌中的表达及其临床意义。方法:随机选取2013年1月至2015年12月广州医科大学附属第三医院结直肠癌患者标本177例,采用免疫组织化学法检测hMLH1、hMSH2、hMSH6和hPMS2蛋白的表达情况,并分析蛋白表达与临床参数间关系。结果:177例结直肠癌组织中,hMLH1蛋白的缺失率为6.2%(11/177),hMSH2蛋白的缺失率为4.0%(7/177),hMSH6蛋白的缺失率为1.7%(3/177),hPMS2蛋白的缺失率为8.0%(14/177),四者之和占所有结直肠癌病例的19.8%(35/177)。四种错配修复基因蛋白表达缺失均与肿瘤发生部位有关(P0.05),另外,hMLH1及hPMS2蛋白的表达缺失还与肿瘤分化程度相关(P0.05),hMSH6蛋白的表达缺失还与肿瘤浸润深度相关(P0.05);而缺失均与年龄、性别、淋巴结转移和远处转移无关(P0.05)。结论:错配修复蛋白的表达在部分结直肠癌组织中出现缺失现象,且与肿瘤部位及分化程度密切相关。hMLH1、hMSH2、hMSH6和hPMS2四种基因的突变,为临床判断预后及拟定治疗方案提供一个有参考价值的依据。  相似文献   

13.
Hereditary nonpolyposis colorectal cancer (HNPCC) is a common autosomal dominant cancer-susceptibility condition characterized by early onset colorectal cancer. Germ-line mutations in one of four DNA mismatch repair (MMR) genes, hMSH2, hMLH1, hPMS1, or hPMS2, are known to cause HNPCC. Although many mutations in these genes have been found in HNPCC kindreds complying with the so-called Amsterdam criteria, little is known about the involvement of these genes in families not satisfying these criteria but showing clear-cut familial clustering of colorectal cancer and other cancers. Here, we applied denaturing gradient-gel electrophoresis to screen for hMSH2 and hMLH1 mutations in two sets of HNPCC families, one set comprising families strictly complying with the Amsterdam criteria and another set in which at least one of the criteria was not satisfied. Interestingly, hMSH2 and hMLH1 mutations were found in 49% of the kindreds fully complying with the Amsterdam criteria, whereas a disease-causing mutation could be identified in only 8% of the families in which the criteria were not satisfied fully. In correspondence with these findings, 4 of 6 colorectal tumors from patients belonging to kindreds meeting the criteria showed microsatellite instability, whereas only 3 of 11 tumors from the other set of families demonstrated this instability. Although the number of tumors included in the study admittedly is small, the frequencies of mutations in the MMR genes show obvious differences between the two clinical sets of families. These results also emphasize the practical importance of the Amsterdam criteria, which provide a valid clinical subdivision between families, on the basis of their chance of carrying an hMSH2 or an hMLH1 mutation, and which bear important consequences for genetic testing and counseling and for the management of colorectal cancer families.  相似文献   

14.
Genetic alterations and/or deletion of the tumor suppressor gene PTEN/MMAC/TEP1 occur in many types of human cancer including prostate cancer. We describe the production of monoclonal antibody against recombinant human PTEN and the study of PTEN gene and protein expression in three commercially available human prostate cancer cell lines, PC-3, LNCaP, and DU 145. Northern blotting analyses showed that LNCaP and DU145 but not PC-3 cells expressed PTEN mRNA. However, Western blotting analyses using a monoclonal antibody against PTEN demonstrated the expression of PTEN protein in DU145 but not LNCaP cells. In DU145 cells, PTEN expression at both the mRNA and protein levels inversely correlated with serum concentrations and levels of PKB/Akt phosphorylation. In addition, the basal activity of PKB/Akt as indicated by level of phosphorylation was higher in prostate cancer cells which do not express PTEN than that in the cells expressing wild type PTEN. Thus, PTEN may play a critical role in regulating cellular signaling in prostate cancer cells.  相似文献   

15.
The role of mismatch repair proteins has been well studied in the context of DNA repair following DNA polymerase errors. Particularly in yeast, MSH2 and MSH6 have also been implicated in the regulation of genetic recombination, whereas MutL homologs appeared to be less important. So far, little is known about the role of the human MutL homolog hMLH1 in recombination, but recently described molecular interactions suggest an involvement. To identify activities of hMLH1 in this process, we applied an EGFP-based assay for the analysis of different mechanisms of DNA repair, initiated by a targeted double-stranded DNA break. We analysed 12 human cellular systems, differing in the hMLH1 and concomitantly in the hPMS1 and hPMS2 status via inducible protein expression, genetic reconstitution, or RNA interference. We demonstrate that hMLH1 and its complex partners hPMS1 and hPMS2 downregulate conservative homologous recombination (HR), particularly when involving DNA sequences with only short stretches of uninterrupted homology. Unexpectedly, hMSH2 is dispensable for this effect. Moreover, the damage-signaling kinase ATM and its substrates BLM and BACH1 are not strictly required, but the combined effect of ATM/ATR-signaling components may mediate the anti-recombinogenic effect. Our data indicate a protective role of hMutL-complexes in a process which may lead to detrimental genome rearrangements, in a manner which does not depend on mismatch repair.  相似文献   

16.
目的:通过对慢性粒细胞白血病(chronic myeloid leukemia,CML)患者骨髓细胞中错配修复基因(mismatch repair,MMR)h MSH2的表达水平及其调控机制的分析,探讨h MSH2与慢性粒细胞白血病疾病进展的联系。方法:用实时定量PCR方法检测10例对照,27例CML患者(包括慢性期9例,进展期8例,急变期10例)骨髓中4个MMR基因(h MSH2、h MSH6、h MLHl、h PMS2)m RNA的表达;用MSP方法检测MMR基因启动子区甲基化水平;用Western blot方法观察MMR蛋白水平在各组之间的差异。结果:与正常对照比较,CML患者的h MSH2的表达明显降低(P0.05),其表达随疾病恶化而下降,依次为急变期加速期慢性期,而h MLHl、h PMS2、h MSH6的表达却未见异常;27例CML患者中出现3例h MSH2启动子区高甲基化。结论:CML患者的h MSH2表达水平比正常人显著降低,且随着疾病恶化其表达水平逐下降,提示h MSH2可能与CML疾病进展相关。  相似文献   

17.
Adrenomedullin (AM) is a multifunctional peptide expressed in the normal and malignant prostate, and in prostate cancer cells. To elucidate the potential role of AM in prostate cancer, we have transfected the human AM gene into PC-3, DU 145, and LNCaP prostate cancer cells. Northern blot, Western blot, and radioimmunoassay techniques confirmed an increase in the synthesis and secretion of the 6kDa mature peptide, in the AM-transfected clones. Proliferation and cell cycle assays demonstrated that AM overexpression inhibited cell proliferation in PC-3 and LNCaP cells through a G0/G1 cell cycle arrest, but not in DU 145 cells. In vivo growth assays also confirmed that, at least in PC-3, AM produced a very significant reduction of tumor volume. In addition, the three cell lines expressed the CL/RCP/RAMP-2 receptor complex by RT-PCR, which suggests that AM peptide acts through an autocrine loop in prostate cancer cells. Although cAMP elevation is the most common pathway involved in AM signalling, stimulation of PC-3, DU 145, and LNCaP with synthetic AM did not increase intracellular cAMP. However, short-term stimulation of PC-3 cells with synthetic AM increased ERK1/2 activation. On the contrary, long-term stimulation, or AM overexpression, caused a reduction in the basal activation of ERK1/2. In summary, our results demonstrate that AM (either overexpressed or exogenously added) causes an inhibition of prostate cancer cell growth. This inhibition does not depend on changes in intracellular cAMP levels, but may be related to ERK1/2 activation.  相似文献   

18.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands seem to induce anticancer effects on prostate cancer cells, but the mechanism is not clear. The effect of PPARgamma ligands omega-6 fatty acids and ciglitazone (2-15 microM)--on proliferation, and apoptosis of LNCaP, PC-3, DU145, CA-K and BPH-K cells was studied. PPARgamma ligands led to: (1) reduction of proliferation (20-50%) of all the studied cell lines, (2) stimulation of differentiation of prostate cancer cells through an increased expression (1.5-3-fold: LNCaP, DU145, BPH-K) or reexpression (PC-3, CA-K) of E-cadherin with parallel inhibition of N-cadherin expression (PC-3, CA-K) and (3) down-regulation (1-2-fold) of beta-catenin and c-myc expression. The selective PPARgamma antagonist GW9662 abolished the effect of those ligands on prostate cancer cells. These results suggest that inhibition of beta-catenin and in effect c-myc expression through activation of PPARgamma may help prostate cancer cells to restore several characteristics of normal prostate cells phenotype.  相似文献   

19.
Identification of hMutLbeta, a heterodimer of hMLH1 and hPMS1.   总被引:9,自引:0,他引:9  
hMLH1 and hPMS2 function in postreplicative mismatch repair in the form of a heterodimer referred to as hMutLalpha. Tumors or cell lines lacking this factor display mutator phenotypes and microsatellite instability, and mutations in the hMLH1 and hPMS2 genes predispose to hereditary non-polyposis colon cancer. A third MutL homologue, hPMS1, has also been reported to be mutated in one cancer-prone kindred, but the protein encoded by this locus has so far remained without function. We now show that hPMS1 is expressed in human cells and that it interacts with hMLH1 with high affinity to form the heterodimer hMutLbeta. Recombinant hMutLalpha and hMutLbeta, expressed in the baculovirus system, were tested for their activity in an in vitro mismatch repair assay. While hMutLalpha could fully complement extracts of mismatch repair-deficient cell lines lacking hMLH1 or hPMS2, hMutLbeta failed to do so with any of the different substrates tested in this assay. The involvement of the latter factor in postreplicative mismatch repair thus remains to be demonstrated.  相似文献   

20.
The human PMS2 gene encodes one of the bacterial mutL homologs that is associated with hereditary nonpolyposis colorectal cancer (HNPCC). One of the interesting features of the hPMS2 gene is that it is part of a multiple gene family which is localized on chromosome bands 7p22, 7p12-p13, 7q11, and 7q22. Here we report four newly identified hPMS2-like (PMS2L) genes. All four novel members of the PMS2L gene family encode relatively short polypeptides composed of the amino-terminal portion of hPMS2 and are expressed ubiquitously except in the heart. To clarify whether the PMS2L polypeptides contribute to the DNA mismatch repair (MMR) pathway through an interaction with hMLH1, we have performed a yeast two-hybrid assay and an immunoprecipitation study using an hPMS2 mutant cell line, HEC-1-A. Our results clearly indicate that hMLH1 does not interact with two representative PMS2Ls, whereas the carboxyl-terminal portion of hPMS2, not the amino-terminal portion, does interact with hMLH1. Thus, PMS2Ls are not likely to participate in the MMR pathway through association with hMLH1; they must play some other roles in the living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号