首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the reason of low mammalian toxicity of Dipterex, decomposition of this compound by rabbit tissue was investigated. Though splitting of P-C linkage was not confirmed, two glucuronides, presumably derived from the metabolite (s) of Dipterex, were isolated from the urine. Molar ratio of phosphorus and glucuronic acid in them are both estimated as 1 : 1, and they are observed to differ from trichloroethyl glucuronide. The rapid detoxification might be ascribed to the capacity of glucuronide formation as well as the enzymatic hydrolysis of DDVP, the active ingredient of Dipterex.  相似文献   

2.
Abstract  SV1 was observed to have obvious synergism and could delay housefly ( Musca domestica vicina ) resistance development to Dipterex. The penetration rates of Dipterex through housefly cuticle were determined in a susceptible and two resistant strains. The results indicated that the penetration in the resistant housefly strains was obviously slower than in the susceptible one. The penetrating rate of SV1+ Dipterex (in mixture) was higher than that of Dipterex. The penetration reduction in resistant houseflies may be an important factor in bringing forth resistance. The increase of the penetrating rate of Dipterex and the decrease of its metabolic rate are regarded as the important mechanisms of SV1 synergism to Dipterex.  相似文献   

3.
增效磷(SV_1)对抗敌百虫家蝇有明显的增效作用,能够延缓家蝇对敌百虫抗性的发展.测定了敌百虫对一个敏感和两个抗性品系家蝇的表皮穿透作用,结果表明抗性品系家蝇对敌百虫的穿透速率比敏感品系低,说明表皮穿透作用的降低和体内解毒速率的增强在家蝇对敌百虫的抗性中起重要作用.SV_1与敌百虫混用后,穿透速率明显提高,敌百虫对家蝇表皮穿透速率的增强和体内代谢速度的降低是SV_1在抗性家蝇体内对敌百虫增效的机制之一.  相似文献   

4.
Regulation of nitrogen fixation in Rhizobium sp.   总被引:3,自引:2,他引:1       下载免费PDF全文
Regulation of nitrogen fixation by ammonium and glutamate was examined in Rhizobium sp. 32H1 growing in defined liquid media. Whereas nitrogenase synthesis in Klebsiella pneunoniae is normally completely repressed during growth on NH4+, nitrogenase activity was detected in cultures of Rhizobium sp. grown with excess NH4+. However, an "ammonium effect" on activity was invariably observed in cultures grown on NH4+ as sole nitrogen source; the nitrogenase activity was, depending on conditions, 14 to 36% of that of comparable glutamate-grown cultures. Glutamate inhibited utilization of exogenous NH4+ and, in one of two procedures described, glutamate partially alleviated the ammonium effect on nitrogenase activity. NH4+, apparently produced from N2, was excreted into the culture medium when growth was initiated on glutamate, but not when NH4+ was thesole source of fixed nitrogen for growth. These findings are discussed in relation to nitrogen fixation by Rhizobium bacteroids.  相似文献   

5.
Five Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from galls on different plant species in Hungary: strain 39/7(T) from Prunus cerasifera Myrobalan, strain 0 from grapevine var. Ezerjó, strain 7/1 from raspberry var. Findus and in Poland, strain C3.4.1 from Colt rootstock (Prunus avium × Prunus pseudocerasus) and strain CP17.2.2 from Prunus avium. Only one of these isolates, strain 0, is able to cause crown gall on different plant species. On the basis of 16S rRNA gene sequence similarity, the strains cluster together and belong to the genus Rhizobium and their closest relative is Rhizobium radiobacter (99.1%). Phylogenetic analysis of the novel strains using housekeeping genes atpD, glnA, gyrB, recA and rpoB revealed their distinct position separate from other known Rhizobium species and confirmed their relation to Rhizobium radiobacter. The major cellular fatty acids are 18:1 w7c, 16:0, 16:0 3OH, summed feature 2 (comprising 12:0 aldehyde, 16:1 iso I and/or 14:0 3OH) and summed feature 3 (comprising 16:1 w7c and/or 15 iso 2OH). DNA-DNA hybridization of strain 39/7(T) with the type strain of R. radiobacter LMG 140(T) revealed 45% DNA-DNA hybridization. Phenotypic and physiological properties differentiate the novel isolates from other closely related species. On the basis of the results obtained, the five isolates are considered to represent a novel species of the genus Rhizobium, for which the name Rhizobium nepotum sp. nov. (type strain 39/7(T)=LMG 26435(T)=CFBP 7436(T)) is proposed.  相似文献   

6.
Two R factor were introduced by conjugation into Rhizobium trifolii and Rhizobium meliloti strains at a frequency of 10(-5) to 10(-6). Plasmids RP4 from Escherichia coli J53 and R68.45 from Pseudomonas aeruginosa PAO.25 were maintained stably in Rhizobium hosts and could be retransferred to other Rhizobium recipients. Some of the transconjugants were able to mobilize chromosome and transfer his or met genes in intra-, and interspecies matings.  相似文献   

7.
We report the nucleotide sequence of the rpoN gene from broad-host-range Rhizobium sp. strain NGR234 and analyze the encoded RPON protein, a sigma factor. Comparative analysis of the deduced amino acid sequence of RPON from NGR234 with sequences from other gram-negative bacteria identified a perfectly conserved RPON box unique to RPON sigma factors. Symbiotic regulatory phenotypes were defined for a site-directed internal deletion within the coding sequence of the rpoN gene of Rhizobium strain NGR234: they included quantitative nodulation kinetics on Vigna unguiculata and microscopic analysis of the Fix- determinate nodules of V. unguiculata and Macroptilium atropurpureum. RPON was a primary coregulator of nodulation and was implicated in establishment or maintenance of the plant-synthesized peribacteroid membrane. Phenotypes of rpoN in Rhizobium strain NGR234 could be grouped as symbiosis related, rather than simply pleiotropically physiological as in free-living bacteria such as Klebsiella pneumoniae and Pseudomonas putida.  相似文献   

8.
The bag shaped peptidoglycan layer of Rhizobium cell wall was isolated from intact cells after treatment with sodium dodecylsulfate and trypsin, chymotrypsin or pepsin digestion. Results of chemical analysis of acid hydrolyzed peptidoglycan revealed beside two amino sugars: glucosamine and muramic acid, three major amino acids; alanine, glutamic acid and 2,6-diaminopimelic acid and also significant amount of glucose. Evidence were provided that the polyglucose found in peptidoglycan preparations of three strains of Rhizobium trifolii, one of Rhizobium leguminosarum and one of Rhizobium meliloti consist of cellulose microfibrils. The content of cellulose present in Rhizobium peptidoglycans ranged from 60 to 80%. Methods of peptidoglycan purification from the cellulose microfibrils are described.  相似文献   

9.
We determined the sequences for a 260-base segment amplified by the polymerase chain reaction (corresponding to positions 44 to 337 in the Escherichia coli 16S rRNA sequence) from seven strains of fast-growing soybean-nodulating rhizobia (including the type strains of Rhizobium fredii chemovar fredii, Rhizobium fredii chemovar siensis, Sinorhizobium fredii, and Sinorhizobium xinjiangensis) and broad-host-range Rhizobium sp. strain NGR 234. These sequences were compared with the corresponding previously published sequences of Rhizobium leguminosarum, Rhizobium meliloti, Agrobacterium tumefaciens, Azorhizobium caulinodans, and Bradyrhizobium japonicum. All of the sequences of the fast-growing soybean rhizobia, including strain NGR 234, were identical to the sequence of R. meliloti and similar to the sequence of R. leguminosarum. These results are discussed in relation to previous findings; we concluded that the fast-growing soybean-nodulating rhizobia belong in the genus Rhizobium and should be called Rhizobium fredii.  相似文献   

10.
用马拉硫磷和敌百虫单独处理30代和31代的淡色库蚊,见到对马拉硫磷和敌百虫的抗性分别为敏感品系的286和303倍,而以马拉硫磷和敌百虫轮用(32代)和混用(31代)处理的品系对马拉硫磷和敌百虫的抗性均在70倍以下。 离体酶的活性测定和酯酶同功酶的酶谱分析均表明,抗性品系体内羧酸酯酶活力高于敏感品系;酸性磷酸酯酶和乙酰胆碱酯酶的活力两者差异不显著,可见马拉硫磷和敌百虫的抗性主要和羧酸酯酶活力的增长有关。  相似文献   

11.
Abstract DNA fragments representatives of ndv A and ndv B have been used as probes against genomic DNAs from different Rhizobium and Bradyrhizobium species. ndv A and ndv B homologues were found in all species, indicating extensive conservation of these genes. All Rhizobium species show chromosomal localization of ndv A and ndv B homologues.  相似文献   

12.
Reiterated DNA sequences in Rhizobium and Agrobacterium spp.   总被引:23,自引:13,他引:10       下载免费PDF全文
Repeated DNA sequences are a general characteristic of eucaryotic genomes. Although several examples of DNA reiteration have been found in procaryotic organisms, only in the case of the archaebacteria Halobacterium halobium and Halobacterium volcanii [C. Sapienza and W. F. Doolittle, Nature (London) 295:384-389, 1982], has DNA reiteration been reported as a common genomic feature. The genomes of two Rhizobium phaseoli strains, one Rhizobium meliloti strain, and one Agrobacterium tumefaciens strain were analyzed for the presence of repetitive DNA. Rhizobium and Agrobacterium spp. are closely related soil bacteria that interact with plants and that belong to the taxonomical family Rhizobiaceae. Rhizobium species establish a nitrogen-fixing symbiosis in the roots of legumes, whereas Agrobacterium species is a pathogen in different plants. The four strains revealed a large number of repeated DNA sequences. The family size was usually small, from 2 to 5 elements, but some presented more than 10 elements. Rhizobium and Agrobacterium spp. contain large plasmids in addition to the chromosomes. Analysis of the two Rhizobium strains indicated that DNA reiteration is not confined to the chromosome or to some plasmids but is a property of the whole genome.  相似文献   

13.
The following treatments were evaluated for use in rearing pikeperch larvae (Stizostedion lucioperca L.) in nursing ponds: treatment with Dipterex (Bayer); concurrent stocking with common carp (Cyprinus carpio L.); short flooding periods and prefeeding fish larvae. Treatment with Dipterex (active ingredient trichloorfon, i.e. 00-dimethyl-2,2,2, trichlorohydroxyethyl phosphonate) gave zooplankton populations dominated by rotatoria and nauplii at the onset of exogenous feeding and dominated by copepods later on. Cladocerans dominated the plankton in untreated ponds but were never prominent in treated ones. Stomach analysis revealed a fast changing feeding preference in pikeperch from nauplii and copepodites towards cladocerans and chironomids. The excellent food conditions for first feeding pikeperch larvae in Dipterex treated ponds resulted in a significant higher number of harvested fingerlings. In spite of the more favourable food conditions in untreated ponds during the second half of the culture period, a significant growth difference was not found. Concurrent carp stocking did not affect significantly the survival and growth of the pikeperch, although it decreased the accessability of chironomids for pikeperch. Short flooding periods and prefeeding pikeperch larvae failed as useful management strategies for pikeperch nursing. Pikeperch fingerlings cultured in ponds are larger than those found in natural populations at the same time, giving them a high chance to become piscivorous and to increase the year class strength when stocked in natural waters.  相似文献   

14.
All species of Rhizobium except R. lupini had nitrate reductase activity. Only R. lupini was incapable of growth with nitrate as the sole source of nitrogen. However, the conditions necessary for the induction of nitrate reductase varied among species of Rhizobium. Rhizobium japonicum and some Rhizobium species of the cowpea strains expressed nitrate reductase activities both in the root nodules of appropriate leguminous hosts and when grown in the presence of nitrate. Rhizobium trifolii, R. phaseoli, and R. leguminosarum did not express nitrate reductase activities in the root nodules, but they did express them when grown in the presence of nitrate. In bacteroids of R. japonicum and some strains of cowpea Rhizobium, high N2 fixation activities were accompanied by high nitrate reductase activities. In bacteroids of R. trifolii, R. leguminosarum, and R. phaseoli, high N2 fixation activities were not accompanied by high nitrate reductase activities.  相似文献   

15.
Lipopolysaccharides (LPSs) isolated from several strains of Rhizobium, Bradyrhizobium, Agrobacterium, and Azorhizobium were screened for the presence of 27-hydroxyoctacosanoic acid. The LPSs from all strains, with the exception of Azorhizobium caulinodans, contained various amounts of this long-chain hydroxy fatty acid in the lipid A fractions. Analysis of the lipid A sugars revealed three types of backbones: those containing glucosamine (as found in Rhizobium meliloti and Rhizobium fredii), those containing glucosamine and galacturonic acid (as found in Rhizobium leguminosarum bv. phaseoli, trifolii, and viciae), and those containing 2,3-diamino-2,3-dideoxyglucose either alone or in combination with glucosamine (as found in Bradyrhizobium japonicum and Bradyrhizobium sp. [Lupinus] strain DSM 30140). The distribution of 27-hydroxyoctacosanoic acid as well as analysis of lipid A backbone sugars revealed the taxonomic relatedness of various strains of the Rhizobiaceae.  相似文献   

16.
Rhizobium sp. strain NGR234 produces large amounts of acidic exopolysaccharide. Mutants that fail to synthesize this exopolysaccharide are also unable to nodulate the host plant Leucaena leucocephala. A hybrid strain of Rhizobium sp. strain NGR234 containing exo genes from Rhizobium meliloti was constructed. The background genetics and nod genes of Rhizobium sp. strain NGR234 are retained, but the cluster of genes involved in exopolysaccharide biosynthesis was deleted. These exo genes were replaced with genes required for the synthesis of succinoglycan exopolysaccharide from R. meliloti. As a result of the genetic manipulation, the ability of these hybrids to synthesize exopolysaccharide was restored, but the structure was that of succinoglycan and not that of Rhizobium sp. strain NGR234. The replacement genes were contained on a cosmid which encoded the entire known R. meliloti exo gene cluster, with the exception of exoB. Cosmids containing smaller portions of this exo gene cluster did not restore exopolysaccharide production. The presence of succinoglycan was indicated by staining with the fluorescent dye Calcofluor, proton nuclear magnetic resonance spectroscopy, and monosaccharide analysis. Although an NGR234 exoY mutant containing the R. meliloti exo genes produced multimers of the succinoglycan repeat unit, as does the wild-type R. meliloti, the deletion mutant of Rhizobium sp. strain NGR234 containing the R. meliloti exo genes produced only the monomer. The deletion mutant therefore appeared to lack a function that affects the multiplicity of succinoglycan produced in the Rhizobium sp. strain NGR234 background. Although these hybrid strains produced succinoglycan, they were still able to induce the development of an organized nodule structure on L. leucocephala. The resulting nodules did not fix nitrogen, but they did contain infection threads and bacteroids within plant cells. This clearly demonstrated that a heterologous acidic exopolysaccharide structure was sufficient to enable nodule development to proceed beyond the developmental barrier imposed on mutants of Rhizobium sp. strain NGR234 that are unable to synthesize any acidic exopolysaccharide.  相似文献   

17.
Monoclonal antibodies reacting with the core oligosaccharide or lipid A component of Rhizobium lipopolysaccharide (LPS) could be useful for the elucidation of the structure and biosynthesis of this group of macromolecules. Mutant derivatives of Rhizobium leguminosarum 3841 with LPS structures lacking the major O-antigen moiety were used as immunogens, and eight antibodies were selected for further study. All the antibodies reacted with the fast-migrating species known as LPS-2 following gel electrophoresis of Rhizobium cell extracts. For four of these antibodies, reactivity with affinity-purified LPS was lost after mild acid hydrolysis, indicating that they probably recognized the core oligosaccharide component. The four other antibodies still reacted with acid-treated LPS and may recognize the lipid A moiety, which is stable to mild acid hydrolysis. The pattern of antibody staining after gel electrophoresis revealed differences in LPS-2 epitope structure between each of the mutants and the wild type. Furthermore, for each of the mutants the antibodies crossreacted with a minor band that migrated more slowly than LPS-2; we have termed this more slowly migrating form LPS-3. The majority of the antibodies also reacted with LPS from strain CE109, a derivative of Rhizobium etli CE3, confirming that the LPS core antigens can be relatively conserved between strains of different Rhizobium species. One of the antibodies isolated in this study (JIM 32) was unusual because it appeared to react with all forms of LPS from strain 3841 (namely, LPS-1, LPS-2, and LPS-3). Furthermore, JIM 32 reacted positively with the LPS from many strains of Rhizobium tested (excluding the Rhizobium meliloti subgroup). JIM 32 did not react with representative strains from Bradyrhizobium, Azorhizobium or other related bacterial species.  相似文献   

18.
The DNA region encoding early nodulation functions of Bradyrhizobium japonicum 3I1b110 (I110) was isolated by its homology to the functionally similar region from Rhizobium meliloti. Isolation of a number of overlapping recombinant clones from this region allowed the construction of a restriction map of the region. The identified nodulation region of B. japonicum shows homology exclusively to those regions of R. meliloti and Rhizobium leguminosarum DNA known to encode early nodulation functions. The region of homology with these two fast-growing Rhizobium species was narrowed to an 11.7-kilobase segment. A nodulation-defective mutant of Rhizobium fredii USDA 201, strain A05B-2, was isolated and found to be defective in the ability to curl soybean root hairs. Some of the isolated recombinant DNA clones of B. japonicum were found to restore wild-type nodulation function to this mutant. Analysis of the complementation results allows the identification of a 1.8-kilobase region as essential for restoration of Hac function.  相似文献   

19.
Nitrogen-fixing symbiosis between bacteria and the tree legume mesquite (Prosopis glandulosa) is important for the maintenance of many desert ecosystems. Genes essential for nodulation and for extending the host range to mesquite were isolated from cosmid libraries of Rhizobium (mesquite) sp. strain HW17b and Bradyrhizobium (mesquite) sp. strain HW10h and were shown to be closely linked. All of the cosmid clones of rhizobia that extended the host range of Rhizobium (Parasponia) sp. strain NGR234CS to mesquite also supported nodulation of a Sym- mesquite strain. The cosmid clones of bradyrhizobia that extended the host range of Rhizobium (Parasponia) sp. strain NGR234CS to mesquite were only able to confer nodulation ability in the Sym- mesquite strain if they also contained a nodD-hybridizing region. Subclones containing just the nodD genes of either genus did not extend the host range of Rhizobium (Parasponia) sp. to mesquite, indicating that the nodD gene is insufficient for mesquite nodulation. The nodD gene region is conserved among mesquite-nodulating rhizobia regardless of the soil depth from which they were collected, indicating descent from a common ancestor. In a tree of distance relationships, the NodD amino acid sequence from mesquite rhizobia clusters with homologs from symbionts that can infect both herbaceous and tree legumes, including Rhizobium tropici, Rhizobium leguminosarum bv; phaseoli, Rhizobium loti, and Bradyrhizobium japonicum.  相似文献   

20.
Heterogeneity of Rhizobium lipopolysaccharides.   总被引:23,自引:18,他引:5       下载免费PDF全文
The lipopolysaccharides ( LPSs ) from strains of Rhizobium leguminosarum, Rhizobium trifolii, and Rhizobium phaseoli were isolated and partially characterized by mild acid hydrolysis and by polyacrylamide gel electrophoresis. Mild acid hydrolysis results in a precipitate which can be removed by centrifugation or extraction with chloroform. The supernatant contains polysaccharides which, in general, are separated into two fractions ( LPS1 and LPS2 ) by Sephadex G-50 gel filtration chromatography. The higher-molecular-weight LPS1 fractions among the various Rhizobium strains are highly variable in composition and reflect the variability reported in the intact LPSs (R. W. Carlson and R. Lee, Plant Physiol. 71:223-228, 1983; Carlson et al., Plant Physiol. 62:912-917, 1978; Zevenhuizen et al., Arch. Microbiol. 125:1-8, 1980). The LPS1 fraction of R. leguminosarum 128C53 has a higher molecular weight than all other LPS1 fractions examined. All LPS2 fractions examined are oligosaccharides with a molecular weight of ca. 600. The major sugar component of all LPS2 oligosaccharides is uronic acid. The LPS2 compositions are similar for strains of R. leguminosarum and R. trifolii, but the LPS2 from R. phaseoli was different in that it contained glucose, a sugar not found in the other LPS2 fractions or found only in trace amounts. Polyacrylamide gel electrophoretic analysis shows that each LPS contains two banding regions, a higher-molecular-weight heterogeneous region often containing many bands and a lower-molecular-weight band. The lower-molecular-weight bands of all LPSs have the same electrophoretic mobility, which is greater than that of lysozyme. The banding pattern of the heterogeneous regions varies among the different Rhizobium strains. In the case of R. leguminosarum 128C53 LPS, the heterogeneous region of a higher molecular weight than is this region from all other Rhizobium strains examined and consists of many bands separated from one another by a small and apparently constant molecular weight interval. When the heterogeneous region of R. Leguminosarum 128C53 LPS was cut from the gel and analyzed, its composition was found to be that of the intact LPS, whereas the lower-molecular-weight band contains only sugars found in the LPS2 oligosaccharide. In the case of R. leguminosarum 128C63 and R. trifolii 0403 LPSs, the heterogeneous regions are similar and consist of several band s separated by a large-molecular-weight interval with a the major band of these heterogeneous regions having the lowest molecular weight with an electrophoretic mobility near that of beta-lactoglobulin. The heterogeneous region from R. phaseoli 127K14 consists of several bands with electrophoretic mobilities near that of beta-lactoglobulin, whereas this region from R. trifolii 162S7 shows a continuous staining region, indicating a great deal of heterogeneity. The results described in this paper are discussed with regard to the reported properties of Escherichia coli and Salmonella LPSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号