首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermodynamics of the hairpin helix-single strand transition of A6C6U6 has been analyzed by a staggering zipper model with consideration of single strand stacking. This analysis yields an enthalpy change of +11 kcal/mole for the formation of a first, isolated base pair. The stability constant of a first (intramolecular) base pair in A6C6U6 is around 2 × 1O?5 at 25°C, whereas a first (intermoleciilar) base pair in an A6 · U6 helix is characterised by a stability constant of about 4 × 10?3M?1 (25°C, extrapolated from An · Vn oligomer measurements). These data indicate a destabilizing effect of the C6 loop.The rate constant of hairpin helix formation is 2 to 3 × 104 sec?1 associated with an activation enthalpy of +2.5 kcal/mote. The rate of helix dissociation of the A6C6U6 hairpin is in the range of 103 to lO5 sec?1 with an activation enthalpy of 21 kcalmole. A comparison with the kinetic parameters obtained for A · U oligomer helices shows a specific influence of the C6 loop due to the stacking tendency of the cytosine residues. This intluence is preferentially reflected in the relatively low value of the rate constant of helix formation.  相似文献   

2.
The stability of RNA hairpin loops containing A-U-G: An-U-G-Um   总被引:5,自引:0,他引:5  
E Wickstrom  I Tinoco 《Biopolymers》1974,13(11):2367-2383
RNA oligomers with the sequence An-U-G-Um, n = 7–9, m = 5–10, have been synthesized and found to form hairpin loops in 21 mM or 101 mM Na+. The hairpin loops displayed melting temperatures 13°–29°C greater than that of the hairpin loop A6-C8-U6 in the same solvent. The increased stability of these hairpin loops is attributed to the presence of the trinucleotide A-U-G in the loop. Circular dichroism (CD) spectra were taken of the hairpin loops A7-U-G-U6,7,8, A8-U-G-U6,7,8, and A9-U-G-U6 in 21 mM Na+, and compared with circular dichroism spectra of A6-U6 in 1 M Na+. Difference spectra were calculated between each An-U-G-Um and 11.5 mM (nucleotide) A6-U6 at similar temperatures and identical singlestrand fractions to give the “experimental” CD spectrum of the unbase-paired nucleotides in the loop, assuming, five, six, or seven base pairs. CD spectra were calculated for each of the assumed unbase-paired sequences using the measured CD spectra of ApA, A-U-G-, A, and U, and compared with the experimental spectra. The best agreement was found for hairpin-loop models containing five base pairs and five to eight unbase-paired nucleotides in the loop.  相似文献   

3.
Several experimental methods (circular dichroism, viscosity, intrinsic fluorescence, and fluorescence labeling) were used to study the conformational folding/unfolding transitions in a compact monomeric form of the Caf113-149 subunit under the action of guanidine hydrochloride in the temperature range 5–45°C. It has been shown that transitions always occur between two major states (unfolded and compact). This has made it possible to determine all the main thermodynamic functions that characterize the compact state of the Caf113-149 subunit: stability temperature T m, free energy of stabilization ΔG st, enthalpy ΔH tr, and heat capacity jump ΔC in collapse of the structure. These data have been confirmed by an independent experiment on melting of fluorescently labeled protein.  相似文献   

4.
Optical melting curves of 22 DNA dumbbells with the 16-base pair duplex sequence 5′-G-C-A-T-C-A-T-C-G-A-T-G-A-T-G-C-3′ linked on both ends by single-strand loops of At or Ct sequences (˛ = 2, 3, 4, 6, 8, 10, 14), Tt sequences (˛ = 2, 3, 4, 6, 8, 10), and Gt sequences (t = 2, 4) were measured in phosphate buffered solvents containing 30, 70, and 120 mM Na+. For dumbbells with loops comprised of at least three nucleotides, stability is inversely proportional to end-loop size. Dumbbells with loops comprised of only two nucleotide bases generally have lower stabilities than dumbbells with three base nucleotide loops. Experimental melting curves were analyzed in terms of the numerically exact (multistate) statistical thermodynamic model of DNA dumbbell melting previously described (T. M. Paner, M. Amaratunga & A. S. Benight (1992), Biopolymers 32, 881). Theoretically calculated melting curves were fitted to experimental curves by simultaneously adjusting model parameters representing statistical weights of intramolecular hairpin loop and single-strand circle states. The systematically determined empirical parameters provided evaluations of the energetics of hairpin loop formation as a function of loop size, sequence, and salt environment. Values of the free energies of hairpin loop formation ΔGloop(n > t) and single-strand circles, ΔGcir(N) as a function of end-loop size, t = 2-14, circle size, N = 32 + 2t, and loop sequence were obtained. These quantities were found to depend on end-loop size but not loop sequence. Their empirically determined values also varied with solvent ionic strength. Analytical expressions for the partition function Q(T) of the dumbbells were evaluated using the empirically evaluated best-fit loop parameters. From Q(T), the melting transition enthalpy ΔH, entropy ΔS, and free energy ΔG, were evaluated for the dumbbells as a function of end-loop size, sequence, and [Na+]. Since the multistate analysis is based on the numerically exact model, and considers a statistically significant number of theoretically possible partially melted states, it does not require prior assumptions regarding the nature of the melting transition, i.e., whether or not it occurs in a two-state manner. For comparison with the multistate analysis, thermodynamic transition parameters were also evaluated directly from experimental melting curves assuming a two-state transition and using the graphical van't Hoff analysis. Comparisons between results of the multistate and two-state analyses suggested dumbbells with loops comprised of six or fewer residues melted in a two-state manner, while the melting processes for dumbbells with larger end-loops deviate from two-state behavior.Dependence of thermodynamic parameters on[Na+] as a function of loop size suggests single-strand end-loops have different counterion binding properties than the melted circle. Results are compared with those obtained in an earlier study of dumbbells with the slightly different stem sequence 5'-G-C-A-T-A-G-A-T-G-A-G-A-A-T-G-C-3' linked on the ends by T loops (˛ = 2,3,4,6,8,10,14).© 1996 John Wiley &Sons, Inc.  相似文献   

5.
The conformational behavior of DNA minihairpin loops is sensitive to the directionality of the base pair that closes the loop. Especially tailored circular dumbbells, consisting of a stem of three Watson–Crick base pairs capped on each side with a minihairpin loop, serve as excellent model compounds by means of which deeper insight is gained into the relative stability and melting properties of hairpin loops that differ only in directionality of the closing pair: C-G vs G-C. For this reason the thermodynamic properties of the circular DNA decamers 5′-d〈pCGC-TT-GCG-TT〉-3′( I ) and reference compounds 5′-d〈pGGC-TT-GCC-TT≤-3′( II ) and 5′-d(GCG-TC-CGC)-3′( III ) are studied by means of nmr spectroscopy. Molecules I and II adopt dumbbell structures closed on both sides by a two-membered hairpin hop. At low temperature I consists of a mixture of two slowly exchanging forms, denoted L2L2 and L2L4 . The low-temperature L2L2 form is the fully intact minihairpin structure with three Watson–Crick C-G base pairs. The high-temperature form, L2L4 ,contains a partially disrupted closing G-C base pair in the 5′-GTTC-3′ loop, with the cytosine base placed in a syn orientation. The opposite 5′-CTTG-3′ loop remains stable. A study of the noncircular hairpin structure III shows similar conformational behavior for the 5′-GTTC-3′ loop as found in I a syn orientation for C(6) and two slowly exchanging imino proton signals for G(3). The melting point Tm of II was estimated to lie above 365 K. The Tm value of the duplex stem and the 5′-CTTG-3′ loop of the L2L4 form ofIis 352 ± 2 K. The ΔH° is calculated as ?89 ± 10 kJ/mol. The Tm value determined for the individual residues of the 5′-GTTC-3′ loop lies 4°–11° lower. The enthalpy ΔH° of melting the thymine residues in the 5′-GTTC-3′ loop is calculated to be -61± 7 kJ/mol. Thermodynamic data of the equilibrium between the slowly exchanging two- and four-membered loop conformers of I reveal an upper limit for ΔH° of +30 kJ/mol in going from a two-memberedto a four-membered loop, in agreement with the enthalpy difference of +28 k.j/mol between the two loops at the Tm midpoint. For hairpin III the upper limit for ΔH° going from a two-membered to a four-membered loop amounts to ±21 kJ/mol. The mutual exchange rate between the L2 and L4 form in III is estimated as 13.6 s?1. Our results clearly suggest that small four-way DNA junctions(model for immobilized Holliday junctions) can be designed that consist of a single DNA strandthat features -CTTG-caps on three of the four arms of the junction. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
The circular dichroism of double-stranded DNA is temperature dependent prior to its melting. As the temperature is increased the spectrum becomes more nonconservative. This is certainly due to a conformational change within the framework of the double helix. To ascertain the nature of the conformational change, a series of synthetic and natural DNA's from a variety of sources was investigated. The same qualitative changes were seen for all the DNA samples, independent of base composition. However, there were definite quantitative differences, with poly [d(A-T)] manifesting the largest effect. Oligomers of the form [d(A-T)]n with n = 10 to 21 behaved in a manner similar to the polymer. There is no observed chain-length dependence. The breadth of the pre-melt transition indicates a low ΔH (less than 5 kcal./mole); the lack of dependence on chain length indicates that the co-operative unit is smaller than eight base pairs.  相似文献   

7.
Absorbance-temperature profiles have been determined for the following self-complementary oligonucleotides or equimolar paris of complementary oligonucleotides containing GC base pairs: A2GCU2, A3GCU3, A4GCU4, A6CG + CGU6, A8CG + CGU8, A4G2 + C2U4, A5G2 + C2U5, A4G3 + C3U4, and A5G3 + C3U5. In all cases cooperative melting transitions indicate double-helix formation. As was found previously, the stability of GC containing oligomer helices is much higher than that of AU helices of corresponding length. Moreover, helices with the same length and base composition but different sequences also have quite different stabilites. The melting curves were andlyzed using a zipper model and the thermodynamic parameters for the AU pairs determined previously. The effect of single-strand stacking was considered separately. According to this model, the formation of a GC pair from unstacked single strands is associated with an ethalpy change of ?15 kcal/mole. Due to the high degree of single-strand stacking at room temperature the enthalpy change for the formation of GC pairs from unstacked single strands is only ?5 to ?6 kcal/mole. (The corresponding parameters for AU pairs are ?10.7 kcal/mole and ?5 to ?6 kcal/mole.) The sequence dependence of helix stability seems to be primarily entropic since no differences in ΔH were seen among the sequence isomers. The kinetics of helix formation was investigated for the same molecules using the temperature jump technique. Recombination of strands is second order with rate constants in the range of 105 to 107M?1 sec?1 depending on the chain length and the nucleotide sequence. Within a series of oligomers of a given type, the rates of recombination decrease with increasing chain length. Oligomers with the sequence AnGCUn recombine six to eight times slower than the other oligomers of corresponding chain length. The experimental enthalpies of activation of 6 to 9 kcal/mole suggest a nucleation length of one or two GC base pairs. The helix dissociation process has rate constants between 0.5 and 500 sec?1 and enthalpies of activation of 25 to 50 kcal/mole. An increase of chain length within a given nucleotide series leads to decreased rates of dissociation and increased enthalpies of activation. An investigation of the effect of ionic strength on AnGCUn helix formation showed that the rates of recombination increase considerably with increased ionic strength.  相似文献   

8.
The thermodynamic stability of RNA hairpin loops has been a subject of considerable interest in the recent past (Wimberly et al., 1991). There have been experimental reports indicating that the hairpins with a C(UUCG)G loop sequence are thermodynamically very stable (Wimberly et al., 1991). We used the solution structure of GGAC(UUCG)GUCC (Cheong et al., 1990; Varani et al., 1991) as the starting conformation in our attempt to understand its thermodynamic stability. We carried out molecular dynamics/free energy simulations to understand the basis for the destabilization of the C(UUCG)G loop by mutating cytosine (C7)-->uracil. Because of the limited length of simulation and the presence of kinetic barriers (solvent intervention) to the uracil-->cytosine mutation, all of our computed free energy differences are based on multiple forward simulations. Based on these calculations we find that the cytosine-->uracil mutation in the loop destabilizes it by approximately 1.5kcal/mol relative to that of the reference state, an A-form RNA but with cytosine (C7) looped out. This is the same sign and magnitude as that observed in the thermodynamic studies carried out by Varani et al.(1991). We have carried out free energy component analysis to understand the effect of mutating the cytosine residue to uracil on the thermodynamic stability of the C(UUCG)G hairpin loops. Our calculations show that the most significant contribution to the stability is from the phosphate group linking U5 and U6, which favors the cytosine residue over uracil by about 6.0 kcal/mol. The residues U5, U6, and G8 in the loop region also contribute significantly to the stability. The contributions from the salt and solvent compensate each other, indicating the dynamic nature of interactions of the environment with the nucleic acid system and the coupling between these two components.  相似文献   

9.
The temperature dependence for the hydrolysis of both 4-methylumbelliferyl-α-l-fucoside and p-nitrophenyl-α-l-fucoside was determined for purified α-l-fucosidase (EC 3.2.1.51) from human placenta. The inhibition of the enzymatic reaction by l-fucose was also studied using the first of these two substrates at different temperatures. The thermodynamic parameters calculated from the pKm were for the 4-methylumbelliferyl-conjugate ΔF = ?6.6 kcal/mol, ΔH = ?8.5 kcal/mol, and ΔS = ?6.3 e.u. and for the p-nitrophenylconjugate ΔF = ?5.6 kcal/mol, ΔH = ?12.2 kcal/mol, and ΔS = ?21.1 e.u. The thermodynamic parameters for l-fucose were ΔH = ?12.4 kcal/mol and ΔS = ?20.1 e.u. The lower exothermicity and negative entropy calculated for the 4-methylumbelliferyl substrate compared to the thermodynamic parameters calculated for the p-nitrophenyl substrate and l-fucose suggest the existence of a secondary hydrophobic binding site for the 4-methylumbelliferyl moiety on the enzyme. The difference in the enthalpy for both substrates is also reflected in a difference in activation energy, being 15.8 kcal/mol for the 4-methylumbelliferyl substrate and 20.7 kcal/mol for the p-nitrophenyl substrate. From these results it may be concluded that altered kinetic properties of the enzyme could be the result of the binding of the “aglycone” moiety of the fluorogenic substrate to the enzyme.  相似文献   

10.
Kissing loops are tertiary structure elements that often play key roles in functional RNAs. In the Neurospora VS ribozyme, a kissing-loop interaction between the stem–loop I (SLI) substrate and stem–loop V (SLV) of the catalytic domain is known to play an important role in substrate recognition. In addition, this I/V kissing-loop interaction is associated with a helix shift in SLI that activates the substrate for catalysis. To better understand the role of this kissing-loop interaction in substrate recognition and activation by the VS ribozyme, we performed a thermodynamic characterization by isothermal titration calorimetry using isolated SLI and SLV stem–loops. We demonstrate that preshifted SLI variants have higher affinity for SLV than shiftable SLI variants, with an energetic cost of 1.8–3 kcal/mol for the helix shift in SLI. The affinity of the preshifted SLI for SLV is remarkably high, the interaction being more stable by 7–8 kcal/mol than predicted for a comparable duplex containing three Watson–Crick base pairs. The structural basis of this remarkable stability is discussed in light of previous NMR studies. Comparative thermodynamic studies reveal that kissing-loop complexes containing 6–7 Watson–Crick base pairs are as stable as predicted from comparable RNA duplexes; however, those with 2–3 Watson–Crick base pairs are more stable than predicted. Interestingly, the stability of SLI/ribozyme complexes is similar to that of SLI/SLV complexes. Thus, the I/V kissing loop interaction represents the predominant energetic contribution to substrate recognition by the trans-cleaving VS ribozyme.  相似文献   

11.
The synthesis of the 6-O-DPC-2-N-methylguanosine (m2G) nucleoside and the corresponding 5′-O-DMT-2′-O-TOM-protected 6-O-DPC-2-N-methylguanosine phosphoramidite is reported [DPC, diphenyl carbamoyl; DMT, 4,4′-dimethoxytrityl; TOM, [(triisopropylsilyl)oxy]methyl]. The availability of the phosphoramidite allows for syntheses of hairpin RNAs with site-selective incorporation of 2-N-methylguanosine modification. Four 18-nt hairpin RNA analogues representing the 970-loop region (helix 31 or h31; U960–A975) of Escherichia coli 16S rRNA were synthesized with and without modifications in the loop region. Subsequently, stabilities and conformations of the singly and doubly modified RNAs were examined and compared with the corresponding unmodified RNA. Thermodynamic parameters and circular dichroism spectra are presented for the four helix 31 RNA analogues. Surprisingly, methylations in the loop region of helix 31 slightly destabilize the hairpin, which may have subtle effects on ribosome function. The hairpin construct is suitable for future ligand-binding experiments.  相似文献   

12.
A statistical analysis was made of the structures of 95 proteins of known sequence belonging to 13 families of erystallographically known conformations, with the object of predicting helices, loops and β-structures. The short-range interactions of the polypeptide chains were assumed to be due to amino acid residue pairs separated by m residues (m = 0, 1, 2, … 6). Four prediction functions (helix, loop, random coil and β-structure) were estimated by a linear combination of statistical quantities of different m values, modified from those which have been used for the x2-test, as a measure of the statistical constraint. The coefficients used in the combination were determined to make the number of correct assignments as large as possible. The coefficients (cm1 values) for helix prediction showed that the contribution of residue pairs separated by one residue is the most important. This seems contradictory to the accepted idea that residue pairs separated by two or three residues are most important. The coefficients (cm2 values) for loop prediction suggest that the long-range interactions (m ≥ 7) are as important as the short-range interactions (m ≤ 6), because the coefficients do not decrease as m increases.The proportion of residues correctly predicted as helical was 85.3% (58.8% for an alternative definition as an index of error, %cor. ass. 2), while the proportion of correct assignments of loops was 64.4% (%cor. ass. 2). Predictions of β-structures were made with 90.1% of the residues correct (52.3% for %corr. ass. 2), on the basis of a different set of statistical data. Initiation sites for β-structures can be inferred to be regions rich in Ile, Val, Leu and Phe. Predictions were also made for both the light and heavy chains of human EU myeloma immunoglobulin G1.  相似文献   

13.
A combination of calorimetric and spectroscopic techniques was used to evaluate the thermodynamic behavior of a set of DNA hairpins with the sequence d(GCGCTnGCGC), where n = 3, 5 and 7, and the interaction of each hairpin with ethidium. All three hairpins melt in two-state monomolecular transitions, with tm's ranging from 79.1 degrees C (T3) to 57.5 degrees C (T7), and transition enthalpies of approximately 38.5 kcal mol-1. Standard thermodynamic profiles at 20 degrees C reveal that the lower stability of the T5 and T7 hairpins corresponds to a delta G degree term of +0.5 kcal mol-1 per thymine residue, due to the entropic ordering of the thymine loops and uptake of counterions. Deconvolution of the ethidium-hairpin calorimetric titration curves indicate two sets of binding sites that correspond to one ligand in the stem with binding affinity, Kb, of approximately 1.8 x 10(6) M-1, and two ligands in the loops with Kb of approximately 4.3 x 10(4) M-1. However, the binding enthalpy, delta Hb, ranges from -8.6 (T3) to -11.6 kcal mol-1 (T7) for the stem site, and -6.6 (T3) to -12.7 kcal mol-1 (T7) for the loop site. Relative to the T3 hairpin, we obtained an overall thermodynamic contribution (per dT residue) of delta delta Hb = delta(T delta Sb) = -0.7(5) kcal mol-1 for the stem sites and delta delta Hb = delta(T delta Sb) = -1.5 kcal mol-1 for the loop sites. Therefore, the induced structural perturbations of ethidium binding results in a differential compensation of favorable stacking interactions with the unfavorable ordering of the ligands.  相似文献   

14.
Bulge loops are common features of RNA structures that are involved in the formation of RNA tertiary structures and are often sites for interactions with proteins and ions. Minimal thermodynamic data currently exist on the bulge size and sequence effects. Using thermal denaturation methods, thermodynamic properties of 1- to 5-nt adenine and guanine bulge loop constructs were examined in 10 mM MgCl2 or 1 M KCl. The ΔG37 loop parameters for 1- to 5-nt purine bulge loops in RNA constructs were between 3.07 and 5.31 kcal/mol in 1 M KCl buffer. In 10 mM magnesium ions, the ΔΔG° values relative to 1 M KCl were 0.47–2.06 kcal/mol more favorable for the RNA bulge loops. The ΔG37 loop parameters for 1- to 5-nt purine bulge loops in DNA constructs were between 4.54 and 5.89 kcal/mol. Only 4- and 5-nt guanine constructs showed significant change in stability for the DNA constructs in magnesium ions. A linear correlation is seen between the size of the bulge loop and its stability. New prediction models are proposed for 1- to 5-nt purine bulge loops in RNA and DNA in 1 M KCl. We show that a significant stabilization is seen for small bulge loops in RNA in the presence of magnesium ions. A prediction model is also proposed for 1- to 5-nt purine bulge loop RNA constructs in 10 mM magnesium chloride.  相似文献   

15.
The macromolecular structural transition of Pf1 filamentous bacterial virus detected by X-ray diffraction analysis has been studied in virus solutions by density, circular dichroism, and microcalorimetric measurements. The reversible structural change occurring between 5 °C and 25 °C has a calorimetrically determined transition enthalpy ΔHt,cal of 14·5 ± 1.5 kJ (mol protein)?1. The transition curves resulting from the density, circular dichroism, and calorimetric measurements have been analysed in terms of a two-state process to extract the van't Hoff enthalpy. Comparison of the effective transition enthalpy and the calorimetric ΔHt,cal values gives about 26 protein subunits as the size of the co-operative unit. Parallel heat capacity and density measurements on fd virus show no such transition, in agreement with X-ray diffraction studies.  相似文献   

16.
Gelatine is one of the most valuable natural polymers used for drug delivery applications. Gelatine-GAGs based composite system has been shown to act as good scaffolds for tissue engineering. The objective of the present study is to investigate the calorimetric properties of microporous gelatine-GAGs based blend, which were modified by co-crosslinking with a naturally occurring crosslinking agent genipin. The melting temperature (Tm), enthalpy change (ΔHm) and heat capacity change (ΔCp) were systematically calculated over the experimentally observed systems using differential scanning calorimeter (DSC). The thermoporometry results suggest that the concentration of the glycosaminoglycans plays an important role in the pore size distribution of the blend matrices. The circular dichroism (CD) spectroscopy study, scanning electron microscopy (SEM) studies provide the valuable information about the structural features of the biodegradable blend that can be utilized for various biomedical applications. The results provide new insights into the thermal stability of blend and suggest potential strategies for its manipulation.  相似文献   

17.
We used the temperature-jump method to study the complex between yeast t RNAPheand Escherichia coli tRNAGlu, which have the complementary anticodons GmAA and s2UUC, respectively. The binding constant (3.6 × 105m?1 at 25 °C) is about six orders of magnitude larger than expected for two complementary trinucleotides. The association rate constant (3 × 106m?1 at 25 °C) is similar to typical values observed for oligonucleotides, so the enhanced affinity in the tRNA · tRNA complex is due entirely to a much slower dissociation than expected for a three base-pair helix. We found an association enthalpy of ?25 kcal/mol, nearly twice as large as expected for two stacking interactions in a three base-pair helix. The association entropy (?58 cal/deg per mol) is close to the expected value. The reaction occurs with a single relaxation, and therefore does not involve any slow reorganization of the tRNA molecule.We studied structural variations to investigate the origin of affinity enhancement. The following general factors are important. (1) The “loop constraint”, or closure of the two anticodon sequences into hairpin loops, accounts for about a factor 50 in the affinity. (2) “Dangling ends”, or non-complementary nucleotides at the end of the double helix contribute strongly to the affinity. (3) Modified nucleotides, like the Y base, in the dangling ends can contribute a special stabilization of up to a factor seven. These observations can be understood in terms of a model in which the short three base-pair helix is sandwiched between stacked bases and hence stabilized. The potential importance of loop-loop interactions and stacking effects for codon-anticodon bonding is emphasized. The results suggest a possible simple physical basis for the evolutionary choice of a triplet coding system.  相似文献   

18.
Kumar N  Maiti S 《Nucleic acids research》2008,36(17):5610-5622
Loop length and its composition are important for the structural and functional versatility of quadruplexes. To date studies on the loops have mainly concerned model sequences compared with naturally occurring quadruplex sequences which have diverse loop lengths and compositions. Herein, we have characterized 36 quadruplex-forming sequences from the promoter regions of various proto-oncogenes using CD, UV and native gel electrophoresis. We examined folding topologies and determined the thermodynamic profile for quadruplexes varying in total loop length (5–18 bases) and composition. We found that naturally occurring quadruplexes have variable thermodynamic stabilities (ΔG37) ranging from −1.7 to −15.6 kcal/mol. Overall, our results suggest that both loop length and its composition affect quadruplex structure and thermodynamics, thus making it difficult to draw generalized correlations between loop length and thermodynamic stability. Additionally, we compared the thermodynamic stability of quadruplexes and their respective duplexes to understand quadruplex–duplex competition. Our findings invoke a discussion on whether biological function is associated with quadruplexes with lower thermodynamic stability which undergo facile formation and disruption, or by quadruplexes with high thermodynamic stability.  相似文献   

19.
The binding of a peptide to a biological membrane is often accompanied by a transition from a random coil structure to an amphipathic alpha-helix. Recently, we have presented a new approach which allows the determination of the thermodynamic parameters of membrane-induced helix formation [Wieprecht et al. (1999) J. Mol Biol. 294, 785]. It involves a systematic variation of the helix content of a given peptide by double D-substitution and a correlation of the binding parameters with the helicity. Here we have used this method to study membrane-induced helix formation for the presequence of rat mitochondrial rhodanese (RHD). The thermodynamic parameters of binding of the peptide RHD and of four of its double D-isomers were determined for 30 nm (SUVs) and 100 nm (LUVs) unilamellar vesicles composed of phosphatidylcholine/phosphatidylglycerol (3:1) using circular dichroism spectroscopy, fluorescence spectroscopy, and isothermal titration calorimetry. The incremental changes of the thermodynamic parameters of helix formation were found to be very similar for SUVs and LUVs. Membrane-induced helix formation of RHD entailed a negative enthalpy of Delta H(helix) = -0.5 to -0.6 kcal/mol/residue and was opposed by an entropy of about Delta S(helix) = -1 to -1.4 cal/mol K/residue. The free energy of helix formation, Delta G(helix), was about -0.2 kcal/mol, and helix formation accounted for 50-60% of the total free energy of membrane binding. Dye-release experiments were used to assess the role of helix formation for the membrane perturbation potential of the peptides. While helix formation plays a major role for membrane binding, it appears to have little importance for inducing membrane leakiness.  相似文献   

20.
The double-helical complex formed from m6m9A and poly U has been characterized by circular dichroism and u.v. spectrophotometry. The circular dichroism of the complex is similar to that of the double-helical poly A poly U complex both in shape and in magnitude and thus indicates a quite similar structure. The double Helix–coil transition has been studied at various nucleotide concentrations and at three different ionic strengths. As expected for the binding of a base to a polymer, the Helix–coil transition is shifted to higher temperatures by increasing nucleotide concentrations, but is not affected by changes of the ionic strength. The melting curves are analyzed according to a linear Ising model taking the stacking of the monomers into account. At 0°C the equilibrium constant for nucleation is found to be 2–5 M?1 and that for chain growth is 500 M?1. The enthalpy change associated with chain growth is ?11.2 ± 1 kcal M?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号