首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 393 毫秒
1.
We used implanted miniature data loggers and fine thermistors to measure arterial blood and brain temperatures in four female pigs, to a resolution of 0.04 °C, every 5 min, for 4 weeks. Within that period, pigs were exposed on different days, and in random order, to a cold (5 °C) or hot (38 °C) environment. In the thermoneutral environment of the pigs' home pens, brain temperature was usually lower than blood temperature. Such selective brain cooling was absent for 2 days after surgery, during handling and transport stress, and on waking. The magnitude of selective brain cooling was greatest when pigs were sleeping and body temperatures were low, and was smallest, or even absent, during hyperthermia and natural fever. Our results showed that selective brain cooling was present in pigs, but there was no clear relationship between blood temperature and the magnitude of selective brain cooling. Instead, the degree of selective brain cooling in pigs was governed by non-thermal factors, especially those associated with high sympathetic nervous system activity. Our results further support the concept that selective brain cooling does not serve to protect the brain from thermal damage during heat stress. Accepted: 14 September 1999  相似文献   

2.
Selective brain cooling (SBC) of varying strengths has been demonstrated in a number of mammals and appears to play a role in systemic thermoregulation. Although primates lack obvious specialization for SBC, the possibility of brain cooling in humans has been debated for many years. This paper reports on the use of mathematical modeling to explore whether surface cooling can control effectively the temperature of the human cerebrum. The brain was modeled as a hemisphere with a volume of 1.33 1 and overlying layers of cerebrospinal fluid, skull, and scalp. Each component was assigned appropriate dimensions, physical properties and physiological characteristics that were determined from the literature. The effects of blood flow and of thermal conduction were modeled using the steady-state form of the bio-heat equation. Input parameters included core (arterial) temperature: normal (37°C) or hyperthermic (40°C), air temperature: warm (30°C) or hot (40°C), and sweat evaporation rate: 0, 0.25, or 0.50 l · m−2 · h−1. The resulting skin temperatures of the model ranged from 31.8°C to 40.2°C, values which are consistent with data obtained from the literature. Cerebral temperatures were generally insensitive to surface conditions (air temperature and evaporation rate), which affected only the most superficial level of the cerebrum (≤1.5 mm) The remaining parenchymal temperatures were 0.2–0.3°C above arterial temperatures, regardless of surface conditions. This held true even for the worst-case conditions combining core hyperthermia in a hot environment with zero evaporative cooling. Modeling showed that the low surface-to-volume ratio, low tissue conductivity, and high rate of cerebral perfusion combine to minimize the potential impact of surface cooling, whether by transcranial venous flow or by conduction through intervening layers to the skin or mucosal surfaces. The dense capillary network in the brain assures that its temperature closely follows arterial temperature and is controlled through systemic thermoregulation independent of head surface temperature. A review of the literature reveals several independent lines of evidence which support these findings and indicate the absence of functionally significant transcranial venous flow in either direction. Given the fact that humans sometimes work under conditions which produce face and scalp temperatures that are above core temperature, a transcranial thermal link would not necessarily protect the brain, but might instead increase its vulnerability to environmentally induced thermal injury. Accepted: 11 March 1998  相似文献   

3.
Cancer chemotherapy treatment often leads to hair loss, which may be prevented by cooling the scalp during drug administration. The current hypothesis for the hair preservative effect of scalp cooling is that cooling of the scalp skin reduces blood flow (perfusion) and chemical reaction rates. Reduced perfusion leads to less drugs available for uptake, whereas the reduced temperature decreases uptake of and damage by chemotherapy. Altogether, less damage is exerted to the hair cells, and the hair is preserved. However, the two mechanisms in the hypothesis have not been quantified yet. To quantify the effect of reduced drug damage caused by falling temperatures, we investigated the effect of local drug concentration and local tissue temperature on hair cell damage using in vitro experiments on keratinocytes. Cells were exposed for 4 h to a wide range of doxorubicin concentrations. During exposure, cells were kept at different temperatures. Cell viability was determined after 3 d using a viability test. Control samples were used to establish a concentration–viability curve. Results show that cell survival is significantly higher in cooled cells (T < 22° C) than in non-cooled cells (T = 37° C), but no significant differences are visible between T = 10° C and T = 22° C. Based on this result and previous work, we can conclude that there is an optimal temperature in scalp cooling. Further cooling will only result in unnecessary discomfort for the patient and should therefore be avoided.  相似文献   

4.
Summary. Heat shock proteins (HSPs) are synthesised by cells subsequent to a stress exposure and are known to confer protection to the cell in response to a second challenge. HSP induction and decay are correlated to thermotolerance and may therefore be used as a biomarker of thermal history. The current study tested the temperature-dependent nature of the heat shock response and characterised its time profile of induction. Whole blood from 6 healthy males (Age: 26 ± (SD) 2 yrs; Body mass 74.2 ± 3.8 kgs; VO2max: 49.1 ± 4.0 ml·kg−1·min−1) were isolated and exposed to in vitro heat shock (HS) at 37, 38, 39, 40, and 41 °C for a period of 90 min. After HS the temperature was returned to 37 °C and intracellular HSP70 was quantified from the leukocytes at 0, 2, 4, and 6 h after heat treatment. The concentration of HSP70 was not different between temperatures (P > 0.05), but the time-profile of HSP70 synthesis appeared temperature-dependent. At control (37 °C) and lower temperatures (38–39 °C) the mean HSP70 concentration increased up to 4 h post HS (P < 0.05) and then returned towards baseline values by 6 h post HS. With in vitro hyperthermic conditions (40–41 °C), the time-profile was characterised by a sharp rise in HSP70 levels immediately after treatment (P < 0.05 for 40 °C at 0 h), followed by a progressive decline over time. The results suggest a temperature-dependent time-profile of HSP70 synthesis. In addition, the temperature at which HSP70 is inducted might be lower than 37 °C.  相似文献   

5.
Hypothalamic temperature (T hypo) and metabolic heat production (M) were measured in seven conscious rabbits injected intravenously with either saline or with Staphylococcus aureus, (8 · 107 cell walls · kg−1) while being subjected to a 3-h period of ramp-like total body cooling using a chronically implanted intravascular heat exchanger. In pyrogen-injected animals cooling started (1) at the time of injection or (2) 70 min after injection. In (1) the fall in T hypo induced by heat extraction was similar (1.0 °C) in afebrile and febrile animals. In (2) there was a transient increase in T hypo of about 0.5 °C at a time corresponding to the start of fever resulting in a significantly smaller fall in T hypo at the end of the 3-h cooling period (0.5 °C vs 0.9 °C, P < 0.05, n = 5). At this time in both (1) and (2) M was lower than theoretically expected from the increase in shivering threshold during fever. However, most of this effect can be explained when available data showing a decrease in thermosensitivity during S. aureus-induced fever are taken into account. After cessation of cooling in both groups of febrile animals T hypo rose to about 1 °C higher than the precooling level, which is comparable to the fever level in a separate series of experiments with S. aureus injection without cooling (1.2 °C). Accepted: 23 September 1997  相似文献   

6.
Water spray cooling during handling of feedlot cattle   总被引:1,自引:0,他引:1  
Activities involved in receiving or working (e.g., sorting, dehorning, castration, weighing, implanting, etc.) of feedlot cattle cause an increase in body temperature. During hot weather the increased body temperature may disrupt normal behaviors including eating, which can be especially detrimental to the well-being and performance of the animals. Sprinkle cooling of animals has been successfully employed within the pen; however, added moisture to the pens’ surface increases odor generation from the pen. A study was conducted to investigate the effectiveness of a single instance of wetting an animal within the working facility instead of in the pen, which could potentially provide extra evaporative cooling to offset the added heat produced by activity. Sixty-four cross-bred heifers were assigned to one of eight pens on the basis of weight. On four separate occasions during hot conditions (average temperature 28.2 ± 1.9°C, 29.1 ± 2.0°C, 28.9 ± 3.0°C, and 26.8 ± 1.6°C; with the temperature ranging from 22.6 to 32.5°C during the trials), the heifers were moved from their pens to and from the working facility (a building with a scale and squeeze chute located 160–200 m away). While in the squeeze chute, four of the pens of heifers were sprinkle cooled and the remaining four pens were worked as normal. The heifers that were treated had a body temperature that peaked sooner (31.9 ± 0.63 min compared to 37.6 ± 0.62) with a lower peak body temperature (39.55 ± 0.03°C compared to 39.74 ± 0.03°C), and recovered sooner (70.5 ± 2.4 min compared to 83.2 ± 2.4 min). The treated animals also had a lower panting score, a visual assessment of level of cattle heat stress (1.1 ± 0.2 compared to 1.16 ± 0.2). The behavior measurements that were taken did not indicate a change in behavior. It was concluded that while a single instance of wetting an animal within the working facility did not completely offset the increase in body temperature, it was beneficial to the animals without needing to add water to the pen surface, thus reducing the potential for odor generation.  相似文献   

7.
Cattle production plays a significant role in terms of world food production. Nearly 82% of the world’s 1.2 billion cattle can be found in developing countries. An increasing demand for meat in developing countries has seen an increase in intensification of animal industries, and a move to cross-bred animals. Heat tolerance is considered to be one of the most important adaptive aspects for cattle, and the lack of thermally-tolerant breeds is a major constraint on cattle production in many countries. There is a need to not only identify heat tolerant breeds, but also heat tolerant animals within a non-tolerant breed. Identification of heat tolerant animals is not easy under field conditions. In this study, panting score (0 to 4.5 scale where 0 = no stress and 4.5 = extreme stress) and the heat load index (HLI) [HLIBG<25°C = 10.66 + 0.28 × rh + 1.30 × BG – WS; and, HLI BG> 25°C = 8.62 + 0.38 × rh + 1.55 × BG – 0.5 × WS + e(2.4 – WS), where BG = black globe temperature (oC), rh = relative humidity (decimal form), WS = wind speed (m/s) and e is the base of the natural logarithm] were used to assess the heat tolerance of 17 genotypes (12,757 steers) within 13 Australian feedlots over three summers. The cattle were assessed under natural climatic conditions in which HLI ranged from thermonuetral (HLI < 70) to extreme (HLI > 96; black globe temperature = 40.2°C, relative humidity = 64%, wind speed = 1.58 m/s). When HLI > 96 a greater number (P < 0.001) of pure bred Bos taurus and crosses of Bos taurus cattle had a panting score ≥ 2 compared to Brahman cattle, and Brahman-cross cattle. The heat tolerance of the assessed breeds was verified using panting scores and the HLI. Heat tolerance of cattle can be assessed under field conditions by using panting score and HLI.  相似文献   

8.
The aim of this study was to assess whether the three-compartment model of mean body temperature (Tb3) calculated from the esophageal temperature (Tes), temperature in deep tissue of exercising muscle (Tdt), and mean skin temperature (Tsk) has the potential to provide a better match with the thermoregulatory responses than the two-component model of mean body temperature (Tb2) calculated from Tes and Tsk. Seven male subjects performed 40 min of a prolonged cycling exercise at 30% maximal oxygen uptake at 21°C or 31°C (50% relative humidity). Throughout the experiment, Tsk, Tb2, Tb3, and Tdt were significantly (P < 0.01) lower at 21°C than at 31°C temperature conditions, while Tes was similar under both conditions. During exercise, an increase in cutaneous vascular conductance (skin blood flow / mean arterial pressure) over the chest (%CVCc) was observed at both 21°C and 31°C, while no increase was observed at the forearm at 21°C. Furthermore, the Tb3 and Tdt threshold for the onset of the increase in %CVCc was similar, but the Tes and Tb2 threshold differed significantly (P < 0.05) between the conditions tested. These results suggest that active cutaneous vasodilation at the chest is related more closely to Tb3 or Tdt than that measured by Tes or Tb2 calculated by Tes and Tsk during exercise at both 21°C and 31°C.  相似文献   

9.
By cooling the hypothalamus during hyperthermia, selective brain cooling reduces the drive on evaporative heat loss effectors, in so doing saving body water. To investigate whether selective brain cooling was increased in dehydrated sheep, we measured brain and carotid arterial blood temperatures at 5-min intervals in nine female Dorper sheep (41 +/- 3 kg, means +/- SD). The animals, housed in a climatic chamber at 23 degrees C, were exposed for nine days to a cyclic protocol with daytime heat (40 degrees C for 6 h). Drinking water was removed on the 3rd day and returned 5 days later. After 4 days of water deprivation, sheep had lost 16 +/- 4% of body mass, and plasma osmolality had increased from 290 +/- 8 to 323 +/- 9 mmol/kg (P < 0.0001). Although carotid blood temperature increased during heat exposure to similar levels during euhydration and dehydration, selective brain cooling was significantly greater in dehydration (0.38 +/- 0.18 degrees C) than in euhydration (-0.05 +/- 0.14 degrees C, P = 0.0008). The threshold temperature for selective brain cooling was not significantly different during euhydration (39.27 degrees C) and dehydration (39.14 degrees C, P = 0.62). However, the mean slope of lines of regression of brain temperature on carotid blood temperature above the threshold was significantly lower in dehydrated animals (0.40 +/- 0.31) than in euhydrated animals (0.87 +/- 0.11, P = 0.003). Return of drinking water at 39 degrees C led to rapid cessation of selective brain cooling, and brain temperature exceeded carotid blood temperature throughout heat exposure on the following day. We conclude that for any given carotid blood temperature, dehydrated sheep exposed to heat exhibit selective brain cooling up to threefold greater than that when euhydrated.  相似文献   

10.
The effect of manipulating sodium intake upon sweat sodium secretion was investigated during heat acclimation. Twenty-five male subjects were confined to an environmental chamber at a temperature of 25°C for 3 days, and then acclimated to heat by a further 5 days at 40°C. The subjects' daily sodium intake was controlled throughout as follows: high (HNa), 348.4 (0.8) mmol · day−1, n = 7; moderate (MNa), 174.1 (0.6) mmol · day−1, n = 9; or low (LNa), 66.3 mmol · day−1, n = 9. Sodium losses were estimated from urinary, faecal and sweat collections using a whole-body washdown method. Plasma aldosterone concentration was also measured from venous blood sampled each morning. Measurements of body temperature and heart rate during the heat exposure phase indicated a degree of heat acclimation. During this heat phase there was a reduction (P < 0.01) in sweat sodium secretion for all three conditions which was greatest for the LNa condition, although this finding was not significant (P < 0.1). In the LNa condition, plasma aldosterone concentration increased (P < 0.05) prior to heat exposure, and the secretion of aldosterone was potentiated (P < 0.01) during the heat exposure in comparison with the MNa condition. In contrast, the HNa diet produced a fall (P < 0.05) in plasma aldosterone concentration prior to heat exposure and an attenuation of aldosterone secretion thereafter. These findings are inconsistent with the hypothesis that retention of sweat sodium is dependent upon a net body sodium deficit, but demonstrate that aldosterone secretion is potentiated under such conditions. Accepted: 22 May 1988  相似文献   

11.
The concept of physiologically equivalent temperature (PET) has been applied to the analysis of thermal bioclimatic conditions in Freiburg, Germany, to show if days with extreme bioclimatic conditions will change and how extreme thermal conditions can be modified by changes in mean radiant temperature and wind speed. The results show that there will be an increase of days with heat stress (PET > 35°C) in the order of 5% (from 9.2% for 1961–1990) and a decrease of days with cold stress (PET < 0°C) from 16.4% to 3.8% per year. The conditions can be modified by measures modifying radiation and wind speed in the order of more than 10% of days per year by reducing global radiation in complex structures or urban areas.  相似文献   

12.
Eggs of two small Australian lizards, Lampropholis guichenoti and Bassiana duperreyi, were incubated to hatching at 25 °C and 30 °C. Incubation periods were significantly longer at 25 °C in both species, and temperature had a greater effect on the incubation period of B. duperreyi (41.0 days at 25 °C; 23.1 days at 30 °C) than L. guichenoti (40.1 days at 25 °C; 27.7 days at 30 °C). Patterns of oxygen consumption were similar in both species at both temperatures, being sigmoidal in shape with a fall in the rate of oxygen consumption just prior to hatching. The higher incubation temperature resulted in higher peak and higher pre-hatch rates of oxygen consumption in both species. Total amount of oxygen consumed during incubation was independent of temperature in B. duperreyi, in which approximately 50 ml oxygen was consumed at both temperatures, but eggs of L. guichenoti incubated at 30 °C consumed significantly more (32.6 ml) than eggs incubated at 25 °C (28.5 ml). Hatchling mass was unaffected by either incubation temperature or the amount of water absorbed by eggs during incubation in both species. The energetic production cost of hatchling B. duperreyi (3.52 kJ · g−1) was independent of incubation temperature, whereas in L. guichenoti the production cost was greater at 30 °C (4.00 kJ · g−1) than at 25 °C (3.47 kJ · g−1). Snout-vent lengths and mass of hatchlings were unaffected by incubation temperature in both species, but hatchling B. duperreyi incubated at 30 °C had longer tails (29.3 mm) than those from eggs incubated at 25 °C (26.2 mm). These results indicate that incubation temperature can affect the quality of hatchling lizards in terms of embryonic energy consumption and hatchling morphology. Accepted: 27 January 2000  相似文献   

13.
Arousal from hibernation requires thermogenesis in brown adipose tissue, a process that is stimulated by β-adrenergic signals, leading to a rise in intracellular 3′,5′-cyclic adenosine monophosphate AMP (cAMP) and activating cAMP-dependent protein kinase A (PKA) to phosphorylate a suite of target proteins and activate lipolysis and uncoupled respiration. To determine whether specific adaptations (perhaps temperature-dependent) facilitate PKA kinetic properties or protein-phosphorylating ability, the catalytic subunit of PKA (PKAc) from interscapular brown adipose of the ground squirrel Spermophilus richardsonii, was purified (final specific activity = 279 nmol phosphate transferred per min per mg protein) and characterized. Physical properties of PKAc included a molecular weight of 41 kDa and an isoelectric point of 7.8 ± 0.08. A change in assay temperature from a euthermic value (37 °C) to one typical of hibernating body temperature (5 °C) had numerous significant effects on ground squirrel PKAc including: (a) pH optimum rose from 6.8 at 37 °C to 8.7 at 5 °C, (b) Km values at 37 °C for Mg.ATP (49.2±3.4 M) and for two phosphate acceptors, Kemptide (50.0±5.5 M) and Histone IIA (0.41 ± 0.05 mg/ml) decreased by 53%, 80% and 51%, respectively, at 5 °C, and (c) inhibition by KCl, NaCl and NH4Cl was reduced. However, temperature change had little or no effect on Km values of rabbit PKAc, suggesting a specific positive thermal modulation of the hibernator enzyme. Arrhenius plots also differed for the two enzymes; ground squirrel PKAc showed a break in the Arrhenius relationship at 9 °C and activation energies that were 29.1 ± 1.0 kJ/mol for temperatures >9 °C and 2.3-fold higher at 68.1 ± 2.1 kJ/mol for temperatures <9 °C, whereas the rabbit enzyme showed a breakpoint at 17 °C with a 13-fold higher activation energy over the lower temperature range. However, fluorescence analysis of PKAc in the absence of substrates, showed a linear change in fluorescence intensity and wavelength of maximal fluorescence over the entire temperature range; this suggested that the protein conformational change indicated by the break in the Arrhenius plot was substrate-related. Temperature change also affected the Hill coefficient for cAMP dissociation of the ground squirrel PKA holoenzyme which rose from 1.12 ± 0.18 at 37 °C to 2.19 ± 0.07 at 5 °C, making the release of catalytic subunits at low temperature much more responsive to small changes in cAMP levels. Analysis of PKAc function via in vitro incubations of extracts of ground squirrel brown adipose with 32P-ATP + cAMP in the presence versus absence of a PKA inhibitor, also revealed major differences in the patterns of phosphoproteins, both between euthermic and hibernating animals as well as between 37 and 5 °C incubation temperatures; this suggests that there are both different targets of PKAc phosphorylation in the hibernating animal and that temperature affects the capacity of PKAc to phosphorylate different targets. Both of these observations, plus the species-specific and temperature-dependent changes in ground squirrel PKAc kinetic properties, suggest differential control of the enzyme in vivo at euthermic versus hibernating body temperatures in a manner that would facilitate a rapid and large activation of the enzyme during arousal from torpor. Accepted: 10 July 1998  相似文献   

14.
The influence of low temperature (5–29 °C) on the methanogenic activity of non-adapted digested sewage sludge and on temperature/leachate-adapted biomass was assayed by using municipal landfill leachate, intermediates of anaerobic degradation (propionate) and methane precursors (acetate, H2/CO2) as substrates. The temperature dependence of methanogenic activity could be described by Arrhenius-derived models. However, both substrate and adaptation affected the temperature dependence. The adaptation of biomass in a leachate-fed upflow anaerobic sludge-blanket reactor at approximately 20 °C for 4 months resulted in a sevenfold and fivefold increase of methanogenic activity at 11 °C and 22 °C respectively. Both acetate and H2/CO2 were methanized even at 5 °C. At 22 °C, methanogenic activities (acetate 4.8–84 mM) were 1.6–5.2 times higher than those at 11 °C. The half-velocity constant (K s) of acetate utilization at 11 °C was one-third of that at 22 °C while a similar K i was obtained at both temperatures. With propionate (1.1–5.5 mM) as substrate, meth‐anogenic activities at 11 °C were half those at 22 °C. Furthermore, the residual concentration of the substrates was not dependent on temperature. The results suggest that the adaptation of biomass enables the achievement of a high treatment capacity in the anaerobic process even under psychrophilic conditions. Received: 23 December 1996 / Received last revision: 18 June 1997 / Accepted: 23 June 1997  相似文献   

15.
Extracellular heat-shock protein 72 (eHsp72) expression during exercise-heat stress is suggested to increase with the level of hyperthermia attained, independent of the rate of heat storage. This study examined the influence of exercise at various intensities to elucidate this relationship, and investigated the association between eHsp72 and eHsp27. Sixteen male subjects cycled to exhaustion at 60% and 75% of maximal oxygen uptake in hot conditions (40°C, 50% RH). Core temperature, heart rate, oxidative stress, and blood lactate and glucose levels were measured to determine the predictor variables associated with eHsp expression. At exhaustion, heart rate exceeded 96% of maximum in both conditions. Core temperature reached 39.7°C in the 60% trial (58.9 min) and 39.0°C in the 75% trial (27.2 min) (P < 0.001). The rate of rise in core temperature was 2.1°C h−1 greater in the 75% trial than in the 60% trial (P < 0.001). A significant increase and correlation was observed between eHsp72 and eHsp27 concentrations at exhaustion (P < 0.005). eHsp72 was highly correlated with the core temperature attained (60% trial) and the rate of increase in core temperature (75% trial; P < 0.05). However, no common predictor variable was associated with the expression of both eHsps. The similarity in expression of eHsp72 and eHsp27 during moderate- and high-intensity exercise may relate to the duration (i.e., core temperature attained) and intensity (i.e., rate of increase in core temperature) of exercise. Thus, the immuno-inflammatory release of eHsp72 and eHsp27 in response to exercise in the heat may be duration and intensity dependent.  相似文献   

16.
The influence of artificially induced anaemia on thermal strain was evaluated in trained males. Heat stress trials (38.6°C, water vapour pressure 2.74 kPa) performed at the same absolute work rates [20 min of seated rest, 20 min of cycling at 30% peak aerobic power (O2peak), and 20 min cycling at 45% O2peak] were completed before (HST1) and 3–5 days after 3 units of whole blood were withdrawn (HST2). Mild anaemia did not elevate thermal strain between trials, with auditory canal temperatures terminating at 38.5°C [(0.16), HST1] and 38.6°C [(0.13), HST2; P > 0.05]. Given that blood withdrawal reduced aerobic power by 16%, this observation deviates from the close association often observed between core temperature and relative exercise intensity. During HST2, the absolute and integrated forearm sweat rate ( sw) exceeded control levels during exercise (P < 0.05), while a suppression of forehead sw occurred (P < 0.05). These observations are consistent with a possible peripheral redistribution of sweat secretion. It was concluded that this level of artificially induced anaemia did not impact upon heat strain during a 60-min heat stress test. Accepted: 17 April 1997  相似文献   

17.
 A vascular heat transfer model is developed to simulate temperature decay along the carotid arteries in humans, and thus, to evaluate temperature differences between the body core and arterial blood supplied to the brain. Included are several factors, including the local blood perfusion rate, blood vessel bifurcation in the neck, and blood vessel pairs on both sides of the neck. The potential for cooling blood in the carotid artery by countercurrent heat exchange with the jugular veins and by radial heat conduction to the neck surface was estimated. Cooling along the common and internal carotid arteries was calculated to be up to 0.87 °C during hyperthermia by high environmental temperatures or muscular exercise. This model was also used to evaluate the feasibility of lowering the brain temperature effectively by placing ice pads on the neck and head surface or by wearing cooling garments during hypothermia treatment for brain injury or other medical conditions. It was found that a 1.1 °C temperature drop along the carotid arteries is possible when the neck surface is cooled to 0 °C. Thus, the body core temperature may not be a good indication of the brain temperature during hyperthermia or hypothermia. Received: 10 January 2002 / Accepted: 7 May 2002 This research was supported by a UMBC Summer Faculty Fellowship.  相似文献   

18.
The present study evaluated whether broiler femoral and tibiotarsal characteristics (as assessed at slaughter age) could be improved if birds were reared under their preferred temperature and whether continuous high or low incubation temperature during the fetal period improves bone characteristics of broilers reared under heat stress or thermal preference. Broiler breeder eggs were incubated from day 13 until hatching under cold (36 °C), control (37.5 °C), or hot (39 °C) temperatures. Under these conditions, the eggshell temperatures were 37.4 ± 0.1°C, 37.8 ± 0.15°C, and 38.8 ± 0.3°C, respectively. Then, broiler chicks were reared under control, preferred (determined previously in thermal preference test), or high temperatures. At day 42 of age, the broilers were weighed and euthanized, and femora and tibiotarsi collected to measure weight, length, diaphysis perimeter, breaking strength, maximum flexion, rigidity, ash, phosphorus, and calcium. Rearing under the preferred temperature did not affect broiler body weight or femoral and tibiotarsal characteristics (P > 0.05). In contrast, high rearing temperature, decreased the body weight, mineral contents of both bones, femoral breaking strength, and tibiotarsal rigidity (P < 0.05). Regarding incubation temperature effects, egg exposure to cold and hot temperatures during the fetal period minimized or avoided a few effects of high rearing temperature, such as those on femoral and tibiotarsal morphological characteristics, mineral composition, and mechanical properties at slaughter age (P < 0.05), but not all. In conclusion, rearing under the preferred broiler temperature did not improve the bone characteristics, and the negative effects of high rearing temperature on bone development were minimized but not completely prevented by high or low temperature incubation during the fetal period.  相似文献   

19.
The operational temperature of microbial fuel cell reactors influences biofilm development, and this has an impact on anodic biocatalytic activity. In this study, we compared three microbial fuel cell (MFC) reactors acclimated at 10°C, 20°C and 35°C to investigate the effect on biomass development, methanogenesis and electrogenic activity over time. The start-up time was inversely influenced by temperature, but the amount of biomass accumulation increased with increased temperatures, the 10°C, 20°C and 35°C acclimated biofilms resulted in 0.57, 0.82 and 5.43 g biomass (volatile suspended solids) per litre respectively at 56 weeks of operation. Biofilm build-up on the 35°C anode was further demonstrated by scanning electron microscopy, which showed large aggregations of biomass accumulating on the anode when compared to 10°C and 20°C biofilms. Biomass accumulation had a direct impact on biocatalytic performance, with the maximum power at 35°C after 60 weeks of operation being 2.14 W m−3 and power densities for the 10°C and 20°C reactors being and 4.29 W m−3. Methanogenic activity was also shown to be higher at 35°C, with a rate of 10.1 mmol CH4 biofilm per gram of volatile suspended solid (VSS) per day, compared to 0.28 mmol CH4 per gram of VSS per day produced at 20°C. These results demonstrate that higher MFC operating temperatures could be detrimental to the biocatalytic performance of electrochemically active bacteria in anodic biofilms due to biomass accumulation with enhanced development of non-electrogenic communities (e.g. methanogens and fermenters), meaning that, over time, psychro- or mesophilic operation can have beneficial effects for the development of electrogenically active populations in the reactor.  相似文献   

20.
People adapt to thermal environments, such as the changing seasons, predominantly by controlling the amount of clothing insulation, usually in the form of the clothing that they wear. The aim of this study was to determine the actual daily clothing insulation on sedentary human subjects across the seasons. Thirteen females and seven males participated in experiments from January to December in a thermal chamber. Adjacent months were grouped in pairs to give six environmental conditions: (1) January/February = 5°C; (2) March/April = 14°C; (3) May/June = 25°C; (4) July/August = 29°C; (5) September/October = 23°C; (6) November/December = 8°C. Humidity(45 ± 5%) and air velocity(0.14 ± 0.01 m/s) were constant across all six experimental conditions. Participants put on their own clothing that allowed them to achieve thermal comfort for each air temperature, and sat for 60 min (1Met). The clothing insulation (clo) required by these participants had a significant relationship with air temperature: insulation was reduced as air temperature increased. The range of clothing insulation for each condition was 1.87–3.14 clo at 5°C(Jan/Feb), 1.62–2.63 clo at 14°C(Mar/Apr), 0.87–1.59 clo at 25°C(May/Jun), 0.4–1.01 clo at 29°C(Jul/Aug), 0.92–1.81 clo at 23°C (Sept/Oct), and 2.12–3.09 clo at 8°C(Nov/Dec) for females, and 1.84–2.90 clo at 5°C, 1.52–1.98 clo at 14°C, 1.04–1.23 clo at 25°C, 0.51–1.30 clo at 29°C, 0.82–1.45 clo at 23°C and 1.96–3.53 clo at 8°C for males. The hypothesis was that thermal insulation of free living clothing worn by sedentary Korean people would vary across seasons. For Korean people, a comfortable air temperature with clothing insulation of 1 clo was approximately 27°C. This is greater than the typical comfort temperature for 1 clo. It was also found that women clearly increased their clothing insulation level of their clothing as winter approached but did not decrease it by the same amount when spring came.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号