首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes eight consecutive condensation reactions of farnesyl pyrophosphate (FPP) with isopentenyl pyrophosphate (IPP) to form a 55-carbon long-chain product. We previously reported the crystal structure of the apo-enzyme from Escherichia coli and the structure of UPPs in complex with sulfate ions (resembling pyrophosphate of substrate), Mg(2+), and two Triton molecules (product-like). In the present study, FPP substrate was soaked into the UPPs crystals, and the complex structure was solved. Based on the crystal structure, the pyrophosphate head group of FPP is bound to the backbone NHs of Gly29 and Arg30 as well as the side chains of Asn28, Arg30, and Arg39 through hydrogen bonds. His43 is close to the C2 carbon of FPP and may stabilize the farnesyl cation intermediate during catalysis. The hydrocarbon moiety of FPP is bound with hydrophobic amino acids including Leu85, Leu88, and Phe89, located on the alpha3 helix. The binding mode of FPP in cis-type UPPs is apparently different from that of trans-type and many other prenyltransferases which utilize Asprich motifs for substrate binding via Mg(2+). The new structure provides a plausible mechanism for the catalysis of UPPs.  相似文献   

2.
Pan JJ  Chiou ST  Liang PH 《Biochemistry》2000,39(35):10936-10942
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes the condensation of eight molecules of isopentenyl pyrophosphate (IPP) with farnesyl pyrophosphate (FPP) to generate C(55) undecaprenyl pyrophosphate. We investigated the kinetics and mechanism of this reaction pathway using Escherichia coli UPPs. With a variety of different ratios of enzyme to substrate and FPP to IPP in the presence or absence of Triton, different product distributions were found. In the presence of excess FPP, the intermediates (C(25)-C(50)) accumulated. Under a condition with enzyme and FPP in excess of IPP, instead of C(20)-geranylgeranyl pyrophosphate, C(20), C(25), and C(30) were the major products. The UPPs steady-state k(cat) value (2.5 s(-1)) in the presence of 0.1% Triton was 190-fold larger than in the absence of Triton (0.013 s(-1)). The k(cat) value matched the rate constant of each IPP condensation obtained from the enzyme single-turnover experiments. This suggested that the IPP condensation rather than product release was the rate-limiting step in the presence of Triton. In the absence of Triton, the intermediates formed and disappeared in a similar manner under enzyme single turnover in contrast to the slow steady-state rate, which indicated a step after product generation was rate limiting. This was further supported by a burst product formation. Judging from the accumulation level of C(55), C(60), and C(65), their dissociation from the enzyme cannot be too slow and an even slower enzyme conformational change with a rate of 0.001 s(-1) might govern the UPPs reaction rate under the steady-state condition in the absence of Triton.  相似文献   

3.
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes chain elongation of farnesyl pyrophosphate (FPP) to undecaprenyl pyrophosphate (UPP) via condensation with eight isopentenyl pyrophosphates (IPP). UPPs from Escherichia coli is a dimer, and each subunit consists of 253 amino acid residues. The chain length of the product is modulated by a hydrophobic active site tunnel. In this paper, the crystal structure of E. coli UPPs was refined to 1.73 A resolution, which showed bound sulfate and magnesium ions as well as Triton X-100 molecules. The amino acid residues 72-82, which encompass an essential catalytic loop not seen in the previous apoenzyme structure (Ko, T.-P., Chen, Y. K., Robinson, H., Tsai, P. C., Gao, Y.-G., Chen, A. P.-C., Wang, A. H.-J., and Liang, P.-H. (2001) J. Biol. Chem. 276, 47474-47482), also became visible in one subunit. The sulfate ions suggest locations of the pyrophosphate groups of FPP and IPP in the active site. The Mg2+ is chelated by His-199 and Glu-213 from different subunits and possibly plays a structural rather than catalytic role. However, the metal ion is near the IPP-binding site, and double mutation of His-199 and Glu-213 to alanines showed a remarkable increase of Km value for IPP. Inside the tunnel, one Triton surrounds the top portion of the tunnel, and the other occupies the bottom part. These two Triton molecules may mimic the hydrocarbon moiety of the UPP product in the active site. Kinetic analysis indicated that a high concentration (>1%) of Triton inhibits the enzyme activity.  相似文献   

4.
Pan JJ  Yang LW  Liang PH 《Biochemistry》2000,39(45):13856-13861
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes condensation of eight molecules of isopentenyl pyrophosphate with farnesyl pyrophosphate to yield C(55)-undecaprenyl pyrophosphate. We have mutated the aspartates and glutamates in the five conserved regions (I to V) of UPPs protein sequence to evaluate their effects on substrate binding and catalysis. The mutant enzymes including D26A, E73A, D150A, D190A, E198A, E213A, D218A, and D223A were expressed and purified to great homogeneity. Kinetic analyses of these mutant enzymes indicated that the substitution of D26 in region I with alanine resulted in a 10(3)-fold decrease of k(cat) value compared to wild-type UPPs. Its IPP K(m) value has only minor change. The mutagenesis of D150A has caused a much lower IPP affinity with IPP K(m) value 50-fold larger than that of wild-type UPPs but did not affect the FPP K(m) and the k(cat). The E213A mutant UPPs has a 70-fold increased IPP K(m) value and has a 100-fold decreased k(cat) value compared to wild-type. These results suggest that D26 of region I is critical for catalysis and D150 in region IV plays a significant role of IPP binding. The E213 residue in region V is also important in IPP binding as well as catalysis. Other mutant UPPs enzymes in this study have shown no significant change (<5-fold) of k(cat) with exception of E73A and D218A. Both enzymes have 10-fold lower k(cat) value relative to wild-type UPPs.  相似文献   

5.
Undecaprenyl pyrophosphate synthase (UPPS) catalyzes the consecutive condensation reactions of eight isopentenyl pyrophosphate (IPP) with farnesyl pyrophosphate (FPP) to generate C(55) undecaprenyl pyrophosphate (UPP). In the present study, site-directed mutagenesis, fluorescence quenching, and stopped-flow methods were utilized to examine the substrate binding and the protein conformational change. (S)-Farnesyl thiopyrophosphate (FsPP), a FPP analogue, was synthesized to probe the enzyme inhibition and events associated with the protein fluorescence change. This compound with a much less labile thiopyrophosphate shows K(i) value of 0.2 microm in the inhibition of Escherichia coli UPPS and serves as a poor substrate, with the k(cat) value (3.1 x 10(-7) s(-1)) 10(7) times smaller than using FPP as the substrate. Reduction of protein intrinsic fluorescence was observed upon addition of FPP (or FsPP) to the UPPS solution. Moreover, fluorescence studies carried out using W91F and other mutant UPPS with Trp replaced by Phe indicate that FPP binding mainly quenches the fluorescence of Trp-91, a residue in the alpha3 helix that moves toward the active site during substrate binding. Using stopped-flow apparatus, a three-phase protein fluorescence change with time was observed by mixing the E.FPP complex with IPP in the presence of Mg(2+). However, during the binding of E.FsPP with IPP, only the fastest phase was observed. These results suggest that the first phase is due to the IPP binding to E.FPP complex, and the other two slow phases are originated from the protein conformational change. The two slow phases coincide with the time course of FPP chain elongation from C(15) to C(55) and product release.  相似文献   

6.
Chang SY  Chen YK  Wang AH  Liang PH 《Biochemistry》2003,42(49):14452-14459
Increasing evidence has shown that intrinsic disorder of proteins plays a key role in their biological functions. In the case of undecaprenyl pyrophosphate synthase (UPPs), which catalyzes the chain elongation of farnesyl pyrophosphate (FPP) to undecaprenyl pyrophosphate via eight consecutive condensation reactions with isopentenyl pyrophosphate, a highly flexible loop 72-83 was previously linked to protein conformational change required for catalysis [Chen, Y. H., Chen, A. P.-C., Chen, C. T., Wang, A. H.-J., and Liang, P. H., (2002) J. Biol. Chem. 277, 7369-7376]. The crystal structure and fluorescence studies suggested that the alpha3 helix connected to the loop moves toward the active site when the substrate is bound. To identify the active conformation and study the role of the loop for conformational change, the UPPs mutants with amino acids inserted into or deleted from the loop were examined. The inserted mutant with extra Ala residues fails to display the intrinsic fluorescence quenching upon FPP binding, and its crystal structure reveals only the open form. These phenomena appear to be different from the wild-type enzyme in which open and closed conformers were observed and suggest that the extended loop fails to pull the alpha3 helix and/or the extra amino acids in the loop cause steric hindrance on the alpha3 helix movement. The loop-shortening mutants with deletion of V82 and S83 or S72 also adopt an open conformation with the loop stretched, although they show decreased intrinsic fluorescence with FPP bound, similar to that seen in the wild-type enzyme. We conclude that the closed conformation is apparently the active conformation. Change of the length of the loop 72-83 impairs the ability of conformational change and causes remarkably lower activity of UPPs.  相似文献   

7.
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of farnesyl pyrophosphate (FPP) with isopentenyl pyrophosphate (IPP) to generate C40 octaprenyl pyrophosphate (OPP), which constitutes the side chain of bacterial ubiquinone or menaquinone. In this study, the first structure of long chain C40-OPPs from Thermotoga maritima has been determined to 2.28-A resolution. OPPs is composed entirely of alpha-helices joined by connecting loops and is arranged with nine core helices around a large central cavity. An elongated hydrophobic tunnel between D and F alpha-helices contains two DDXXD motifs on the top for substrate binding and is occupied at the bottom with two large residues Phe-52 and Phe-132. The products of the mutant F132A OPPs are predominantly C50, longer than the C40 synthesized by the wild-type and F52A mutant OPPs, suggesting that Phe-132 is the key residue for determining the product chain length. Ala-76 and Ser-77 located close to the FPP binding site and Val-73 positioned further down the tunnel were individually mutated to larger amino acids. A76Y and S77F mainly produce C20 indicating that the mutated large residues in the vicinity of the FPP site limit the substrate chain elongation. Ala-76 is the fifth amino acid upstream from the first DDXXD motif on helix D of OPPs, and its corresponding amino acid in FPPs is Tyr. In contrast, V73Y mutation led to additional accumulation of C30 intermediate. The new structure of the trans-type OPPs, together with the recently determined cis-type UPPs, significantly extends our understanding on the biosynthesis of long chain polyprenyl molecules.  相似文献   

8.
Bisphosphonates (Bps), inhibitors of osteoclastic bone resorption, are used in the treatment of skeletal disorders. Recent evidence indicated that farnesyl pyrophosphate (FPP) synthase and/or isopentenyl pyrophosphate (IPP) isomerase is the intracellular target(s) of bisphosphonate action. To examine which enzyme is specifically affected, we determined the effect of different Bps on incorporation of [(14)C]mevalonate (MVA), [(14)C]IPP, and [(14)C]dimethylallyl pyrophosphate (DMAPP) into polyisoprenyl pyrophosphates in a homogenate of bovine brain. HPLC analysis revealed that the three intermediates were incorporated into FPP and geranylgeranyl pyrophosphate (GGPP). In contrast to clodronate, the nitrogen-containing Bps (NBps), alendronate, risedronate, olpadronate, and ibandronate, completely blocked FPP and GGPP formation and induced in incubations with [(14)C]MVA a 3- to 5-fold increase in incorporation of label into IPP and/or DMAPP. Using a method that could distinguish DMAPP from IPP on basis of their difference in stability in acid, we found that none of the NBps affected the conversion of [(14)C]IPP into DMAPP, catalyzed by IPP isomerase, excluding this enzyme as target of NBp action. On the basis of these and our previous findings, we conclude that none of the enzymes up- or downstream of FPP synthase are affected by NBps, and FPP synthase is, therefore, the exclusive molecular target of NBp action.  相似文献   

9.
Octaprenyl diphosphate synthase (OPPs) and undecaprenyl diphosphate synthases (UPPs) catalyze consecutive condensation reactions of farnesyl diphosphate (FPP) with 5 and 8 isopentenyl diphosphate (IPP) to generate C40 and C55 products with trans- and cis-double bonds, respectively. In this study, we used IPP analogue, 3-bromo-3-butenyl diphosphate (Br-IPP), in conjunction with radiolabeled FPP, to probe the reaction mechanisms of the two prenyltransferases. Using this alternative substrate with electron-withdrawing bromo group at the C3 position to slow down the condensation step, trapping of farnesol in the OPPs reaction from radiolabeled FPP under basic condition was observed, consistent with a sequential mechanism. In contrast, UPPs reaction yielded no farnesyl carbocation intermediate under the same condition with radiolabeled FPP and Br-IPP, indicating a concerted mechanism. Our data demonstrate the different reaction mechanisms for cis- and tran-prenyltransferases although they share the same substrates.  相似文献   

10.
The protein farnesyltransferase purified from rat brain contains two nonidentical subunits, alpha and beta. The holoenzyme forms a stable complex with [3H]farnesyl pyrophosphate (FPP) that can be isolated by gel filtration. The [3H]FPP is not covalently bound to the enzyme; it is released unaltered when the enzyme is denatured. When incubated with an acceptor such as p21H-ras, the complex transfers [3H]farnesyl from the bound [3H]FPP to the ras protein. This transfer is not sensitive to dilution by unbound FPP, suggesting that the [3H]FPP is bound at a site that leads to direct transfer to the p21H-ras acceptor. Cross-linking studies show that the p21H-ras binds to the lower molecular weight subunit (beta-subunit), raising the possibility that the [3H]FPP binds to the alpha-subunit. If this suggestion can be confirmed, it would invoke a reaction mechanism in which the alpha-subunit acts as a prenyl pyrophosphate carrier that delivers FPP to p21H-ras which is bound to the beta-subunit.  相似文献   

11.
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of one allylic substrate farnesyl pyrophosphate (FPP) and five homoallylic substrate isopentenyl pyrophosphate (IPP) molecules to form a C40 long‐chain product OPP, which serves as a side chain of ubiquinone and menaquinone. OPPs belongs to the trans‐prenyltransferase class of proteins. The structures of OPPs from Escherichia coli were solved in the apo‐form as well as in complexes with IPP and a FPP thio‐analog, FsPP, at resolutions of 2.2–2.6 Å, and revealed the detailed interactions between the ligands and enzyme. At the bottom of the active‐site tunnel, M123 and M135 act in concert to form a wall which determines the final chain length. These results represent the first ligand‐bound crystal structures of a long‐chain trans‐prenyltransferase and provide new information on the mechanisms of catalysis and product chain elongation. Proteins 2015; 83:37–45. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Octaprenyl pyrophosphate synthase (OPPs) catalyzes the chain elongation of farnesyl pyrophosphate (FPP) via consecutive condensation reactions with five molecules of isopentenyl pyrophosphate (IPP) to generate all-trans C40-octaprenyl pyrophosphate. The polymer forms the side chain of ubiquinone that is involved in electron transport system to produce ATP. Our previous study has demonstrated that Escherichia coli OPPs catalyzes IPP condensation with a rate of 2 s(-1) but product release limits the steady-state rate at 0.02 s(-1) [Biochim. Biophys. Acta 1594 (2002) 64]. In the present studies, a putative gene encoding for OPPs from Thermotoga maritima, an anaerobic and thermophilic bacterium, was expressed, purified, and its kinetic pathway was determined. The enzyme activity at 25 degrees C was 0.005 s(-1) under steady-state condition and was exponentially increased with elevated temperature. In contrast to E. coli OPPs, IPP condensation rather than product release was rate limiting in enzyme reaction. The product of chain elongation catalyzed by T. maritima OPPs was C40 and the rate of its conversion to C45 was negligible. Under single-turnover condition with 10 microM OPPs-FPP complex and 1 microM IPP, only the C20 was formed rather than C20-C40 observed for E. coli enzyme. Together, our data suggest that the thermophilic OPPs from T. maritima has lower enzyme activity at 25 degrees C, higher product specificity, higher thermal stability and lower structural flexibility than its mesophilic counterpart from E. coli.  相似文献   

13.
Octaprenyl pyrophosphate synthase (OPPs), an enzyme belonging to the trans-prenyltransferases family, is involved in the synthesis of C40 octaprenyl pyrophosphate (OPP) by reacting farnesyl pyrophosphate (FPP) with five isopentenyl pyrophosphates (IPP). It has been reported that OPPs is essential for bacteria's normal growth and is a potential target for novel antibacterial drug design. Here we report the crystal structure of OPPs from Helicobacter pylori, determined by MAD method at 2.8 Å resolution and refined to 2.0 Å resolution. The substrate IPP was docked into HpOPPs structure and residues involved in IPP recognition were identified. The other substrate FPP, the intermediate GGPP and a nitrogen-containing bisphosphonate drug were also modeled into the structure. The resulting model shed some lights on the enzymatic mechanism, including (1) residues Arg87, Lys36 and Arg39 are essential for IPP binding; (2) residues Lys162, Lys224 and Gln197 are involved in FPP binding; (3) the second DDXXD motif may involve in FPP binding by Mg2+ mediated interactions; (4) Leu127 is probably involved in product chain length determination in HpOPPs and (5) the intermediate products such as GGPP need a rearrange to occupy the binding site of FPP and then IPP is reloaded. Our results also indicate that the nitrogen-containing bisphosphonate drugs are potential inhibitors of FPPs and other trans-prenyltransferases aiming at blocking the binding of FPP.  相似文献   

14.
Undecaprenyl pyrophosphate synthase (UPPs) is an essential enzyme in a key bacterial cell wall synthesis pathway. It catalyzes the consecutive condensations of isopentenyl pyrophosphate (IPP) groups on to a trans-farnesyl pyrophosphate (FPP) to produce a C55 isoprenoid, undecaprenyl pyrophosphate (UPP). Here we report the discovery and co-crystal structures of a drug-like UPPs inhibitor in complex with Streptococcus pneumoniae UPPs, with and without substrate FPP, at resolutions of 2.2 and 2.1 Å, respectively. The UPPs inhibitor has a low molecular weight (355 Da), but displays potent inhibition of UPP synthesis in vitro (IC50 50 nM) that translates into excellent whole cell antimicrobial activity against pathogenic strains of Streptococcal species (MIC90 0.4 µg mL−1). Interestingly, the inhibitor does not compete with the substrates but rather binds at a site adjacent to the FPP binding site and interacts with the tail of the substrate. Based on the structures, an allosteric inhibition mechanism of UPPs is proposed for this inhibitor. This inhibition mechanism is supported by biochemical and biophysical experiments, and provides a basis for the development of novel antibiotics targeting Streptococcus pneumoniae.  相似文献   

15.
Guo RT  Kuo CJ  Ko TP  Chou CC  Liang PH  Wang AH 《Biochemistry》2004,43(24):7678-7686
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of farnesyl pyrophosphate (FPP) with five molecules of isopentenyl pyrophosphate (IPP) to generate C(40) octaprenyl pyrophosphate (OPP) which constitutes the side chain of menaquinone. We have previously reported the X-ray structure of OPPs from Thermotoga maritima, which is composed entirely of alpha-helices joined by connecting loops and is arranged with nine core helices around a large central cavity [Guo, R. T., Kuo, C. J., Ko, T. P., Chou, C. C., Shr, R. L., Liang, P. H., and Wang, A. H.-J. (2004) J. Biol. Chem. 279, 4903-4912]. A76 and S77 are located on top of the active site close to where FPP is bound. A76Y and A76Y/S77F OPPs mutants produce C(20), indicating that the substituted larger residues interfere with the substrate chain elongation. Surprisingly, the A76Y/S77F mutant synthesizes a larger amount of C(20) than the A76Y mutant. In the crystal structure of the A76Y/S77F mutant, F77 is pushed away by Y76, thereby creating more space between those two large amino acids to accommodate the C(20) product. A large F132 residue at the bottom of the tunnel-shaped active site serves as the "floor" and determines the final product chain length. The substitution of F132 with a small Ala, thereby removing the blockade, led to the synthesis of a C(50) product larger than that produced by the wild-type enzyme. On the basis of the structure, we have sequentially mutated the large amino acids, including F132, L128, I123, and D62, to Ala underneath the tunnel. The products of the F132A/L128A/I123A/D62A mutant reach C(95), beyond the largest chain length generated by all known trans-prenyltransferases. Further modifications of the enzyme reaction conditions, including new IPP derivatives, may allow the preparation of high-molecular weight polyprenyl products resembling the rubber molecule.  相似文献   

16.
Octaprenyl pyrophosphate synthase (OPPs) catalyzes the sequential condensation of five molecules of isopentenyl pyrophosphate with farnesyl pyrophosphate to generate all-trans C40-octaprenyl pyrophosphate, which constitutes the side chain of ubiquinone. Due to the slow product release, a long-chain polyprenyl pyrophosphate synthase often requires detergent or another factor for optimal activity. Our previous studies in examining the activity enhancement of Escherichia coli undecaprenyl pyrophosphate synthase have demonstrated a switch of the rate-determining step from product release to isopentenyl pyrophosphate (IPP) condensation reaction in the presence of Triton [12]. In order to understand the mechanism of enzyme activation for E. coli OPPs, a single-turnover reaction was performed and the measured IPP condensation rate (2 s(-1)) was 100 times larger than the steady-state rate (0.02 s(-1)). The high molecular weight fractions and Triton could accelerate the steady-state rate by 3-fold (0.06 s(-1)) but insufficient to cause full activation (100-fold). A burst product formation was observed in enzyme multiple turnovers indicating a slow product release.  相似文献   

17.
Santalum album L. commonly known as East-Indian sandal or chandan is a hemiparasitic tree of family santalaceae. Santalol is a bioprospecting molecule present in sandalwood and any effort towards metabolic engineering of this important moiety would require knowledge on gene regulation. Santalol is a sesquiterpene synthesized through mevalonate or non-mevalonate pathways. First step of santalol biosynthesis involves head to tail condensation of isopentenyl pyrophosphate (IPP) with its allylic co-substrate dimethyl allyl pyrophosphate (DMAPP) to produce geranyl pyrophosphate (GPP; C10 — a monoterpene). GPP upon one additional condensation with IPP produces farnesyl pyrophosphate (FPP; C15 — an open chain sesquiterpene). Both the reactions are catalyzed by farnesyl diphosphate synthase (FDS). Santalene synthase (SS), a terpene cyclase catalyzes cyclization of open ring FPP into a mixture of cyclic sesquiterpenes such as α-santalene, epi-β-santalene, β-santalene and exo bergamotene, the main constituents of sandal oil. The objective of the present work was to generate a comprehensive knowledge on the genes involved in santalol production and study their molecular regulation. To achieve this, sequences encoding farnesyl diphosphate synthase and santalene synthase were isolated from sandalwood using suppression subtraction hybridization and 2D gel electrophoresis technology. Functional characterization of both the genes was done through enzyme assays and tissue-specific expression of both the genes was studied. To our knowledge, this is the first report on studies on molecular regulation, and tissue-specific expression of the genes involved in santalol biosynthesis.  相似文献   

18.
Farnesyl pyrophosphate synthase (FPS; EC 2.5.1.10) is a key enzyme in isoprenoid biosynthetic pathway and provides precursors for the biosynthesis of various pharmaceutically important metabolites. It catalyzes head to tail condensation of two isopentenyl pyrophosphate molecules with dimethylallyl pyrophosphate to form C15 compound farnesyl pyrophosphate. Recent studies have confirmed FPS as a molecular target of bisphosphonates for drug development against bone diseases as well as pathogens. Although large numbers of FPSs from different sources are known, very few protein structures have been reported till date. In the present study, FPS gene from medicinal plant Bacopa monniera (BmFPS) was characterized by comparative modeling and docking. Multiple sequence alignment showed two highly conserved aspartate rich motifs FARM and SARM (DDXXD). The 3-D model of BmFPS was generated based on structurally resolved FPS crystal information of Gallus gallus. The generated models were validated by various bioinformatics tools and the final model contained only α-helices and coils. Further, docking studies of modeled BmFPS with substrates and inhibitors were performed to understand the protein ligand interactions. The two Asp residues from FARM (Asp100 and Asp104) as well as Asp171, Lys197 and Lys262 were found to be important for catalytic activity. Interaction of nitrogen containing bisphosphonates (risedronate, alendronate, zoledronate and pamidronate) with modeled BmFPS showed competitive inhibition; where, apart from Asp (100, 104 and 171), Thr175 played an important role. The results presented here could be useful for designing of mutants for isoprenoid biosynthetic pathway engineering well as more effective drugs against osteoporosis and human pathogens.

Abbreviations

IPP - Isopentenyl Pyrophosphate, DMAPP - Dimethylallyl Pyrophosphate, GPP - Geranyl Pyrophosphate, FPP - FPPFarnesyl Pyrophosphate, DOPE - Discrete Optimized Protein Energy, BmFPS - Bacopa monniera Farnesyl Pyrophosphate Synthase, RMSD - Root Mean square Deviation, OPLS-AA - Optimized Potentials for Liquid Simulations- All Atom, FARM - First Aspartate Rich Motif, SARM - Second Aspartate Rich Motif.  相似文献   

19.
The enzyme catalysing the synthesis of farnesyl pyrophosphate from dimethylallyl pyrophosphate and isopentenyl pyrophosphate, or from geranyl pyrophosphate and isopentenyl pyrophosphate, has been purified 100-fold from homogenates of pig liver. The enzyme has optimum pH 7.9 and requires Mg(2+) as activator in preference to Mn(2+); it is inhibited by iodoacetamide, N-ethylmaleimide, p-hydroxymercuribenzoate and phosphate ions in addition to the products of the reaction, inorganic pyrophosphate and farnesyl pyrophosphate. From product-inhibition studies of the geranyltransferase reaction, the order of addition of substrates to and release of products from the enzyme has been deduced: geranyl pyrophosphate combines with the enzyme first, followed by isopentenyl pyrophosphate. Farnesyl pyrophosphate dissociates from the enzyme before inorganic pyrophosphate. The existence of isopentenyl pyrophosphate isomerase in liver is confirmed. Methods for the preparation of the pyrophosphate esters of isopentenol, 3,3-dimethylallyl alcohol, geraniol and farnesol are also described.  相似文献   

20.
Undecaprenyl pyrophosphate synthase (UPPS) is a cis-type prenyltransferases which catalyzes condensation reactions of farnesyl diphosphate (FPP) with eight isopentenyl pyrophosphate (IPP) units to generate C55 product. In this study, we used two analogues of FPP, 2-fluoro-FPP and [1,1-2H2]FPP, to probe the reaction mechanism of Escherichia coli UPPS. The reaction rate of 2-fluoro-FPP with IPP under single-turnover condition is similar to that of FPP, consistent with the mechanism without forming a farnesyl carbocation intermediate. Moreover, the deuterium secondary KIE of 0.985 ± 0.022 measured for UPPS reaction using [1,1-2H2]FPP supports the associative transition state. Unlike the sequential mechanism used by trans-prenyltransferases, our data demonstrate E. coli UPPS utilizes the concerted mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号