首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
Luteal regression is initiated by prostaglandin F(2 alpha) (PGF(2 alpha)). In domestic species and primates, demise of the corpus luteum (CL) enables development of a new preovulatory follicle. However, during early stages of the cycle, which are characterized by massive neovascularization, the CL is refractory to PGF(2 alpha). Our previous studies showed that endothelin-1 (ET-1), which is produced by the endothelial cells lining these blood vessels, plays a crucial role during PGF(2 alpha)-induced luteolysis. Therefore, in this study, we compared the effects of PGF(2 alpha) administered at the early and mid luteal phases on ET-1 and its type A receptors (ETA-R) along with plasma ET-1 and progesterone concentrations, and the mRNA levels of PGF(2 alpha) receptors (PGF(2 alpha)-R) and steroidogenic genes. As expected, ET-1 and ETA-R mRNA levels were markedly induced in midcycle CL exposed to luteolytic dose of PGF(2 alpha) analogue (Cloprostenol). In contrast, neither ET-1 mRNA nor its receptors were elevated when the same dose of PGF(2 alpha) analogue was administered on Day 4 of the cycle. In accordance with ET-1 expression within the CL, plasma ET-1 concentrations were significantly elevated 24 h after PGF(2 alpha) injection only on Day 10 of the cycle. The steroidogenic capacity of the CL (plasma progesterone as well as the mRNA levels of steroidogenic acute regulatory protein and cytochrome P450(scc)) was only affected when PGF(2 alpha) was administered during midcycle. Nevertheless, PGF(2 alpha) elicited certain responses in the early CL: progesterone and oxytocin secretion were elevated, and PGF(2 alpha)-R was transiently affected. Such effects probably result from PGF(2 alpha) acting on luteal steroidogenic cells. These findings may suggest, however, that the cell type mediating the luteolytic actions of PGF(2 alpha), possibly the endothelium, could yet be nonresponsive during the early luteal phase.  相似文献   

3.
Recent studies indicate that the corpus luteum (CL) may be a source of prostaglandin F2alpha (PGF2alpha) for regression. We investigated expression of mRNA and protein for prostaglandin G/H synthase (PGHS) in the CL of immature superovulated rats following administration of PGF2alpha. We observed an increase in mRNA for PGHS-2, the induced isoform, at 1 h and protein at 8 and 24 h after treatment. One hour after PGF2alpha, there was also a progressive decrease in plasma progesterone concentration. There were no changes, however, in expression of PGHS-1, the constitutive isoform, over the 24 h sampling period. These results indicate that PGHS-2 increases following PGF2alpha treatment and that expression of this enzyme in the rat CL may contribute to the luteolytic mechanism.  相似文献   

4.
The possible mediatory role of endothelin-1 (ET-1) in prostaglandin F(2alpha) (PGF(2alpha))-induced luteolysis in the rat was examined. The effect of PGF(2alpha) was tested on day 9 of pregnancy either in vivo, by injecting cloprostenol, an analog of PGF(2alpha) or in vitro, in isolated intact corpora lutea incubated with PGF(2alpha). Luteolysis was confirmed by progesterone determination in the peripheral blood serum or in the culture medium, respectively. Administration of cloprostenol (.0025 mg/rat) induced within 1 hr, a significant fall (from 56.8 to 27.6 ng/ml, P < 0.0001) in serum progesterone concentrations that was associated with an increased expression of the mRNA to ET-1 and its protein product in rat luteal tissue. Elevated level of ET-1 were also determined at the spontaneous regression of the CL, upon parturition. Expression of the ET receptors, ETA and ETB was not affected by cloprostenol. On the other hand, this PGF(2alpha) analog induced expression of luteal VEGF mRNA. In vitro experiments demonstrate that the LH (100 ng/ml)-induced increase in luteal progesterone secretion was reduced by PGF(2alpha) (1 microg/ml). The inhibitory effect of PGF(2alpha) was reversed by BQ123 (10(- 7) M), that is a selective ETA receptor antagonist. We conclude that the PGF(2alpha)-induced elevation in luteal expression of ET-1 combined with the reversal of its luteolytic effect by an ETA receptor antagonist suggest that ET-1 may take part in the PGF(2alpha)-induced luteolysis in the rat.  相似文献   

5.
In this study we examined the mechanism of corpus luteum (CL) regression by measuring changes in expression of prostaglandin G/H synthase-1 (PGHS-1) and -2 (PGHS-2) in day 4 CL and inducible heat shock protein 70 (HSP-70) in day 4 and day 9 CL of immature superovulated rats. The rats were superovulated and treated with 500 microg of prostaglandin F2alpha (PGF2alpha) on day 4 or day 9 after CL formation. Ovaries and serial blood samples were removed during the 24-hour period following treatment. Plasma progesterone was determined by radioimmunoassay while mRNA abundance and protein expression were assessed by semiquantitative RT-PCR and immunoblot analysis, respectively. One hour after PGF2alpha, both day 4 and day 9 rats exhibited a significant decrease in progesterone secretion; however, there was a greater decrease in day 9 rats. In ovarian samples removed on day 4, there was a significant increase in mRNA for PGHS-2 at 1 hour after PGF2alpha. PGHS-1 mRNA content remained unchanged. Immunoblot analyses showed an increase in PGHS-2 protein expression only at 8 h. There were no changes in PGHS-1 protein expression. In day 9 rats, ovarian HSP-70 protein levels increased by 50% after PGF2alpha injection; however, on day 4 there was no change in expression of this protein over the sampling period. These results suggest that expression of PGHS-2 may be involved in inhibiting progesterone production and that expression of HSP-70 may be required for complete CL regression in the rat.  相似文献   

6.
A diversified series of experiments was conducted to determine the potential role of endothelin-1 (ET-1) in ovine luteal function. Endothelin-1 inhibited basal and LH-stimulated progesterone production by dispersed ovine luteal cells during a 2-h incubation. This inhibition was removed when cells were preincubated with cyclo-D-Asp-Pro-D-Val-Leu-D-Trp (BQ123), a highly specific endothelin ET(A) receptor antagonist. Administration of a luteolytic dose of prostaglandin F(2alpha) (PGF(2alpha)) rapidly stimulated gene expression for ET-1 in ovine corpora lutea (CL) collected at midcycle. Intraluteal administration of a single dose of BQ123 to ewes on Day 8 or 9 of the estrous cycle mitigated the luteolytic effect of PGF(2alpha). Intramuscular administration of 100 microg ET-1 to ewes at midcycle reduced plasma progesterone concentrations for the remainder of the estrous cycle. Following pretreatment with a subluteolytic dose of PGF(2alpha), i.m. administration of 100 microg ET-1 caused a rapid decline in plasma progesterone and shortened the length of the estrous cycle. These data complement and extend previously published reports in the bovine CL and are the strongest evidence presented to date in support of a role for ET-1 in PGF(2alpha)-mediated luteal function in domestic ruminants.  相似文献   

7.
The luteotropic activity of ovine placental lactogen (oPL) on different days of gestation in ewes was assessed using in vitro methods. Corpora lutea (CL) harvested on Days 45, 70, 95, 120 and 135 of gestation and during parturition were enzymatically dispersed and plated on multiwell plates. After 48 h of incubation, all cultures were terminated and media were frozen for further steroid analysis. Cells were cultured in control medium, with addition of oPL alone, or in combination with PGE2 or PGF2alpha. Supplementation of culture media with oPL increased basal progesterone secretion by cells isolated on Days 45 and 70 of gestation. There was no effect on progesterone secretion by cells isolated on other days of gestation; PGE2 added to the culture media increased progesterone production only by cells isolated on Day 70 of pregnancy. Simultaneous oPL treatment with PGE2 had a statistically significant and stimulatory effect on progesterone production by luteal cells collected on Days 70 and 95 of pregnancy. In contrast, PGF2alpha alone in culture media decreased progesterone secretion by cells isolated on Days 45, 70 and 95 of gestation, while oPL plus PGF2alpha on Days 70 and 95 of gestation protected against luteolytic action of PGF2alpha. The results showed 1) a direct effect of the oPL on luteal cells isolated on Days 45 and 70 of gestation; 2) synergism between PL and PGE2 in progesterone production; by cells isolated on Day 70; 3) and a luteoprotective effect of oPL against the luteolytic action of prostaglandin F (PGF2alpha) observed on Days 70 and 95 of gestation.  相似文献   

8.
9.
Insulin-like growth factor-I (IGF-I) is produced within the porcine corpus luteum (CL) and is thought to play an autocrine/paracrine role in CL development/function during the early luteal phase. This study examines the hypotheses that the luteolytic actions of prostaglandin F(2alpha) (PGF(2alpha)) during the early luteal phase may involve either a decrease in IGF-I or IGF receptor (IGF-IR), or an increase in IGF binding protein (IGFBP)-3, expression, any of which could interfere with the luteotropic actions of IGF-I in this tissue. Cycling gilts were treated twice daily with PGF(2alpha) (or saline) on Days 5-9 of the cycle to induce premature luteolysis. CL were collected on Days 6-9, and RNA, protein, or progesterone was extracted. By slot blot analysis, steady-state levels of IGF-I and IGFBP-3 mRNA were not different in PGF(2alpha)-treated vs. control animals; however, IGF-IR mRNA was increased in treated animals on Day 9. No changes in IGF-I content (ng/CL measured by RIA) were observed with respect to treatment. According to ligand blot analysis, the levels of IGFBP-3 increased on Day 6 and decreased on Days 8-9, while IGFBP-2 was higher on Days 6-7 and decreased on Day 9 in treated animals. IGF-IR levels, determined from Western blots, were higher on Day 7 (P < 0.05) and lower on Day 9 in PGF(2alpha)-treated animals vs. control animals (P < 0.05). In conclusion, PGF(2alpha)-induced premature luteolysis was associated with an increase in steady-state levels of IGF-IR mRNA, but it did not appear to be linked to changes in mRNA levels for IGF-I or IGFBP-3. However, since IGFBP-2 and -3 protein levels increased early in the treatment period (Days 6-7), it is possible that they may mediate the luteolytic actions of PGF(2alpha) by sequestering IGF-I and preventing its interaction with the IGF-IR.  相似文献   

10.
The insulin-like growth factors, IGF-I and -II, have been shown to play a key role in luteal function in some species. The IGF binding proteins, IGFBP-2 and -3, have been shown to inhibit binding of IGF-I and -II to bovine luteal cells and decrease progesterone production. We have recently shown that equine follicles have the genetic capacity to produce IGFBP-2, and that levels decrease in healthy preovulatory follicles. In the present study expression of mRNAs encoding IGFBP-2, as well as the rate-limiting steroidogenic enzyme, P450scc, were studied in equine corpora lutea to investigate whether IGFBP-2 might be involved in luteolysis. Corpora lutea were collected from mares in mid-luteal phase (day 10), at early regression (day 14), late regression (day 17), and 12 and 36 h after intramuscular administration of the PGF(2alpha) analogue, cloprostenol (0.5 microg/kg). During early natural regression, and 12 h after administration of cloprostenol on day 10, steady state levels of mRNAs encoding P450scc had decreased significantly compared with day 10 of dioestrus (P < 0.001). Levels of mRNA encoding IGFBP-2 increased significantly between mid-diestrus and early (P < 0.01) and late (P < 0.001) regression, and 36 h after cloprostenol administration (P < 0.001). We conclude that the genetic capacity for increased IGFBP-2 production in the early stages of natural luteolysis in the mare may act to sequester IGF-I in the CL, assisting in inhibition of progesterone production. However the delay in increase in mRNA encoding IGFBP-2 after cloprostenol administration, combined with the sharp fall in expression of P450scc mRNA, suggests that the luteolytic action of a pharmacological dose of cloprostenol may not be mediated via IGFBP-2 in the mare.  相似文献   

11.
D J Bolt 《Prostaglandins》1979,18(3):387-396
The ability of human chorionic gonadotropin (HCG) to reduce the luteolytic effect of prostaglandin (PGF2 alpha) was demonstrated in cycling ewes. As expected, treatment with 10 mg of PGF2 alpha alone on Day 10 of the estrous cycle exerted a potent negative effect on the function and structure of corpus luteum (CL) as indicated by reduced plasma progesterone, CL progesterone, and CL weight. However, the identical PGF2 alpha treatment failed to significantly reduce either luteal function or luteal weight when administered to ewes that were also treated with HCG on Days 9 and 10 of the estrous cycle. Treatment with HCG alone had a positive effect on CL as indicated by increased plasma progesterone, CL progesterone, and CL weight. Treatment with HCG did not render the CL totally insensitive to the negative effects of PGF2 alpha because plasma progesterone was reduced when the dose of PGF2 alpha was doubled. Whether CL regressed or continued to function after treatment with both HCG and PGF2 alpha appeared to depend upon a balance between the positive and negative effects of the two hormones.  相似文献   

12.
The objective of this study was to determine whether nitric oxide (NO) is produced locally in the bovine corpus luteum (CL) and whether NO mediates prostaglandin F2alpha (PGF2alpha)-induced regression of the bovine CL in vivo. The local production of NO was determined in early I, early II, mid, late, and regressed stages of CL by determining NADPH-d activity and the presence of inducible and endothelial NO synthase immunolabeling. To determine whether inhibition of NO production counteracts the PGF2alpha-induced regression of the CL, saline (10 ml/h; n = 10) or a nonselective NOS inhibitor (Nomega-nitro-l-arginine methyl ester dihydrochloride [L-NAME]; 400 mg/h; n = 9) was infused for 2 h on Day 15 of the estrous cycle into the aorta abdominalis of Holstein/Polish Black and White heifers. After 30 min of infusion, saline or cloprostenol, an analogue of PGF2alpha (aPGF2alpha; 100 microg) was injected into the aorta abdominalis of animals infused with saline or L-NAME. NADPH-diaphorase activity was present in bovine CL, with the highest activity at mid and late luteal stages (P < 0.05). Inducible and endothelial NO synthases were observed with the strongest immunolabeling in the late CL (P < 0.05). Injection of aPGF2alpha increased nitrite/nitrate concentrations (P < 0.01) and inhibited P4 secretion (P < 0.05) in heifers that were infused with saline. Infusion of L-NAME stimulated P4 secretion (P < 0.05) and concomitantly inhibited plasma concentrations of nitrite/nitrate (P < 0.05). Concentrations of P4 in heifers infused with L-NAME and injected with aPGF2alpha were higher (P < 0.05) than in animals injected only with aPGF2alpha. The PGF2alpha analogue shortened the cycle length compared with that of saline (17.5 +/- 0.22 days vs. 21.5 +/- 0.65 days P < 0.05). L-NAME blocked the luteolytic action of the aPGF2alpha (22.6 +/- 1.07 days vs. 17.5 +/- 0.22 days, P < 0.05). These results suggest that NO is produced in the bovine CL. NO inhibits luteal steroidogenesis and it may be one of the components of an autocrine/paracrine luteolytic cascade induced by PGF2alpha.  相似文献   

13.
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine produced by T cells and macrophages. A number of tissues also produce MIF during states of active differentiation and/or proliferation. The purpose of this study was to determine whether MIF is present in the corpus luteum (CL). The steady-state mRNA for MIF was examined in CL by Northern analysis on Day 5, Days 9-12, and Day 18 of the estrous cycle and at 0.5, 1, 4, 12, 24, and 36 h after a luteolytic injection of prostaglandin F(2alpha) (PGF(2alpha)) (n = 4 CL per time point). The greatest amount of MIF mRNA was observed in Day 5 CL compared with midcycle and Day 18 CL. Messenger RNA for MIF in CL collected 0.5 h post-PGF(2alpha) was greater than in midcycle and all other regressing CL. Immunohistochemical analysis (n = 4) revealed that MIF was present in the bovine CL throughout the estrous cycle and appeared to be localized to large luteal cells. It was concluded that MIF is produced within the bovine CL, mRNA expression is maximal in the early CL, and the protein is primarily localized to large luteal cells. The functional significance of MIF remains to be determined.  相似文献   

14.
15.
Increased matrix metalloproteinase (MMP) expression and activities help to mediate tissue involution through increasing extracellular matrix remodeling and promoting dedifferentiation and, ultimately, apoptosis. Therefore, we hypothesized that prostaglandin (PG) F(2alpha) administration would decrease expression of the tissue inhibitor of metalloproteinase (TIMP)-1, -2, and -3 and effectively increase the MMP:TIMP ratio, leading to glandular involution. In experiment 1, we tested the effects of PGF(2alpha) administration (Day 10 postestrus; Day 0 = estrus) on luteal TIMP-1, -2, and -3 mRNA and protein expression. Corpora lutea were collected at 0, 15, or 30 min or at 1, 2, 4, 6, 12, 24, and 48 h following PGF(2alpha) administration (n = 3-9 animals/time point). Following PGF(2alpha) administration, TIMP-1 mRNA levels decreased (P < 0.05) at 1 and 2 h relative to 0 h (controls), then increased to levels greater than controls at 4 and 6 h. In contrast, TIMP-2 and -3 mRNA levels did not decrease following PGF(2alpha) administration. The TIMP-1, -2, and -3 proteins were localized to large luteal cells (LLCs) within control (untreated) tissues. However, histodepletion of TIMP-1 within LLCs was evident within 30 min (earliest time point collected) following PGF(2alpha) injection and continued through 48 h. Luteal concentration of TIMP-1, as determined by RIA, was decreased (P < 0.05) by 15 min (earliest time point collected) following PGF(2alpha) administration and remained low through 48 h. In contrast, TIMP-2 and -3 immunolocalization was not altered by PGF(2alpha) administration. Experiment 2 was conducted to determine if PGF(2alpha) could initiate the preceding changes in TIMP-1 in early (Day 3) corpora lutea that can bind PGF(2alpha) but are refractory to its luteolytic effects. Serum concentrations of progesterone and luteal concentrations of TIMP-1 mRNA and protein were similar at 0 and 6 h after PGF(2alpha) injection on Day 3 postestrus. These data suggest that an early and sustained effect of PGF(2alpha) is the specific depletion of TIMP-1 within LLCs that are capable of responding to the luteolytic action of PGF(2alpha). This action may increase the MMP:TIMP-1 ratio, creating an environment that favors extracellular matrix degradation and, thereby, facilitates both functional and structural regression.  相似文献   

16.
Transvaginal ultrasound-guided luteal biopsy was used to evaluate the effects of prostaglandin (PG)F2alpha on steady-state concentrations of mRNA for specific genes that may be involved in regression of the corpus luteum (CL). Eight days after ovulation (Hour 0), mares (n=8/group) were randomized into three groups: control (no treatment or biopsy), saline+biopsy (saline treatment at Hour 0 and luteal biopsy at Hour 12), or PGF2alpha+biopsy (5mg PGF2alpha at Hour 0 and luteal biopsy at Hour 12). The effects of biopsy on CL were compared between the controls (no biopsy) and saline+biopsy group. At Hour 24 (12h after biopsy) there was a decrease in circulating progesterone in saline group to 56% of pre-biopsy values, indicating an effect of biopsy on luteal function. Mean plasma progesterone concentrations were lower (P<0.001) at Hour 12 in the PG group compared to the other two groups. The relative concentrations of mRNA for different genes in luteal tissue at Hour 12 was quantified by real time PCR. Compared to saline-treated mares, treatment with PGF2alpha increased mRNA for cyclooxygenase-2 (Cox-2, 310%, P<0.006), but decreased mRNA for LH receptor to 44% (P<0.05), steroidogenic acute regulatory protein to 22% (P<0.001), and aromatase to 43% (P<0.1) of controls. There was no difference in mRNA levels for PGF2alpha receptor between PG and saline-treated groups. Results indicated that luteal biopsy alters subsequent luteal function. However, the biopsy approach was effective for collecting CL tissue for demonstrating dynamic changes in steady-state levels of mRNAs during PGF2alpha-induced luteolysis. Increased Cox-2 mRNA concentrations suggested that exogenous PGF2alpha induced the synthesis of intraluteal PGF2alpha. Thus, the findings are consistent with the concept that an intraluteal autocrine loop augments the luteolytic effect of uterine PGF2alpha in mares.  相似文献   

17.
We investigated the expression and cell localization of NOTCH1, NOTCH4, and the delta-like ligand DLL4 in corpus luteum (CL) from pregnant rats during prostaglandin F2alpha (PGF2alpha)-induced luteolysis. We also examined serum progesterone (P(4)) and CL proteins related to apoptosis after local administration of the notch inhibitor N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT). Specific staining for NOTCH1 and NOTCH4 receptors was detected predominantly in large and small luteal cells. Furthermore, in line with the fact that the notch intracellular domain is translocated to the nucleus, where it regulates gene expression, staining was evident in the nuclei of luteal cells. In addition, we detected diffuse cytoplasmic immunostaining for DLL4 in small and large luteal cells, in accordance with the fact that DLL4 undergoes proteolytic degradation after receptor binding. The mRNA expression of Notch1, Notch4, and Dll4 in CL isolated on Day 19 of pregnancy decreased significantly after administration of PGF2alpha. Consistent with the mRNA results, administration of PGF2alpha to pregnant rats on Day 19 of pregnancy decreased the protein fragment corresponding to the cleaved forms of NOTCH1/4 CL receptors. In contrast, no significant changes were detected in protein levels for the ligand DLL4. The local intrabursal administration of DAPT decreased serum P(4) levels and increased luteal levels of active caspase 3 and the BAX:BCL2 ratio 24 h after the treatment. These results support a luteotropic role for notch signaling to promote luteal cell viability and steroidogenesis, and they suggest that the luteolytic hormone PGF2alpha may act in part by reducing the expression of some notch system members.  相似文献   

18.
19.
The effect of prostaglandin F2 alpha (PGF2 alpha) on luteinizing hormone (LH) receptors, weight and progesterone content of corpora lutea (CL), and serum progesterone concentrations was studied in gilts. Fifteen gilts were hysterectomized between Days 9 to 11 of the estrous cycle. Twelve gilts were injected i.m. with 10 mg of PGF2 alpha and 3 with saline on Day 20. Ovaries were surgically removed from each of 3 gilts at 4, 8, 12 and 24 h following PGF2 alpha treatment and from the 3 control gilts 12 h following saline injection. Jugular blood samples for progesterone analysis were collected from all gilts at 0, 2 and 4 h following treatment and at 8, 12 and 24 h for gilts from which ovaries were removed at 8, 12 and 24 h, respectively. Mean serum progesterone and CL progesterone concentrations decreased within 4 h after PGF2 alpha treatment (P less than 0.05) and remained low through 24 h after treatment. The number of unoccupied LH receptors decreased by 4 h (P less than 0.05) and this trend continued through 24 h. There were no differences in luteal weight or affinity of unoccupied LH receptors of luteal tissue at 4, 8 12 and 24 h after PGF2 alpha when compared to luteal tissue from controls. These data indicate that during PGF2 alpha-induced luteolysis in the pig, luteal progesterone, serum progesterone concentrations and the number of LH receptors decrease simultaneously.  相似文献   

20.
Dispersed marmoset luteal cells were incubated for 2 h and progesterone production measured after exposure to hCG, cloprostenol, dibutyryl cAMP, PGF-2 alpha, PGF-2, adrenaline or melatonin. The cells were studied on Days 6, 14 and 20 after ovulation in conception and non-conception cycles. Luteal cells from Day 14 non-pregnant marmosets were compared with human luteal cells taken in the mid-luteal phase. All the treatments stimulated progesterone production including cloprostenol, which is luteolytic when administered to the marmoset in vivo, but the degree of response varied with the stage of the cycle or pregnancy and between marmoset and human luteal cells. In the marmoset, overall analysis of the effect of the treatments showed that, on Day 6 after ovulation, there was no significant effect of any of the treatments in cells from pregnant or non-pregnant animals. In contrast, luteal cells from non-pregnant animals on Day 14 showed a significant response to the treatments (F (8,41) = 2.79, P less than 0.0145) whereas cells from pregnant Day-14 animals were responsive; in cells from pregnant animals, the control production of progesterone was high and already equivalent to the levels stimulated by the treatments. By Day 20, cells from pregnant animals produced lower control concentrations of progesterone than did those on Day 14 and there was a significant overall effect of the treatments (F (8,33) = 3.78, P less than 0.003). These results show that the marmoset CL gains responsiveness to treatment between Days 6 and 14 after ovulation in the non-pregnant cycle. In pregnancy, on Day 14, 2 days after attachment of the embryo, the high control concentrations of progesterone and absence of response to treatment suggest that an embryo message may have affected the CL, providing an endogenous stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号