首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used selective acylation of 2'-amine-substituted nucleotides to visualize local backbone conformations that occur preferentially at bulged sites in DNA duplexes. 2'-Amine acylation reports local nucleotide flexibility because unconstrained 2'-amino nucleotides more readily reach a reactive conformation in which the amide-forming transition state is stabilized by interactions between the amine nucleophile and the adjacent 3'-phosphodiester group. Bulged 2'-amine-substituted cytidine nucleotides react approximately 20-fold more rapidly than nucleotides constrained by base-pairing at 35 degrees C. In contrast, base-paired 2'-amine-substituted nucleotides flanked by a 5' or 3' bulge react two- or six-fold more rapidly, respectively, than the perfectly paired duplex. The relative lack of 2'-amine reactivity for nucleotides adjacent to a DNA bulge emphasizes, first, that structural perturbations do not extend significantly into the flanking duplex structure. Second, the exquisite sensitivity towards very local perturbations in nucleic acid structure suggests that 2'-amine acylation can be used to chemically interrogate deletion mutations in DNA. Finally, these data support the mechanical interpretation that the reactive ribose conformation for 2'-amine acylation requires that the base lies out of the helix and in the major groove, a mechanistic insight useful for designing 2'-amine-based sensors.  相似文献   

2.
The local environment at adenosine residues in the bI5 group I intron RNA was monitored as a function of Mg(2+) using both the traditional method of dimethyl sulfate (DMS) N1 methylation and a new approach, selective acylation of 2'-amine substituted nucleotides. These probes yield complementary structural information because N1 methylation reports accessibility at the base pairing face, whereas 2'-amine acylation scores overall residue flexibility. 2'-Amine acylation robustly detects RNA secondary structure and is sensitive to higher order interactions not monitored by DMS. Disruption of RNA structure due to the 2'-amine substitution is rare and can be compensated by stabilizing folding conditions. Peripheral helices that do not interact with other parts of the RNA are more stable than both base paired helices and tertiary interactions in the conserved catalytic core. The equilibrium state of the bI5 intron RNA, prior to assembly with its protein cofactor, thus features a relatively loosely packed core anchored by more stable external stem-loop structures. Adenosine residues in J4/5 and P9.0 form structures in which the nucleotide is constrained but the N1 position is accessible, consistent with pre-organization to form long-range interactions with the 5' and 3' splice sites.  相似文献   

3.
A series of sequences of the DNA analog bicyclo-DNA, 6-12 nucleotides in length and containing all four natural nucleobases, were prepared and their Watson-Crick pairing properties with complementary RNA and DNA, as well as in its own series, were analyzed by UV-melting curves and CD-spectroscopy. The results can be summarized as follows: bicyclo-DNA forms stable Watson-Crick duplexes with complementary RNA and DNA, the duplexes with RNA generally being more stable than those with DNA. Pyrimidine-rich bicyclo-DNA sequences form duplexes of equal or slightly increased stability with DNA or RNA, whereas purine-rich sequences show decreased affinity to complementary DNA and RNA when compared with wild-type (DNA-DNA, DNA-RNA) duplexes. In its own system, bicyclo-DNA prefers antiparallel strand alignment and strongly discriminates for base mismatches. Duplexes are always inferior in stability compared with the natural ones. A detailed analysis of the thermodynamic properties was performed with the sequence 5'-GGATGGGAG-3'x 5'-CTCCCATCC-3' in both backbone systems. Comparison of the pairing enthalpy and entropy terms shows an enthalpic advantage for DNA association (delta deltaH = -18 kcal x (mol)-1)) and an entropic advantage for bicyclo-DNA association (delta deltaS = 49 cal x K(-1) x mol(-1), leading to a delta deltaG 25 degrees C of -3.4 kcal x mol(-1) in favor of the natural duplex. The salt dependence of Tm for this sequence is more pronounced in the case of bicyclo-DNA due to increased counter ion screening from the solvent. Furthermore bicyclo-DNA sequences are more stable towards snake venom phosphodiesterase by a factor of 10-20, and show increased stability in fetal calf serum by a factor of 8 compared with DNA.  相似文献   

4.
Sugimoto N  Nakano M  Nakano S 《Biochemistry》2000,39(37):11270-11281
Thermodynamics of 66 RNA/DNA duplexes containing single mismatches were measured by UV melting methods. Stability enhancements for rG. dT mismatches were the largest of all mismatches examined here, while rU.dG mismatches were not as stable. The methyl group on C5 of thymine enhanced the stability by 0.12 approximately 0.53 kcal mol(-)(1) depending on the identity of adjacent Watson-Crick base pairs, whereas the 2'-hydroxyl group in ribouridine stabilized the duplex by approximately 0.6 kcal mol(-)(1) regardless of the adjacent base pairs. Stabilities induced by the methyl group in thymine, the 2'-hydroxyl group of ribouridine, and an nucleotide exchange at rG.dT and rU.dG mismatches were found to be independent of each other. The order for the mismatch stabilities is rG.dT > rU. dG approximately rG.dG > rA.dG approximately rG.dA approximately rA. dC > rA.dA approximately rU.dT approximately rU.dC > rC.dA approximately rC.dT, although the identity of the adjacent base pairs slightly altered the order. The pH dependence stability and structural changes were suggested for the rA.dG but not for rG.dA mismatches. Comparisons of trinucleotide stabilities for G.T and G.U pairs in RNA, DNA, and RNA/DNA duplexes indicate that stable RNA/DNA mismatches exhibit a stability similar to RNA mismatches while unstable RNA/DNA mismatches show a stability similar to that of DNA mismatches. These results would be useful for the design of antisense oligonucleotides.  相似文献   

5.
Chlorella virus PBCV-1 DNA ligase seals nicked duplex DNA substrates consisting of a 5'-phosphate-terminated strand and a 3'-hydroxyl-terminated strand annealed to a bridging template strand, but cannot ligate a nicked duplex composed of two DNAs annealed on an RNA template. Whereas PBCV-1 ligase efficiently joins a 3'-OH RNA to a 5'-phosphate DNA, it is unable to join a 3'-OH DNA to a 5'-phosphate RNA. The ligase discriminates at the substrate binding step between nicked duplexes containing 5'-phosphate DNA versus 5'-phosphate RNA strands. PBCV-1 ligase readily seals a nicked duplex DNA containing a single ribonucleotide substitution at the reactive 5'-phosphate end. These results suggest a requirement for a B-form helical conformation of the polynucleotide on the 5'-phosphate side of the nick. Single base mismatches at the nick exert disparate effects on DNA ligation efficiency. PBCV-1 ligase tolerates mismatches involving the 5'-phosphate nucleotide, with the exception of 5'-A:G and 5'-G:A mispairs, which reduce ligase activity by two orders of magnitude. Inhibitory configurations at the 3'-OH nucleotide include 3'-G:A, 3'-G:T, 3'-T:T, 3'-A:G, 3'-G:G, 3'-A:C and 3'-C:C. Our findings indicate that Chlorella virus DNA ligase has the potential to affect genome integrity by embedding ribonucleotides in viral DNA and by sealing nicked molecules with mispaired ends, thereby generating missense mutations.  相似文献   

6.
Design of LNA probes that improve mismatch discrimination   总被引:4,自引:3,他引:1  
Locked nucleic acids (LNA) show remarkable affinity and specificity against native DNA targets. Effects of LNA modifications on mismatch discrimination were studied as a function of sequence context and identity of the mismatch using ultraviolet (UV) melting experiments. A triplet of LNA residues centered on the mismatch was generally found to have the largest discriminatory power. An exception was observed for G–T mismatches, where discrimination decreased when the guanine nucleotide at the mismatch site or even the flanking nucleotides were modified. Fluorescence experiments using 2-aminopurine suggest that LNA modifications enhance base stacking of perfectly matched base pairs and decrease stabilizing stacking interactions of mismatched base pairs. LNAs do not change the amount of counterions (Na+) that are released when duplexes denature. New guidelines are suggested for design of LNA probes, which significantly improve mismatch discrimination in comparison with unmodified DNA probes.  相似文献   

7.
DNA-RNA hybrid secondary structures   总被引:10,自引:0,他引:10  
DNA-RNA and DNA-DNA duplexes are even more polymorphic than observed previously. DNA-RNA hybrids can have secondary structures like A-DNA or A-RNA, but double helices of the synthetic DNA-RNA hybrids poly(dA) X poly(rU) and poly(dI) X poly(rC), respectively, form 11-fold and 10-fold double-helical structures in which the two chains have quite different conformations. Extensive X-ray fiber diffraction analyses show that in both structures the DNA chains have C-2'-endo-puckered furanose rings, while the anti-parallel RNA chains have C-3'-endo-puckered rings. The bidirectional properties of such duplexes may be important in the transfer of biological information from nucleic acids.  相似文献   

8.
The influence of locked nucleic acid (LNA) residues on the thermodynamic properties of 2′-O-methyl RNA/RNA heteroduplexes is reported. Optical melting studies indicate that LNA incorporated into an otherwise 2′-O-methyl RNA oligonucleotide usually, but not always, enhances the stabilities of complementary duplexes formed with RNA. Several trends are apparent, including: (i) a 3′ terminal U LNA and 5′ terminal LNAs are less stabilizing than interior and other 3′ terminal LNAs; (ii) most of the stability enhancement is achieved when LNA nucleotides are separated by at least one 2′-O-methyl nucleotide; and (iii) the effects of LNA substitutions are approximately additive when the LNA nucleotides are separated by at least one 2′-O-methyl nucleotide. An equation is proposed to approximate the stabilities of complementary duplexes formed with RNA when at least one 2′-O-methyl nucleotide separates LNA nucleotides. The sequence dependence of 2′-O-methyl RNA/RNA duplexes appears to be similar to that of RNA/RNA duplexes, and preliminary nearest-neighbor free energy increments at 37°C are presented for 2′-O-methyl RNA/RNA duplexes. Internal mismatches with LNA nucleotides significantly destabilize duplexes with RNA.  相似文献   

9.
10.
Mismatched bulges in nucleic acid constructs are important in the recognition event between biological molecules. Herein, it is observed that napthyridine dimer 2 is able to specifically bind G-G mismatches in all nucleic acid constructs comprising of RNA-RNA, RNA-DNA and DNA-DNA duplexes. However, the binding affinity of 2 is strongest toward DNA duplex, followed by RNA-DNA heteroduplex and RNA duplex being the weakest binding partner. Nonetheless, this binding behavior suggests that the binding process primarily occurs between the guanine base pairs and the napthyridine moiety, and is independent of the tertiary structure of the nucleic acid duplexes.  相似文献   

11.
The most promising approach for detection of random point mutations relies upon the DNA chemical cleavage near associated mismatching base pairs. In our study, the series of heteroduplexes with all types of mismatches and extrahelical nucleotide residues surrounded by both A x T and G x C pairs were performed via hybridization of 50-mer synthetic oligonucleotides differing in only one nucleotide at the central position. The chemical cleavage of DNA duplexes immobilized on magnetic beads by means of biotin-streptavidin interaction was carried out with chemicals, which able to attack only nucleobases flipped out of the base stack: potassium permanganate and hydroxylamine reacting to T and C respectively. The chemical reactivity of different mismatches was shown to correlate clearly with the target local structure in a particular sequence context. This work makes up for a deficiency in systematic study of DNA cleavage near mismatches in dependence on their type, orientation and flanking nucleotides. The model system elaborated may be applied to estimate the sensitivity of the methodology and to control the possibility of false-positive and false-negative result appearance, when different protocols for detection of DNA mutations are used. The modification of heteroduplex mixtures by potassium permanganate and hydroxylamine allows to reveal any non-canonical base pair and suggest its type and neighboring nucleotides from the nature of chemical as well as its localization from the length of cleavage products.  相似文献   

12.
肽核酸(peptide nucleic acid,PNA)阵列   总被引:1,自引:0,他引:1  
鲁艳芹  韩金祥 《生命科学》2003,15(4):200-202
肽核酸(PNA)以N—(2—氨基乙基)甘氨酸替代DNA分子中的磷酸戊糖骨架。它能特异性地识别与DNA、RNA所形成的杂交体。PNA—DNA、PNA—RNA的热稳定性要比相应的DNA—DNA、DNA—RNA高,而且PNA识别单碱基的能力强于DNA和RNA,使之在微阵列,尤其是SNP检测领域有着广泛的应用前景。本文简述了PNA阵列从探针设计、阵列合成、杂交和检测的全过程。  相似文献   

13.
Locked nucleic acid (LNA) and 2'-O-methyl nucleotide (OMeN) are the most extensively studied nucleotide analogues. Although both LNA and OMeN are characterized by the C3'-endo sugar pucker conformation, which is dominant in A-form DNA and RNA nucleotides, they demonstrate different binding behaviours. Previous studies have focused attention on their properties of duplex stabilities, hybridization kinetics and resistance against nuclease digestion; however, their ability to discriminate mismatched hybridizations has been explored much less. In this study, LNA- and OMeN-modified oligonucleotide probes have been prepared and their effects on the DNA duplex stability have been examined: LNA modifications can enhance the duplex stability, whereas OMeN modifications reduce the duplex stability. Next, we studied how the LNA:DNA and OMeN:DNA mismatches reduced the duplex stability. Melting temperature measurement showed that different LNA:DNA or OMeN:DNA mismatches indeed influence the duplex stability differently. LNA purines can discriminate LNA:DNA mismatches more effectively than LNA pyrimidines as well as DNA nucleotides. Furthermore, we designed five LNA- and five OMeN-modified oligonucleotide probes to simulate realistic situations where target-probe duplexes contain a complementary LNA:DNA or OMeN:DNA base pairs and a DNA:DNA mismatch simultaneously. The measured collective effect showed that the duplex stability was enhanced by the complementary LNA:DNA base pair but decreased by the DNA:DNA mismatch in a position-dependent manner regardless of the chemical identity and position of the complementary LNA:DNA base pair. On the other hand, the OMeN-modified probes also showed that the duplex stability was reduced by both the OMeN modification and the OMeN:DNA mismatch in a position-dependent manner.  相似文献   

14.
The discrimination between perfect-match and single-base-pair-mismatched nucleic acid duplexes was investigated by using oligonucleotide DNA microarrays and nonequilibrium dissociation rates (melting profiles). DNA and RNA versions of two synthetic targets corresponding to the 16S rRNA sequences of Staphylococcus epidermidis (38 nucleotides) and Nitrosomonas eutropha (39 nucleotides) were hybridized to perfect-match probes (18-mer and 19-mer) and to a set of probes having all possible single-base-pair mismatches. The melting profiles of all probe-target duplexes were determined in parallel by using an imposed temperature step gradient. We derived an optimum wash temperature for each probe and target by using a simple formula to calculate a discrimination index for each temperature of the step gradient. This optimum corresponded to the output of an independent analysis using a customized neural network program. These results together provide an experimental and analytical framework for optimizing mismatch discrimination among all probes on a DNA microarray.  相似文献   

15.
16.
17.
18.
Thermodynamics provides insights into the influence of modified nucleotide residues on stability of nucleic acids and is crucial for designing duplexes with given properties. In this article, we introduce detailed thermodynamic analysis of RNA duplexes modified with unlocked nucleic acid (UNA) nucleotide residues. We investigate UNA single substitutions as well as model mismatch and dangling end effects. UNA residues placed in a central position makes RNA duplex structure less favourable by 4.0–6.6 kcal/mol. Slight destabilization, by ∼0.5–1.5 kcal/mol, is observed for 5′- or 3′-terminal UNA residues. Furthermore, thermodynamic effects caused by UNA residues are extremely additive with ΔG°37 conformity up to 98%. Direct mismatches involving UNA residues decrease the thermodynamic stability less than unmodified mismatches in RNA duplexes. Additionally, the presence of UNA residues adjacent to unpaired RNA residues reduces mismatch discrimination. Thermodynamic analysis of UNA 5′- and 3′-dangling ends revealed that stacking interactions of UNA residues are always less favourable than that of RNA residues. Finally, circular dichroism spectra imply no changes in overall A-form structure of UNA–RNA/RNA duplexes relative to the unmodified RNA duplexes.  相似文献   

19.
The adeno-associated virus type 2 (AAV) Rep68 protein produced in Escherichia coli as a fusion protein with maltose-binding protein (MBP-Rep68 delta) has previously been shown to possess DNA-DNA helicase activity, as does the purified wild-type Rep68. In the present study, we demonstrate that MBP-Rep68 delta also catalyzes the unwinding of a DNA-RNA hybrid. MBP-Rep68 delta-mediated DNA-RNA helicase activity required ATP hydrolysis and the presence of Mg2+ ions and was inhibited by high ionic strength. The efficiency of the DNA-RNA helicase activity of MBP-Rep68 delta was comparable to its DNA-DNA helicase activity. However, MBP-Rep68 delta lacked the ability to unwind a blunt-ended DNA-RNA substrate and RNA-RNA duplexes. We have also demonstrated that MBP-Rep68 delta has ATPase activity which is enhanced by the presence of single-stranded DNA but not by RNA. The MBP-Rep68 delta NTP mutant protein, which has a lysine-to-histidine substitution at amino acid 340 in the putative nucleoside triphosphate-binding site of Rep68, not only lacks DNA-RNA helicase and ATPase activities but also inhibits the helicase activity of MBP-Rep68 delta. DNA-RNA helicase activity of Rep proteins might play a pivotal role in the regulation of AAV gene expression by AAV Rep proteins.  相似文献   

20.
Bergeron LJ  Sen K  Sen D 《Biochimie》2008,90(7):1064-1073
The property of charge (electron hole) flow in DNA duplexes has been the subject of intensive study. RNA-DNA heteroduplexes have also been investigated; however, little information exists on the conductive properties of purely RNA duplexes. In investigating the relative conductive properties of a three molecule DNA-DNA duplex design, using piperidine and aniline to break strands at modified bases, we observed that duplexes with guanine-rich termini generated a large oxidative end-effect, which could serve as a highly sensitive reporter of charge flow through the duplexes. The end-effect was found faithfully to report attenuations in charge flow due to certain single-base mismatches within a duplex. Comparative charge flow experiments on DNA-DNA and RNA-RNA duplexes found large end-effects from both, suggesting that the A and B family of double helices conduct charge comparably. The sheer magnitude of the end-effect, and its high sensitivity to helical imperfections, suggest that it may be exploited as a sensitive reporter for DNA mismatches, as well as a versatile device for studying the structure, folding, and dynamics of complexly folded RNAs and DNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号