首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
As defined by hydropathy analysis, the membrane-spanning segments of the yeast plasma membrane H(+)-ATPase contain seven negatively charged amino acids (Asp and Glu) and four positively charged amino acids (Arg and His). To explore the functional role of these residues, site-directed mutants at all 11 positions and at Glu-288, located near the cytoplasmic end of M3, have been constructed and expressed in yeast secretory vesicles. Substitutions at four of the positions (Glu-129, Glu-288, Asp-833, and Arg-857) had no significant effect on ATP hydrolysis or ATP-dependent proton pumping, substitutions at five additional positions (Arg-695, His-701, Asp-730, Asp-739, and Arg-811) led to misfolding of the ATPase and blockage at an early stage of biogenesis, and substitutions of Asp-143 allowed measurable biogenesis but nearly abolished ATP hydrolysis and proton transport. Of greatest interest were mutations of Glu-703 in M5 and Glu-803 in M8, which altered the apparent coupling between hydrolysis and transport. Three Glu-703 mutants (E703Q, E703L, E703D) showed significantly reduced pumping over a wide range of hydrolysis values and thus appeared to be partially uncoupled. At Glu-803, by contrast, one mutant (E803N) was almost completely uncoupled, while another (E803Q) pumped protons at an enhanced rate relative to the rate of ATP hydrolysis. Both Glu-703 and Glu-803 occupy positions at which amino acid substitutions have been shown to affect transport by mammalian P-ATPases. Taken together, the results provide growing evidence that residues in membrane segments 5 and 8 of the P-ATPases contribute to the cation transport pathway and that the fundamental mechanism of transport has been conserved throughout the group.  相似文献   

2.
The factors determining the pH dependence of the formation and decay of the O photointermediate of the bacteriorhodopsin (bR) photocycle were investigated in the wild-type (WT) pigment and in the mutants of Glu-194 and Glu-204, key residues of the proton release group (PRG) in bR. We have found that in the WT the rate constant of O --> bR transition decreases 30-fold upon decreasing the pH from 6 to 3 with a pKa of about 4.3. D2O slows the rise and decay of the O intermediate in the WT at pH 3.5 by a factor of 5.5. We suggest that the rate of the O --> bR transition (which reflects the rate of deprotonation of the primary proton acceptor Asp-85) at low pH is controlled by the deprotonation of the PRG. To test this hypothesis, we studied the E194D mutant. We show that the pKa of the PRG in the ground state of the E194D mutant, when Asp-85 is protonated, is increased by 1.2 pK units compared to that of the WT. We found a similar increase in the pKa of the rate constant of the O --> bR transition in E194D. This provides further evidence that the rate of the O --> bR transition is controlled by the PRG. In a further test, the E194Q mutation, which disables the PRG and slows proton release, almost completely eliminates the pH dependence of O decay at pHs below 6. A second phenomenon we investigated was that in the WT at neutral and alkaline pH the fraction of the O intermediate decreases with pKa 7.5. A similar pH dependence is observed in the mutants in which the PRG is disabled, E194Q and E204Q, suggesting that the decrease in the fraction of the O intermediate with pKa ca. 7.5 is not controlled by the PRG. We propose that the group with pKa 7.5 is Asp-96. The slowing of the reprotonation of Asp-96 at high pH is the cause of the decrease in the rate of the N --> O transition, leading to the decrease in the fraction of O.  相似文献   

3.
At pH >7, proteorhodopsin functions as an outward-directed proton pump in cell membranes, and Asp-97 and Glu-108, the homologues of the Asp-85 and Asp-96 in bacteriorhodopsin, are the proton acceptor and donor to the retinal Schiff base, respectively. It was reported, however [Friedrich, T. et al. (2002) J. Mol. Biol., 321, 821-838], that proteorhodopsin transports protons also at pH <7 where Asp-97 is protonated and in the direction reverse from that at higher pH. To explore the roles of Asp-97 and Glu-108 in the proposed pumping with variable vectoriality, we compared the photocycles of D97N and E108Q mutants, and the effects of azide on the photocycle of the E108Q mutant, at low and high pH. Unlike at high pH, at a pH low enough to protonate Asp-97 neither the mutations nor the effects of azide revealed evidence for the participation of the acidic residues in proton transfer, and as in the photocycle of the wild-type protein, no intermediate with unprotonated Schiff base accumulated. In view of these findings, and the doubts raised by absence of charge transfer after flash excitation at low pH, we revisited the question whether transport occurs at all under these conditions. In both oriented membrane fragments and liposomes reconstituted with proteorhodopsin, we found transport at high pH but not at low pH. Instead, proton transport activity followed the titration curve for Asp-97, with an apparent pK(a) of 7.1, and became zero at the pH where Asp-97 is fully protonated.  相似文献   

4.
Cytochrome P450 2D6 (CYP2D6) metabolizes a wide range of therapeutic drugs. CYP2D6 substrates typically contain a basic nitrogen atom, and the active-site residue Asp-301 has been implicated in substrate recognition through electrostatic interactions. Our recent computational models point to a predominantly structural role for Asp-301 in loop positioning (Kirton, S. B., Kemp, C. A., Tomkinson, N. P., St.-Gallay, S., and Sutcliffe, M. J. (2002) Proteins 49, 216-231) and suggest a second acidic residue, Glu-216, as a key determinant in the binding of basic substrates. We have evaluated the role of Glu-216 in substrate recognition, along with Asp-301, by site-directed mutagenesis. Reversal of the Glu-216 charge to Lys or substitution with neutral residues (Gln, Phe, or Leu) greatly decreased the affinity (K(m) values increased 10-100-fold) for the classical basic nitrogen-containing substrates bufuralol and dextromethorphan. Altered binding was also manifested in significant differences in regiospecificity with respect to dextromethorphan, producing enzymes with no preference for N-demethylation versus O-demethylation (E216K and E216F). Neutralization of Asp-301 to Gln and Asn had similarly profound effects on substrate binding and regioselectivity. Intriguingly, removal of the negative charge from either 216 or 301 produced enzymes (E216A, E216K, and D301Q) with elevated levels (50-75-fold) of catalytic activity toward diclofenac, a carboxylate-containing CYP2C9 substrate that lacks a basic nitrogen atom. Activity was increased still further (>1000-fold) upon neutralization of both residues (E216Q/D301Q). The kinetic parameters for diclofenac (K(m) 108 microm, k(cat) 5 min(-1)) along with nifedipine (K(m) 28 microm, k(cat) 2 min(-1)) and tolbutamide (K(m) 315 microm, k(cat) 1 min(-1)), which are not normally substrates for CYP2D6, were within an order of magnitude of those observed with CYP3A4 or CYP2C9. Neutralizing both Glu-216 and Asp-301 thus effectively alters substrate recognition illustrating the central role of the negative charges provided by both residues in defining the specificity of CYP2D6 toward substrates containing a basic nitrogen.  相似文献   

5.
Cytochrome c oxidase (CcO) transfers protons from the inner surface of the enzyme to the buried O2 reduction site through two different pathways, termed K and D, and from the outer surface via an undefined route. These proton paths can be inhibited by metals such as zinc or cadmium, but the sites of inhibition have not been established. Anomalous difference Fourier analyses of Rhodobacter sphaeroides CcO crystals, with cadmium added, reveal metal binding sites that include the proposed initial proton donor/acceptor of the K pathway, Glu-101 of subunit II. Mutant forms of CcO that lack Glu-101II (E101A and E101A/H96A) exhibit low activity and eliminate metal binding at this site. Significant activity is restored to E101A and E101A/H96A by adding the lipophilic carboxylic compounds, arachidonic acid and cholic acid, but not by their non-carboxylic analogues. These amphipathic acids likely provide their carboxylic groups as substitute proton donors/acceptors in the absence of Glu-101II, as previously observed for arachidonic acid in mutants that alter Asp-132I of the D pathway. The activity of E101A/H96A is still inhibited by zinc, but this remaining inhibition is nearly eliminated by removal of subunit III, which is known to alter the D pathway. The results identify the Glu-101/His-96 site of subunit II as the site of metal binding that inhibits the uptake of protons into the K pathway and indicate that subunit III contributes to zinc binding and/or inhibition of the D pathway. By removing subunit III from E101A/H96A, thereby eliminating zinc inhibition of the uptake of protons from the inner surface of CcO, we confirm that an external zinc binding site is involved in inhibiting the backflow of protons to the active site.  相似文献   

6.
D A Griffith  A M Pajor 《Biochemistry》1999,38(23):7524-7531
The role of acidic amino acid residues in cation recognition and selectivity by the Na+/dicarboxylate cotransporter, NaDC-1, was investigated by site-directed mutagenesis and expression in Xenopus oocytes. Four of the residues tested, Asp-52, Glu-74, Glu-101, and Glu-332, were found to be unimportant for transport activity. However, substitutions of Asp-373 and Glu-475, conserved residues found in transmembrane domains M8 and M9, respectively, altered transport kinetics. Replacements of Asp-373 with Ala, Glu, Asn, and Gln resulted in changes in sodium affinity and cation selectivity in NaDC-1, indicating that the carbonyl oxygen at this position may play a role in the topological organization of the cation-binding site. In contrast, substitutions of Glu-475 led to dramatic reductions in transport activity and changes in transport kinetics. Substitution with Gln led to a transporter with increased substrate and sodium affinity, while the E475D mutant was inactive. The E475A mutant appeared to have poor sodium binding. Substrate-induced currents in the E475A mutant exhibited a strong voltage dependence, and a reversal of the current was seen at -30 mV. The results suggest that Glu-475 may play a role in cation binding and possibly also in mediating anion channel activity. Remarkably, mutations of both Asp-373 and Glu-475 affected the Km for succinate in NaDC-1, suggesting dual roles for these residues in determining the affinity for substrate and cations. We propose that at least one of the cation-binding sites and the substrate-binding site are close together in the carboxy-terminal portion of NaDC-1, and thus transmembrane domains M8 and M9 are candidate structures for the formation of the translocation pathway.  相似文献   

7.
Endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) has a high level of transglycosylation activity. To determine which amino acids are involved in this activity, we employed deletion analysis, as well as random and site-directed mutagenesis. Using PCR random mutagenesis, 11 mutants with greatly decreased levels of enzyme activity were isolated. Six catalytically essential amino acids were identified by site-directed mutagenesis. Mutants E173G, E175Q, D206G, and D270N had markedly reduced hydrolysis activity, while mutants V109D, E173D, and E173Q lost all enzymatic activity, indicating that Val-109 and Glu-173 are important for the catalytic function. Moreover, we isolated a random mutation that abolished the transglycosylation activity without affecting the hydrolysis activity. The Trp-216 to Arg mutation was identified, by site-directed mutagenesis, as that responsible for the loss of transglycosylation activity. While other mutants of Trp-216 showed reduced activity, mutation to another positively charged residue (Lys) also abolished the transglycosylation activity. Sequence comparison with two other endo-beta-N-acetylglucosaminidases, that possess transglycosylation activity and that have been cloned recently, reveals a high degree of identity in the N-terminal regions of the three enzymes. These results indicate that the tryptophan residue at position 216 of Endo-A has a key role in the transglycosylation.  相似文献   

8.
Lactose permease structure is deemed consistent with a mechanical switch device for H(+)-coupled symport. Because the crystallography-assigned docking position of thiodigalactoside (TDG) does not make close contact with several amino acids essential for symport; the switch model requires allosteric interactions between the proton and sugar binding sites. The docking program, Autodock 3 reveals other lactose-docking sites. An alternative cotransport mechanism is proposed where His-322 imidazolium, positioned in the central pore equidistant (5-7 A) between six charged amino acids, Arg-302 and Lys-319 opposing Glu-269, Glu-325, Asp-237, and Asp-240, transfers a proton transiently to an H-bonded lactose hydroxyl group. Protonated lactose and its dissociation product H(3)O+ are repelled by reprotonated His-322 and drift in the electrostatic field toward the cytosol. This Brownian ratchet model, unlike the conventional carrier model, accounts for diminished symport by H322N mutant; how H322 mutants become uniporters; why exchanging Lys-319 with Asp-240 paradoxically inactivates symport; how some multiple mutants become revertant transporters; the raised export rate and affinity toward lactose of uncoupled mutants; the altered specificity toward lactose, melibiose, and galactose of some mutants, and the proton dissociation rate of H322 being 100-fold faster than the symport turnover rate.  相似文献   

9.
Li L  Binz T  Niemann H  Singh BR 《Biochemistry》2000,39(9):2399-2405
Type A botulinum neurotoxin (BoNT/A) is a zinc endopeptidase that contains the consensus sequence HEXXH (residues 223-227) in the toxic light chain (LC). The X-ray structure of the toxin has predicted that the two histidines of this motif are two of the three zinc-coordinating ligands and that the glutamate is a crucial amino acid involved in catalysis. The functional implication of E224 in the motif of LC was investigated by replacing the residue with glutamine and aspartate using site-directed mutagenesis. Substitution of Glu-224 with Gln (E224Q) resulted in a total loss of the endopeptidase activity, whereas substitution with Asp (E224D) retained about 1.4% of the enzymatic activity (k(cat) 140 vs 1.9 min(-1), respectively). However, K(m) values for wild-type and E224D BoNT/A LC were similar, 42 and 50 microM, respectively. Global structure, in terms of secondary structure content and topography of aromatic amino residues, Zn(2+) content, and substrate binding ability are retained in the enzymatically inactive mutants. Titration of Zn(2+) to EDTA-treated wild-type and mutant proteins indicated identical enthalpy for Zn(2+) binding. These results suggest an essential and direct role of the carboxyl group of Glu-224 in the hydrolysis of the substrate. The location of the carboxyl group at a precise position is critical for the enzymatic activity, as replacement of Glu-224 with Asp resulted in almost total loss of the activity.  相似文献   

10.
Phage lysozyme has catalytic activity similar to that of hen egg white lysozyme, but the amino acid sequences of the two enzymes are completely different.The binding to phage lysozyme of several saccharides including N-acetylglucosamine (GlcNAc), N-acetylmuramic acid (MurNAc) and (GlcNAc)3 have been determined crystallographically and shown to occupy the pronounced active site cleft. GlcNAc binds at a single location analogous to the C site of hen egg white lysozyme. MurNAc binds at the same site. (GlcNAc)3 clearly occupies sites B and C, but the binding in site A is ill-defined.Model building suggests that, with the enzyme in the conformation seen in the crystal structure, a saccharide in the normal chair configuration cannot be placed in site D without incurring unacceptable steric interference between sugar and protein. However, as with hen egg white lysozyme, the bad contacts can be avoided by assuming the saccharide to be in the sofa conformation. Also Asp20 in T4 lysozyme is located 3 Å from carbon C(1) of saccharide D, and is in a position to stabilize the developing positive charge on a carbonium ion intermediate. Prior genetic evidence had indicated that Asp20 is critically important for catalysis. This suggests that in phage lysozyme catalysis is promoted by a combination of steric and electronic effects, acting in concert, The enzyme shape favors the binding in site D of a saccharide with the geometry of the transition state, while Asp20 stabilizes the positive charge on the oxocarbonium ion of this intermediate. Tn phage lysozyme, the identity of the proton donor is uncertain. In contrast to hen egg white lysozyme, where Glu35 is 3 Å from the glycosidic DOE bond, and is in a non-polar environment, phage lysozyme has an ion pair, Glull … Arg145, 5 Å away from the glycosidic oxygen. Possibly Glull undergoes a conformational adjustment in the presence of bound substrate, and acts as the proton donor. Alternatively, the proton might come from a bound water molecule.  相似文献   

11.
The H(+)(Na(+))-translocating NADH-quinone (Q) oxidoreductase (NDH-1) of Escherichia coli is composed of 13 different subunits (NuoA-N). Subunit NuoA (ND3, Nqo7) is one of the seven membrane domain subunits that are considered to be involved in H(+)(Na(+)) translocation. We demonstrated that in the Paracoccus denitrificans NDH-1 subunit, Nqo7 (ND3) directly interacts with peripheral subunits Nqo6 (PSST) and Nqo4 (49 kDa) by using cross-linkers (Di Bernardo, S., and Yagi, T. (2001) FEBS Lett. 508, 385-388 and Kao, M.-C., Matsuno-Yagi, A., and Yagi, T. (2004) Biochemistry 43, 3750-3755). To investigate the structural and functional roles of conserved charged amino acid residues, a nuoA knock-out mutant and site-specific mutants K46A, E51A, D79N, D79A, E81Q, E81A, and D79N/E81Q were constructed by utilizing chromosomal DNA manipulation. In terms of immunochemical and NADH dehydrogenase activity-staining analyses, all site-specific mutants are similar to the wild type, suggesting that those NuoA site-specific mutations do not significantly affect the assembly of peripheral subunits in situ. In addition, site-specific mutants showed similar deamino-NADH-K(3)Fe(CN)(6) reductase activity to the wild type. The K46A mutation scarcely inhibited deamino-NADH-Q reductase activity. In contrast, E51A, D79A, D79N, E81A, and E81Q mutation partially suppressed deamino-NADH-Q reductase activity to 30, 90, 40, 40, and 50%, respectively. The double mutant D79N/E81Q almost completely lost the energy-transducing NDH-1 activities but did not display any loss of deamino-NADH-K(3)Fe(CN)(6) reductase activity. The possible functional roles of residues Asp-79 and Glu-81 were discussed.  相似文献   

12.
Plant-type ferredoxin (Fd), a [2Fe-2S] iron-sulfur protein, functions as an one-electron donor to Fd-NADP(+) reductase (FNR) or sulfite reductase (SiR), interacting electrostatically with them. In order to understand the protein-protein interaction between Fd and these two different enzymes, 10 acidic surface residues in maize Fd (isoform III), Asp-27, Glu-30, Asp-58, Asp-61, Asp-66/Asp-67, Glu-71/Glu-72, Asp-85, and Glu-93, were substituted with the corresponding amide residues by site-directed mutagenesis. The redox potentials of the mutated Fds were not markedly changed, except for E93Q, the redox potential of which was more positive by 67 mV than that of the wild type. Kinetic experiments showed that the mutations at Asp-66/Asp-67 and Glu-93 significantly affected electron transfer to the two enzymes. Interestingly, D66N/D67N was less efficient in the reaction with FNR than E93Q, whereas this relationship was reversed in the reaction with SiR. The static interaction of the mutant Fds with each the two enzymes was analyzed by gel filtration of a mixture of Fd and each enzyme, and by affinity chromatography on Fd-immobilized resins. The contributions of Asp-66/Asp-67 and Glu-93 were found to be most important for the binding to FNR and SiR, respectively, in accordance with the kinetic data. These results allowed us to map the acidic regions of Fd required for electron transfer and for binding to FNR and SiR and demonstrate that the interaction sites for the two enzymes are at least partly distinct.  相似文献   

13.
Inhibitor-1 (I-1) and inhibitor-2 (I-2) selectively inhibit type 1 protein serine/threonine phosphatases (PP1). To define the molecular basis for PP1 inhibition by I-1 and I-2 charged-to-alanine substitutions in the Saccharomyces cerevisiae, PP1 catalytic subunit (GLC7), were analyzed. Two PP1 mutants, E53A/E55A and K165A/E166A/K167A, showed reduced sensitivity to I-2 when compared with wild-type PP1. Both mutants were effectively inhibited by I-1. Two-hybrid analysis and coprecipitation or pull-down assays established that wild-type and mutant PP1 catalytic subunits bound I-2 in an identical manner and suggested a role for the mutated amino acids in enzyme inhibition. Inhibition of wild-type and mutant PP1 enzymes by full-length I-2(1-204), I-2(1-114), and I-2(36-204) indicated that the mutant enzymes were impaired in their interaction with the N-terminal 35 amino acids of I-2. Site-directed mutagenesis of amino acids near the N terminus of I-2 and competition for PP1 binding by a synthetic peptide encompassing an I-2 N-terminal sequence suggested that a PP1 domain composed of amino acids Glu-53, Glu-55, Asp-165, Glu-166, and Lys-167 interacts with the N terminus of I-2. This defined a novel regulatory interaction between I-2 and PP1 that determines I-2 potency and perhaps selectivity as a PP1 inhibitor.  相似文献   

14.
15.
Harris TK  Wu G  Massiah MA  Mildvan AS 《Biochemistry》2000,39(7):1655-1674
The MutT enzyme catalyzes the hydrolysis of nucleoside triphosphates (NTP) to NMP and PP(i) by nucleophilic substitution at the rarely attacked beta-phosphorus. The solution structure of the quaternary E-M(2+)-AMPCPP-M(2+) complex indicated that conserved residues Glu-53, -56, -57, and -98 are at the active site near the bound divalent cation possibly serving as metal ligands, Lys-39 is positioned to promote departure of the NMP leaving group, and Glu-44 precedes helix I (residues 47-59) possibly stabilizing this helix which contributes four catalytic residues to the active site [Lin, J. , Abeygunawardana, C., Frick, D. N., Bessman, M. J., and Mildvan, A. S. (1997) Biochemistry 36, 1199-1211]. To test these proposed roles, the effects of mutations of each of these residues on the kinetic parameters and on the Mn(2+), Mg(2+), and substrate binding properties were examined. The largest decreases in k(cat) for the Mg(2+)-activated enzyme of 10(4.7)- and 10(2.6)-fold were observed for the E53Q and E53D mutants, respectively, while 97-, 48-, 25-, and 14-fold decreases were observed for the E44D, E56D, E56Q, and E44Q mutations, respectively. Smaller effects on k(cat) were observed for mutations of Glu-98 and Lys-39. For wild type MutT and its E53D and E44D mutants, plots of log(k(cat)) versus pH exhibited a limiting slope of 1 on the ascending limb and then a hump, i.e., a sharply defined maximum near pH 8 followed by a plateau, yielding apparent pK(a) values of 7.6 +/- 0.3 and 8.4 +/- 0.4 for an essential base and a nonessential acid catalyst, respectively, in the active quaternary MutT-Mg(2+)-dGTP-Mg(2+) complex. The pK(a) of 7.6 is assigned to Glu-53, functioning as a base catalyst in the active quaternary complex, on the basis of the disappearance of the ascending limb of the pH-rate profile of the E53Q mutant, and its restoration in the E53D mutant with a 10(1.9)-fold increase in (k(cat))(max). The pK(a) of 8.4 is assigned to Lys-39 on the basis of the disappearance of the descending limb of the pH-rate profile of the K39Q mutant, and the observation that removal of the positive charge of Lys-39, by either deprotonation or mutation, results in the same 8.7-fold decrease in k(cat). Values of k(cat) of both wild type MutT and the E53Q mutant were independent of solvent viscosity, indicating that a chemical step is likely to be rate-limiting with both. A liganding role for Glu-53 and Glu-56, but not Glu-98, in the binary E-M(2+) complex is indicated by the observation that the E53Q, E53D, E56Q, and E56D mutants bound Mn(2+) at the active site 36-, 27-, 4.7-, and 1.9-fold weaker, and exhibited 2.10-, 1.50-, 1.12-, and 1.24-fold lower enhanced paramagnetic effects of Mn(2+), respectively, than the wild type enzyme as detected by 1/T(1) values of water protons, consistent with the loss of a metal ligand. However, the K(m) values of Mg(2+) and Mn(2+) indicate that Glu-56, and to a lesser degree Glu-98, contribute to metal binding in the active quaternary complex. Mutations of the more distant but conserved residue Glu-44 had little effect on metal binding or enhancement factors in the binary E-M(2+) complexes. Two-dimensional (1)H-(15)N HSQC and three-dimensional (1)H-(15)N NOESY-HSQC spectra of the kinetically damaged E53Q and E56Q mutants showed largely intact proteins with structural changes near the mutated residues. Structural changes in the kinetically more damaged E44D mutant detected in (1)H-(15)N HSQC spectra were largely limited to the loop I-helix I motif, suggesting that Glu-44 stabilizes the active site region. (1)H-(15)N HSQC titrations of the E53Q, E56Q, and E44D mutants with dGTP showed changes in chemical shifts of residues lining the active site cleft, and revealed tighter nucleotide binding by these mutants, indicating an intact substrate binding site. (ABSTRACT TRUNCATED)  相似文献   

16.
Poly(A)-specific ribonuclease (PARN) is a highly poly(A)-specific 3'-exoribonuclease that efficiently degrades mRNA poly(A) tails. PARN belongs to the DEDD family of nucleases, and four conserved residues are essential for PARN activity, i.e. Asp-28, Glu-30, Asp-292, and Asp-382. Here we have investigated how catalytically important divalent metal ions are coordinated in the active site of PARN. Each of the conserved amino acid residues was substituted with cysteines, and it was found that all four mutants were inactive in the presence of Mg2+. However, in the presence of Mn2+, Zn2+, Co2+, or Cd2+, PARN activity was rescued from the PARN(D28C), PARN(D292C), and PARN(D382C) variants, suggesting that these three amino acids interact with catalytically essential metal ions. It was found that the shortest sufficient substrate for PARN activity was adenosine trinucleotide (A3) in the presence of Mg2+ or Cd2+. Interestingly, adenosine dinucleotide (A) was efficiently hydrolyzed in the presence of Mn2+, Zn2+, or Co2+, suggesting that the substrate length requirement for PARN can be modulated by the identity of the divalent metal ion. Finally, introduction of phosphorothioate modifications into the A substrate demonstrated that the scissile bond non-bridging phosphate oxygen in the pro-R position plays an important role during cleavage, most likely by coordinating a catalytically important divalent metal ion. Based on our data we discuss binding and coordination of divalent metal ions in the active site of PARN.  相似文献   

17.
Sterol methyltransferase (SMT) from Saccharomyces cerevisiae was purified from Escherichia coli BL21(DE3) and labeled with the mechanism-based irreversible inhibitor [3-3H]26,27-dehydrozymosterol (26,27-DHZ). A 5-kDa tryptic digest peptide fragment containing six acidic residues at positions Glu-64, Asp-65, Glu-68, Asp-79, Glu-82, and Glu-98 was determined to contain the substrate analog covalently attached to Glu-68 by Edman sequencing and radioanalysis using C18 reverse phase high performance liquid chromatography. Site-directed mutagenesis of the six acidic residues to leucine followed by activity assay of the purified mutants confirmed Glu-68 as the only residue to participate in affinity labeling. Equilibration studies indicated that zymosterol and 26,27-DHZ were bound to native and the E68L mutant with similar affinity, whereas S-adenosylmethionine was bound only to the native SMT, K(d) of about 2 microm. Analysis of the incubation products of the wild-type and six leucine mutants by GC-MS demonstrated that zymosterol was converted to fecosterol, 26,27-DHZ was converted to 26-homo-cholesta-8(9),23(24)E,26(26')-trienol as well as 26-homocholesta-8(9),26(26')-3beta,24beta-dienol, and in the case of D79L and E82L mutants, zymosterol was also converted to a new product, 24-methylzymosta-8,25(27)-dienol. The structures of the methylenecyclopropane ring-opened olefins were determined unambiguously by a combination of (1)H and (13)C NMR techniques. A K(m) of 15 microm, K(cat) of 8 x 10(-4) s(-1), and partition ratio of 0.03 was established for 26,27-DHZ, suggesting that the methylenecyclopropane can serve as a lead structure for a new class of antifungal agents. Taken together, partitioning that leads to loss of enzyme function is the result of 26,27-DHZ catalysis forming a highly reactive cationic intermediate that interacts with the enzyme in a region normally not occupied by the zymosterol high energy intermediate as a consequence of less than perfect control. Alternatively, the gain in enzyme function resulting from the production of a delta(25(27))-olefin originates with the leucine substitution directing substrate channeling along different reaction channels in a similar region at the active site.  相似文献   

18.
P D van Poelje  A V Kamath  E E Snell 《Biochemistry》1990,29(45):10413-10418
To clarify the mechanism of biogenesis and catalysis by the pyruvoyl-dependent histidine decarboxylase (HisDCase) from Clostridium perfringens, 12 mutant genes encoding amino acid substitutions at the active site of this enzyme were constructed and expressed in Escherichia coli. The resulting mutant proteins were purified to homogeneity, characterized, and subjected to kinetic analysis. The results (a) exclude all polar amino acid residues in the active site except Glu-214 as donor of the proton that replaces the carboxyl group of histidine during decarboxylation and, since E214I and E214H are nearly inactive, indicate that Glu-214 is the essential proton donor; (b) demonstrate the importance to substrate binding of hydrophobic interactions between Phe-98, Ile-74, and the imidazole ring of histidine, and of hydrogen bonding between Asp-78 and N2 of the substrate; and (c) demonstrate a significant unidentified role for Glu-81 in the maintenance of the active-site structure. The proposed roles of these amino acid residues are consistent with those assigned on the basis of crystallographic evidence to the corresponding residues at the active site of the related HisDCase from Lactobacillus 30a [Gallagher, T., Snell, E. E., & Hackert, M. L. (1989) J. Biol. Chem. 264, 12737-12743]. Of the residues altered, only Ser-97 was essential for the autocatalytic serinolysis reaction by which this HisDCase, (alpha beta)6, is derived from its inactive, pyruvate-free precursor, proHisDCase, pi 6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Using quantum chemistry CNDO/2 method the mechanism of reaction of polysaccharides with lysozyme was investigated. The molecule of acetal (H3C-O-CH2-O-CH3) was taken as the simplest substrate model. In the framework of the simple model the influence of interaction of the substrate with Glu-35 and Asp-52 on activation of the substrate is described. It is essential that for the maximum activation of the bond broken the optimum (but not the most energetically advantageous) arrangement of Glu-35 should be realized. The optimum arrangement of the amino acid residues of the enzyme should also be realized for the liberation of the groups which took part in the reaction, only one degree of freedom being actual in this process, and the motion of the system occurs along this degree of freedom. It was shown that substrate distortion could cause its activation.  相似文献   

20.
N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a variety of alkylated purine adducts. Although Asp was identified as the active site residue in various DNA glycosylases based on the crystal structure, Glu-125 in human MPG (Glu-145 in mouse MPG) was recently proposed to be the catalytic residue. Mutational analysis for all Asp residues in a truncated, fully active MPG protein showed that only Asp-152 (Asp-132 in the human protein), which is located near the active site, is essential for catalytic activity. However, the substrate binding was not affected in the inactive Glu-152, Asn-152, and Ala-152 mutants. Furthermore, mutation of Asp-152 did not significantly affect the intrinsic tryptophan fluorescence of the enzyme and the far UV CD spectra, although a small change in the near UV CD spectra of the mutants suggests localized conformational change in the aromatic residues. We propose that in addition to Glu-145 in mouse MPG, which functions as the activator of a water molecule for nucleophilic attack, Asp-152 plays an essential role either by donating a proton to the substrate base and, thus, facilitating its release or by stabilizing the steric configuration of the active site pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号