首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Sequence dependence of protein isoprenylation   总被引:38,自引:0,他引:38  
Several proteins have been shown to be post-translationally modified on a specific C-terminal cysteine residue by either of two isoprenoid biosynthetic pathway metabolites, farnesyl diphosphate or geranylgeranyl diphosphate. Three enzymes responsible for protein isoprenylation were resolved chromatographically from the cytosolic fraction of bovine brain: a farnesyl-protein transferase (FTase), which modified the cell-transforming Ras protein, and two geranyl-geranyl-protein transferases, one (GGTase-I) which modified a chimeric Ras having the C-terminal amino acid sequence of the gamma-6 subunit of heterotrimeric GTP-binding proteins, and the other (GGTase-II) which modified the Saccharomyces cerevisiae secretory GTPase protein YPT1. In a S. cerevisiae strain lacking FTase activity (ram1), both GGTases were detected at wild-type levels. In a ram2 S. cerevisiae strain devoid of FTase activity, GGTase-I activity was reduced by 67%, suggesting that GGTase-I and FTase activities derive from different enzymes but may share a common genetic feature. For the FTase and the GGTase-I activities, the C-terminal amino acid sequence of the protein substrate, the CAAX box, appeared to contain all the critical determinants for interaction with the transferase. In fact, tetrapeptides with amino acid sequences identical to the C-terminal sequences of the protein substrates for FTase or GGTase-I competed for protein isoprenylation by acting as alternative substrates. Changes in the CAAX amino acid sequence of protein substrates markedly altered their ability to serve as substrates for both FTase and GGTase-I. In addition, it appeared that FTase and GGTase-I had complementary affinities for CAAX protein substrates; that is, CAAX proteins that were good substrates for FTase were, in general, poor substrates for GGTase-I, and vice versa. In particular, a leucine residue at the C terminus influenced whether a CAAX protein was either farnesylated or geranylgeranylated preferentially. The YPT1 C terminus peptide, TGGGCC, did not compete or serve as a substrate for GGTase-II, indicating that the interaction between GGTase-II and YPT1 appeared to depend on more than the 6 C-terminal residues of the protein substrate sequence. These results identify three different isoprenyl-protein transferases that are each selective for their isoprenoid and protein substrates.  相似文献   

2.
Although the Rap1A protein resembles the oncogenic Ras proteins both structurally and biochemically, Rap1A exhibits no oncogenic properties. Rather, overexpression of Rap1A can reverse Ras-induced transformation of NIH 3T3 cells. Because the greatest divergence in amino acid sequence between Ras and Rap1A occurs at the COOH terminus, the role of this domain in the opposing biological activities of these proteins was examined. COOH-terminal processing and membrane association of Rap1A were studied by constructing and expressing a chimeric protein (composed of residues 1 to 110 of an H-Ras activated by a Leu-61 mutation attached to residues 111 to 184 of Rap1A) in NIH 3T3 cells and a full-length human Rap1A protein in a baculovirus-Sf9 insect cell system. Both the chimeric protein and the full-length protein were synthesized as a 23-kDa cytosolic precursor that rapidly bound to membranes and was converted into a 22-kDa form that incorporated label derived from [3H]mevalonate. The mature 22-kDa form also contained a COOH-terminal methyl group. Full-length Rap1A, expressed in insect cells, was modified by a C20 (geranylgeranyl) isoprenoid. In contrast, H-Ras, expressed in either Sf9 insect or NIH 3T3 mouse cells contained a C15 (farnesyl) group. This suggests that the Rap1A COOH terminus is modified by a prenyl transferase that is distinct from the farnesyl transferase that modifies Ras proteins. Nevertheless, in NIH 3T3 cells the chimeric Ras:Rap1A protein retained the transforming activity conferred by the NH2-terminal Ras61L domain. This demonstrates that the modifications and localization signals of the COOH terminus of Rap1A can support the interactions between H-Ras and membranes that are required for transformation.  相似文献   

3.
Membrane localization of p21ras is dependent upon its posttranslational modification by a 15-carbon farnesyl group. The isoprenoid is linked to a cysteine located within a conserved carboxyl-terminal sequence termed the "CAAX" box (where C is cysteine, A is an aliphatic amino acid, and X is any amino acid). We now show that three GTP-binding proteins encoded by the recently identified rac1, rac2, and ralA genes also undergo isoprenoid modification. cDNAs coding for each protein were transcribed in vitro, and the RNAs were translated in reticulocyte lysates. Incorporation of isoprenoid precursors, [3H]mevalonate or [3H]farnesyl pyrophosphate, indicated that the translation products were modified by isoprenyl groups. A protein recognized by an antibody to rac1 also comigrated with a protein metabolically labeled by a product of [3H] mevalonate in cultured cells. Gel permeation chromatography of radiolabeled hydrocarbons released from the rac1, rac2, and ralA proteins by reaction with Raney nickel catalyst indicated that unlike p21Hras, which was modified by a 15-carbon moiety, the rac and ralA translation products were modified by 20-carbon isoprenyl groups. Site-directed mutagenesis established that the isoprenylated cysteines in the rac1, rac2, and ralA proteins were located in the fourth position from the carboxyl terminus. The three-amino acid extension distal to the cysteine was required for this modification. The isoprenylation of rac1 (CSLL), ralA (CCIL), and the site-directed mutants rac1 (CRLL) and ralA (CSIL), demonstrates that the amino acid adjacent to the cysteine need not be aliphatic. Therefore, proteins with carboxyl-terminal CXXX sequences that depart from the CAAX motif should be considered as potential targets for isoprenoid modification.  相似文献   

4.
Rab proteins typically lack the consensus carboxyl-terminal CXXX motif that signals isoprenoid modification of Ras and other isoprenylated proteins and, instead, terminate in either CC or CXC sequences (C = cysteine, X = any amino acid). To compare the functional relationship between the Ras CXXX and the Rab CC/CXC motifs, we have generated chimeric Ras proteins terminating in Rab carboxyl-terminal CC or CXC sequences. These mutant Ras proteins were not isoprenylated in vitro or in vivo, demonstrating that the CC and CXC sequences alone are not sufficient to replace a CXXX sequence to signal Ras isoprenoid modification. Surprisingly, chimeric Ras/Rab proteins terminating in significant lengths of carboxyl-terminal sequences from Rab1b (7-139 residues), Rab2 (5-151 residues), or Rab3a (12 residues) were also not isoprenylated. These results demonstrate that the sequence requirements for isoprenoid modification of Rab proteins are more complex than the simple tetrapeptide CXXX sequence for isoprenoid modification of Ras proteins and suggest that the Rab geranylgeranyl transferase(s) requires recognition of protein conformation to signal the addition of geranylgeranyl groups. Finally, competition studies demonstrate that a common geranylgeranyl transferase activity is responsible for the modification of Rab proteins terminating in CC or CXC motifs.  相似文献   

5.
The role of mevalonate in the control of DNA synthesis during the cell cycle has been studied and has lead to the detection of isoprenylated proteins. These proteins are modified by a polyisoprenoid (farnesyl or geranylgeranyl) moiety via a thioether linkage. This modification is required for the following steps of the post-translational maturation of these proteins: proteolysis of the last three C-terminal amino-acids and carboxymethylation of the Cysteine-COOH. The isoprenylation could play a role in the membrane localisation of these proteins. Farnesylated proteins present a C-terminal CAAX domain. Moreover, the farnesylation is required for their biological activity independently of the membrane localization (Prelamine A, p21ras(Val 12)). Among geranylgeranyl proteins, two types of C-terminal sequences have been found: one with the motif CAAX, the other with the motif CC or CXC. In the last type, both Cysteines are geranylgeranylated. The hydrophobicity of the geranylgeranyl moiety leads to the membrane attachment, without any specificity. Moreover, geranylgeranylation as well as farnesylation seem important for protein-protein interactions. Among the identified isoprenylated proteins, the lamins, gamma-subunits of G proteins and the numerous (if not all) members of the Ras superfamily were characterized. The exact role of isoprenylation is still uncertain but it seems to affect the membrane localization and the protein-protein interactions.  相似文献   

6.
Farnesylation of Ras proteins is necessary for transforming activity. Although farnesyl transferase inhibitors show promise as anticancer agents, prenylation of the most commonly mutated Ras isoform, K-Ras4B, is difficult to prevent because K-Ras4B can be alternatively modified with geranylgeranyl (C20). Little is known of the mechanisms that produce incomplete or inappropriate prenylation. Among non-Ras proteins with CaaX motifs, murine guanylate-binding protein (mGBP1) was conspicuous for its unusually low incorporation of [(3)H]mevalonate. Possible problems in cellular isoprenoid metabolism or prenyl transferase activity were investigated, but none that caused this defect was identified, implying that the poor labeling actually represented incomplete prenylation of mGBP1 itself. Mutagenesis indicated that the last 18 residues of mGBP1 severely limited C20 incorporation but, surprisingly, were compatible with farnesyl modification. Features leading to the expression of mutant GBPs with partial isoprenoid modification were identified. The results demonstrate that it is possible to alter a protein's prenylation state in a living cell so that graded effects of isoprenoid on function can be studied. The C20-selective impairment in prenylation also identifies mGBP1 as an important model for the study of substrate/geranylgeranyl transferase I interactions.  相似文献   

7.
In eukaryotic cells, a specific set of proteins are modified by C-terminal attachment of 15-carbon farnesyl groups or 20-carbon geranylgeranyl groups that function both as anchors for fixing proteins to membranes and as molecular handles for facilitating binding of these lipidated proteins to other proteins. Additional modification of these prenylated proteins includes C-terminal proteolysis and methylation, and attachment of a 16-carbon palmitoyl group; these modifications augment membrane anchoring and alter the dynamics of movement of proteins between different cellular membrane compartments. The enzymes in the protein prenylation pathway have been isolated and characterized. Blocking protein prenylation is proving to be therapeutically useful for the treatment of certain cancers, infection by protozoan parasites and the rare genetic disease Hutchinson-Gilford progeria syndrome.  相似文献   

8.
Posttranslational prenylation of proteins synthesized as soluble precursors enhances their hydrophobicity and enables them to bind biological membranes. These modifications consist in the attachment of a C15 farnesyl or a C20 geranylgeranyl moiety to the cysteine residue(s) of proteins bearing CAAX, CC or CXC C-terminal sequences (where C = cysteine, A = aliphatic residue and X = any amino-acid), such as proteins of the ras superfamily, gamma subunits of heterotrimetric G proteins, lamin B as well as yeast mating factor a. A farnesyl transferase (FTase) and two distinct geranylgeranyl transferases (GGTases I and II) have been recently identified. FTase and GGTase I modify proteins containing a C-terminal CAAX motif; such a sequence is necessary and sufficient for recognition by the enzymes. The nature of the fourth residue determines the nature of the modification: when X is a serine, a methionine or a phenylalanine, the protein is farnesylated, whereas the presence of a leucine residue results in the attachment of a geranylgeranyl group. Both these enzymes are alpha beta heterodimers; their purification, molecular cloning of their coding sequences as well as mutational studies in yeast have shown that they share a common alpha subunit, and that their beta subunits exhibit a significant level of sequence similarity. GGTase II modifies ras-related proteins exhibiting CC and CXC C-terminal sequences; the enzyme as well as its recognition motif are yet largely uncharacterized.  相似文献   

9.
Mutational analysis of p21ras has shown that plasma membrane targeting requires the combination of a CAAX motif with a polybasic domain of six lysine residues or a nearby palmitoylation site. However, it is not known from these studies whether these signals alone target p21ras to the plasma membrane. We now show that these C-terminal sequences are sufficient to target a heterologous cytosolic protein to the plasma membrane. Interestingly, the key feature of the p21K-ras(B) polybasic domain appears to be a positive charge, since a polyarginine domain can function as a plasma membrane targeting motif in conjunction with the CAAX box and p21K-ras(B) with the polylysine domain replaced by arginines is biologically active. Since some ras-related proteins are modified by geranylgeranyl rather than farnesyl we have investigated whether modification of p21ras with geranylgeranyl affects its subcellular localization. Geranylgeranyl can substitute for farnesyl in combining with a polybasic domain to target p21K-ras(B) to the plasma membrane, but such geranylgeranylated proteins are more tightly bound to the membrane. This increased avidity of binding is presumably due to the extra length of the geranylgeranyl alkyl chain.  相似文献   

10.
The prenylation of proteins.   总被引:16,自引:0,他引:16  
The prenylated proteins represent a newly discovered class of post-translationally modified proteins. The known prenylated proteins include the oncogene product p21ras and other low molecular weight GTP-binding proteins, the nuclear lamins, and the gamma subunit of the heterotrimeric G proteins. The modification involves the covalent attachment of a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) isoprenoid moiety in a thioether linkage to carboxyl terminal cysteine. The nature of the attached substituent is dependent on specific sequence information in the carboxyl terminus of the protein. In addition, prenylation entrains other posttranslational modifications forming a reaction pathway. In this article, we review our current understanding of the biochemical reactions involved in prenylation and discuss the possible role of this modification in the control of cellular functions such as protein maturation and cell growth.  相似文献   

11.
Mondal MS  Wang Z  Seeds AM  Rando RR 《Biochemistry》2000,39(2):406-412
The activities of small G-proteins are in part regulated by their interactions with GDI proteins. This binding is thought to be dependent on the C-terminal isoprenoid modification (geranylgeranyl or farnesyl) of these proteins. G-proteins are generally isoprenylated/methylated at their C-terminal cysteine residues. A quantitative fluorescence assay is reported here to evaluate the specificity of binding of rhoGDI. A rhodamine-labeled geranylgeranylated/methylated cysteine derivative is used to measure its binding to rhoGDI. Saturable binding in the low micromolar range is found with various geranylgeranylated/farnesylated analogues. Interestingly, the carboxymethylated derivatives bound significantly better than their free acid counterparts, suggesting that the state of methylation of the analogues is important for binding. The binding is also selective with respect to isoprenoid. Analogues containing hydrophobic modifications other than geranylgeranyl or farnesyl do not bind with significant affinities. These data demonstrate a substantial degree of specificity in the binding of isoprenoids to a protein important in signal transduction.  相似文献   

12.
Two native betagamma dimers, beta(1)gamma(1) and beta(1)gamma(2), display very different affinities for receptors. Since these gamma subunits differ in both primary structure and isoprenoid modification, we examined the relative contributions of each to Gbetagamma interaction with receptors. We constructed baculoviruses encoding gamma(1) and gamma(2) subunits with altered CAAX (where A is an aliphatic amino acid) motifs to direct alternate or no prenylation of the gamma chains and a set of gamma(1) and gamma(2) chimeras with the gamma(2) CAAX motif at the carboxyl terminus. All the gamma constructs coexpressed with beta(1) in Sf9 cells yielded beta(1)gamma dimers, which were purified to near homogeneity, and their affinities for receptors and Galpha were quantitatively determined. Whereas alteration of the isoprenoid of gamma(1) from farnesyl to geranylgeranyl and of gamma(2) from geranylgeranyl to farnesyl had no impact on the affinities of beta(1)gamma dimers for Galpha(t), the non-prenylated beta(1)gamma(2) dimer had significantly diminished affinity. Altered prenylation resulted in a <2-fold decrease in affinity of the beta(1)gamma(2) dimer for rhodopsin and a <3-fold change for the beta(1)gamma(1) dimer. In each case with identical isoprenylation, the beta(1)gamma(2) dimer displayed significantly greater affinity for rhodopsin compared with the beta(1)gamma(1) dimer. Furthermore, dimers containing chimeric Ggamma chains with identical geranylgeranyl modification displayed rhodopsin affinities largely determined by the carboxyl-terminal one-third of the protein. These results indicate that isoprenoid modification of the Ggamma subunit is essential for binding to both Galpha and receptors. The isoprenoid type influences the binding affinity for receptors, but not for Galpha. Finally, the primary structure of the Ggamma subunit provides a major contribution to receptor binding of Gbetagamma, with the carboxyl-terminal sequence conferring receptor selectivity.  相似文献   

13.
Summary A number of cellular proteins, including p21ras, lamin B, and the G-protein subunits, undeDanvillergo post-translational modification by 15-carbon farnesyl or 20-carbon geranylgeranyl isoprenoid moieties derived from pyrophosphate intermediates of the cholesterol biosynthetic pathway. In this study, isoprenylated proteins in three mammalian cell lines (Hela cells, Rat-6 fibroblasts and COS cells) were radiolabeled with an isoprenoid precursor, [3H]mevalonate, and resolved by SDS gel electrophoresis. Groups of proteins with different molecular masses were eluted from the gels and the chain-lengths of the radiolabeled isoprenyl groups, released from the proteins by Raney-nickel-catalyzed desulfurization, were established by gel permeation chromatography. 15-Carbon and 20-carbon isoprenyl groups were found in separate classes of proteins within each cell line. With the exception of p21ras, which incorporated a 15-carbon group when expressed in COS cells, the proteins in the region of the 21–28 kDa ras-related GTP binding proteins contained mostly 20-carbon isoprenyl chains. In contrast, proteins belonging to the 66–72 kDa nuclear lamin family, as well as unidentified proteins with molecular masses of 41–46 kDa and 53–55 kDa, contained predominantly 15-carbon isoprenyl chains. The chain-lengths of the isoprenoids associated with particular classes of proteins did not vary from one cell line to another, suggesting that the nature of the isoprenoid modification (farnesyl versus geranylgeranyl) is determined by intrinsic structural features of the proteins, rather than the cell type in which the proteins are expressed.Abbreviations MVA Mevalonolactone - SDS Sodium Dodecyl Sulfate - PAGE Polyacrylamide Gel Electrophoresis  相似文献   

14.
Proteins containing C-terminal "CAAX" sequence motifs undergo three sequential post-translational processing steps: modification of the cysteine with either a 15-carbon farnesyl or 20-carbon geranylgeranyl isoprenyl lipid, proteolysis of the C-terminal -AAX tripeptide, and methylation of the carboxyl group of the now C-terminal prenylcysteine. A putative prenyl protein protease in yeast, designated Rce1p, was recently identified. In this study, a portion of a putative human homologue of RCE1 (hRCE1) was identified in a human expressed sequence tag data base, and the corresponding cDNA was cloned. Expression of hRCE1 was detected in all tissues examined. Both yeast and human RCE1 proteins were produced in Sf9 insect cells by infection with a recombinant baculovirus; membrane preparations derived from the infected Sf9 cells exhibited a high level of prenyl protease activity. Recombinant hRCE1 so produced recognized both farnesylated and geranylgeranylated proteins as substrates, including farnesyl-Ki-Ras, farnesyl-N-Ras, farnesyl-Ha-Ras, and the farnesylated heterotrimeric G protein Ggamma1 subunit, as well as geranylgeranyl-Ki-Ras and geranylgeranyl-Rap1b. The protease activity of hRCE1 activity was specific for prenylated proteins, because unprenylated peptides did not compete for enzyme activity. hRCE1 activity was also exquisitely sensitive to a prenyl peptide analogue that had been previously described as a potent inhibitor of the prenyl protease activity in mammalian tissues. These data indicate that both the yeast and the human RCE1 gene products are bona fide prenyl protein proteases and suggest that they play a major role in the processing of CAAX-type prenylated proteins.  相似文献   

15.
Prenylation of mammalian Ras protein in Xenopus oocytes.   总被引:1,自引:1,他引:0       下载免费PDF全文
R Kim  J Rine    S H Kim 《Molecular and cellular biology》1990,10(11):5945-5949
Ras protein requires an intermediate of the cholesterol biosynthetic pathway for posttranslational modification and membrane anchorage. This step is necessary for biological activity. Maturation of Xenopus laevis oocytes induced by an oncogenic human Ras protein can be inhibited by lovastatin or compactin, inhibitors of the synthesis of mevalonate, an intermediate of cholesterol biosynthesis. This inhibition can be overcome by mevalonic acid or farnesyl diphosphate, a cholesterol biosynthetic intermediate downstream of mevalonate, but not by squalene, an intermediate after farnesyl pyrophosphate in the pathway. This study supports the idea that in Xenopus oocytes, the Ras protein is modified by a farnesyl moiety or its derivative. Furthermore, an octapeptide with the sequence similar to the C-terminus of the c-H-ras protein inhibits the biological activity of Ras proteins in vivo, suggesting that it competes for the enzyme or enzymes responsible for transferring the isoprenoid moiety (prenylation) in the oocytes. This inhibition of Ras prenylation by the peptide was also observed in vitro, using both Saccharomyces cerevisiae and Xenopus oocyte extracts. These observations show that Xenopus oocytes provide a convenient in vivo system for studies of inhibitors of the posttranslational modification of the Ras protein, especially for inhibitors such as peptides that do not penetrate cell membranes.  相似文献   

16.
Prenylated proteins contain either a 15-carbon farnesyl or a 20-carbon geranylgeranyl isoprenoid covalently attached via a thioether bond to a cysteine residue at or near their C terminus. As prenylated proteins comprise up to 2% of the total protein in eukaryotic cells, and the thioether bond is a stable modification, their degradation raises a metabolic challenge to cells. A lysosomal enzyme termed prenylcysteine lyase has been identified that cleaves prenylcysteines to cysteine and an unidentified isoprenoid product. Here we show that the isoprenoid product of prenylcysteine lyase is the C-1 aldehyde of the isoprenoid moiety (farnesal in the case of C-15). The enzyme requires molecular oxygen as a cosubstrate and utilizes a noncovalently bound flavin cofactor in an NAD(P)H-independent manner. Additionally, a stoichiometric amount of hydrogen peroxide is produced during the reaction. These surprising findings indicate that prenylcysteine lyase utilizes a novel oxidative mechanism to cleave thioether bonds and provide insight into the unique role this enzyme plays in the cellular metabolism of prenylcysteines.  相似文献   

17.
p21ras and several other ras-related GTP-binding proteins are modified post-translationally by addition of 15-carbon farnesyl or 20-carbon geranylgeranyl isoprenoids to cysteines within a conserved carboxyl-terminal sequence motif, Caa(M/S/L), where a is an aliphatic amino acid. Proteins ending with M or S are substrates for farnesyltransferase, whereas those ending with L are modified preferentially by geranylgeranyltransferase. We recently reported that GTP-binding proteins encoded by rab1B (GGCC), rab2 (GGCC), and rab5 (CCSN) are modified by 20-carbon isoprenyl derivatives of [3H]mevalonate when translated in vitro, despite having carboxyl-terminal sequences distinct from the Caa(M/S/L) motif. We now show that these proteins function as specific acceptors for geranylgeranyl in vitro and are modified by 20-carbon isoprenyl groups in COS cells metabolically labeled with [3H]mevalonate. Proteins encoded by rab4 and rab6, with yet another distinct carboxyl-terminal motif (xCxC), are similarly modified by 20-carbon isoprenoids in vitro and in vivo. The geranylgeranyl modification of rab5 protein (CCSN) is catalyzed by an enzyme in brain cytosol but not by a purified geranylgeranyltransferase that modifies GTP-binding proteins with the CaaL motif. Unlike the prenylation of proteins with Caa(M/S/L) termini, the prenylation of rab5 protein is not inhibited by a synthetic peptide based on its carboxyl-terminal sequence (TRNQCCSN). When cellular isoprenoid synthesis is blocked by treatment of cells with lovastatin, rab proteins that are normally localized in membranes of the endoplasmic reticulum, Golgi apparatus, and endosomes accumulate in the cytosol. This change in rab protein localization is reversed by providing cells with mevalonate. These findings suggest that geranylgeranyl modification underlies the ability of rab GTP-binding proteins to associate with intracellular membranes, where they are postulated to function as mediators of vesicular traffic.  相似文献   

18.
The enzyme geranylgeranyl diphosphate synthase (GGDPS) is believed to receive the substrate farnesyl diphosphate through one lipophilic channel and release the product geranylgeranyl diphosphate through another. Bisphosphonates with two isoprenoid chains positioned on the α-carbon have proven to be effective inhibitors of this enzyme. Now a new motif has been prepared with one isoprenoid chain on the α-carbon, a second included as a phosphonate ester, and the potential for a third at the α-carbon. The pivaloyloxymethyl prodrugs of several compounds based on this motif have been prepared and the resulting compounds have been tested for their ability to disrupt protein geranylgeranylation and induce cytotoxicity in myeloma cells. The initial biological studies reveal activity consistent with GGDPS inhibition, and demonstrate a structure–function relationship which is dependent on the nature of the alkyl group at the α-carbon.  相似文献   

19.
Farnesylation is a posttranslational lipid modification in which a 15-carbon farnesyl isoprenoid is linked via a thioether bond to specific cysteine residues of proteins in a reaction catalyzed by protein farnesyltransferase (FTase). We synthesized the benzyloxyisoprenyl pyrophosphate (BnPP) series of transferable farnesyl pyrophosphate (FPP) analogues (1a-e) to test the length dependence of the isoprenoid substrate on the FTase-catalyzed transfer of lipid to protein substrate. Kinetic analyses show that pyrophosphates 1a-e and geranyl pyrophosphate (GPP) transfer with a lower efficiency than FPP whereas geranylgeranyl pyrophosphate (GGPP) does not transfer at all. While a correlation was found between K(m) and analogue hydrophobicity and length, there was no correlation between k(cat) and these properties. Potential binding geometries of FPP, GPP, GGPP, and analogues 1a-e were examined by modeling the molecules into the active site of the FTase crystal structure. We found that analogue 1d displaces approximately the same volume of the active site as does FPP, whereas GPP and analogues 1a-c occupy lesser volumes and 1e occupies a slightly larger volume. Modeling also indicated that GGPP adopts a different conformation than the farnesyl chain of FPP, partially occluding the space occupied by the Ca(1)a(2)X peptide in the ternary X-ray crystal structure. Within the confines of the FTase pocket, the double bonds and branched methyl groups of the geranylgeranyl chain significantly restrict the number of possible conformations relative to the more flexible lipid chain of analogues 1a-e. The modeling results also provide a molecular explanation for the observation that an aromatic ring is a good isostere for the terminal isoprene of FPP.  相似文献   

20.
Post-translational modification by covalent attachment of isoprenoid lipids (prenylation) regulates the functions and biological activities of several proteins implicated in the oncogenic transformation and metastatic progression of cancer. The largest group of prenylated proteins contains a CAAX motif at the C-terminal that serves as a substrate for a series of post-translational modifications that convert these otherwise hydrophilic proteins to lipidated proteins, thus facilitating membrane association. C17orf37 (chromosome 17 open reading frame 37), also known as C35/Rdx12/MGC14832, located in the 17q12 amplicon, is overexpressed in human cancer, and its expression correlates with the migratory and invasive phenotype of cancer cells. Here we show that C17orf37 contains a functional CAAX motif and is post-translationally modified by protein geranylgeranyltransferase-I (GGTase-I). Geranylgeranylation of C17orf37 at the CAAX motif facilitates association of the protein to the inner leaflet of plasma membrane, enhances migratory phenotype of cells by inducing increased filopodia formation, and potentiates directional migration. A prenylation-deficient mutant of C17orf37 is functionally inactive and fails to trigger dissemination of tail vein-injected cells in a mouse model of metastasis. These findings demonstrate that prenylation is required for the function of the C17orf37 protein in cancer cells and imply that the post-translational modification may functionally regulate metastatic progression of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号