首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two morphs (ecotypes) of the marine snail Littorina saxatilis coexist along Galician exposed rocky shores. They hybridize, but gene flow is impeded by a partial prezygotic reproductive barrier, and we have earlier suggested that this is a case of incipient sympatric speciation. To assess the mechanisms of prezygotic reproductive isolation, we estimated deviations from random mating (sexual selection and sexual isolation) of sympatric snails in 13 localities on the shore, and performed mate choice experiments in the laboratory. We also investigated the microdistribution of both morphs over patches of barnacles and blue mussels in the hybridization zone. We used computer simulations to separate the mechanisms contributing to reproductive isolation. On the shores sampled, male–female pairs were strongly assortative both with respect to morphs (mean Yule's V = 0.77) and size (mean Pearson's r = 0.47). In the laboratory, males of both morphs mounted other snails and mated other males and juveniles at random. However, mature females of equal sizes mated assortatively with respect to morph. The two morphs were nonrandomly distributed over barnacle and mussel patches in the hybridization zone. Monte Carlo simulations showed that this microdistribution could explain about half the morph and size relationships in male–female pairs, while a simple rejection mechanism, rejecting the first 1–3 mates if they were of contrasting morphs, accounted for the remaining part of the reproductive isolation, and for parts of the size relationships found between mates. A size discriminant mate choice mechanism may also, to a lesser extent, contribute to the sexual isolation. Sexual selection was observed for female size (larger ones being favoured) and among certain morphs, but distinct biological mechanisms may cause these processes.  相似文献   

2.
The study of speciation in recent populations is essentially a study of the evolution of reproductive isolation mechanisms between sub-groups of a species. Prezygotic isolation can be of central importance to models of speciation, either being a consequence of reinforcement of assortative mating in hybrid zones, or a pleiotropic effect of morphological or behavioral adaptation to different environments. To suggest speciation by reinforcement between incipient species one must at least know that gene flow occurs, or have recently occurred, and that assortative mating has been established in the hybrid zone. In Galician populations of the marine snail Littorina saxatilis, two main morphs appear on the same shores, one on the upper-shore barnacle belt and the other in the lower-shore mussel belt. The two morphs overlap in distribution in the midshore where hybrids are found together with pure forms. Allozyme variation indicates that the two parental morphs share a common gene pool, although within shores, gene flow between morphs is less than gene flow within morphs. In this study, we observed mating behavior in the field, and we found that mating was not random in midshore sites, with a deficiency of heterotypic pairs. Habitat selection, assortative mating, and possibly sexual selection among females contributed to the partial reproductive isolation between the pure morphs. Sizes of mates were often positively correlated, in particular, in the upper shore, indicating size-assortative mating too. However, this seemed to be a consequence of nonrandom microdistributions of snails of different sizes. Because we also argue that the hybrid zone is of primary rather than secondary origin, this seems to be an example of sympatric reproductive isolation, either established by means of reinforcement or as a by-product to divergent selection acting on other characters.  相似文献   

3.
Galician exposed shore populations of the direct developing periwinkle Littorina saxatilis are strikingly polymorphic, with an ornamented and banded upper shore form and a smooth and unbanded lower shore form. Intermediates between the two pure forms occur in a narrow mid shore zone together with the parental forms. We have previously shown that the two pure forms share the same gene pool but that mating between them is non-random. This is due to a non-random microdistribution in the zone of overlap, and also to assortative mating. In this study we present data which show that intermediate (hybrid) females mate less often than pure females in micropatches dominated by either of the pure forms, but not in micropatches in which the two pure forms are equally common. Thus, sexual fitness in intermediate females depends on the frequency of both pure morphs. Furthermore, sexual selection against intermediate females also varies with the densities of snails within each micro patch. The biological mechanisms which may explain this particular reduction of female hybrid fitness are discussed. Assortative mating between the pure morphs is sometimes almost complete, while both morphs do not mate the intermediates assortatively. In the light of this, sexual selection against intermediate females may contribute considerably to restrict gene flow between the pure forms.  相似文献   

4.
Hull  S. L. 《Hydrobiologia》1998,378(1-3):79-88
Size assortative mating is a common invertebrate mating pattern and is usually accompanied by male and female sexual selection, and these three behaviours can contribute to reproductive isolation. Two distinct populations of the marine prosobranch Littorina saxatilis, H and M, occur within 15 m of each other on the same shore. Previous studies have demonstrated that these two forms have different reproductive strategies and that the rare hybrids between the two forms show evidence of reproductive dysfunction and hence are less fit than the assumed parental forms. In both populations, female shell height was shown to be a predictor of the number of embryos contained within the brood pouch. The mean shell height of the M population was significantly larger than that of the H population, and the M population matures at a larger shell size than the H population. The two populations show complete assortative mating to type in the field, and occupy different microhabitats on the same shore. Therefore, laboratory-based experiments were performed to determine if assortative mating was maintained in sympatry and also to determine the effect of population density on mate choice. The males of both populations showed sexual selection for female size, choosing to mate with females approximately 10% larger than themselves from an assortment of female sizes. The M population showed complete assortative mating to type, irrespective of the density of H and M females, whereas at low densities the H males did occasionally mate with M females. The role of assortative mating and reinforcement (due to natural selection acting against the less fit hybrids), in maintaining the partial reproductive barrier between the two populations is discussed.  相似文献   

5.
In order to estimate the three independent components of mating behaviour, sexual selection in females, sexual selection in males and mating pattern, we studied the distribution of shell colour morphs among mating pairs and between copulating and non-copulating snails in four subsamples of a natural population ofL. mariae. The colour of the shell, the sex and a qualitative estimate of age was recorded for every snail. We found sexual selection acting against one of the two commonest colours (yellow) among the young females. However, in males none of the eight shell colour morphs was favoured during matings. Male sexual choice or differences in female sexual activity may cause the sexual fitness disadvantage of yellow females. Moreover, individuals of different colour morphs did not mate at random, rather dissasortatively. A behavioural choice among shell colour morphs or a non-random microdistribution of the morphs may cause the departure from random mating in this population.  相似文献   

6.
Shell polymorphisms are widespread among those intertidal gastropods that lack a pelagic spreading stage. These polymorphisms may indicate diversifying selection in a heterogeneous habitat, but to do this the variation must be at least pardy inherited. Galician populations of Littorina saxatilis (Olivi) living in exposed rocky shores are highly polymorphic in several shell traits, e.g. ornamentation, banding and size. Mature snails of the upper-shore ridged and banded (RB) morph is, for example, often twice as large as mature individuals of the lower-shore smooth and unbanded (SU) morph of the same shore.
We investigated the hypothesis that lower-shore snails grow more slowly and that differences in growth rate were at least partly inherited and could be explained by diversifying selection. We released snails of different origin (upper, mid- and lower shore) and morph (RB, SU and hybrids) at different shore levels and compared their shell increment after one month of growth. We found that despite considerable variation among individuals and among replicate samples (together about 53% of the total variation), average rates of growth differed between morphs. RB snails both from the upper and mid-shores grew at a high rate at all shore levels, SU snails grew considerably less, and hybrids grew at intermediate rates, at all levels. Inherited difference among morphs explained about 34% of the total variation while effects of shore levels and the interaction morph x shore level explained only 5 and 7%, respectively. Thus a large part of the difference in growth rate leading to different adult sizes of the two morphs has probably evolved due to spatially varying selection favouring large sizes in upper-shore and small sizes in lower-shore environments.  相似文献   

7.
Two ecotypes of a marine intertidal snail (Littorina saxatilis), living at different microhabitats and shore levels, have evolved in sympatry and in parallel across the Galician rocky shore. These ecotypes differ in many traits (including size) due to differential adaptation. They meet, mate assortatively, and partially hybridize at the mid shore where the two microhabitats overlap. The partial sexual isolation observed is claimed to be a side‐effect of the size differences between ecotypes combined with a size assortative mating found in most populations of this species. We investigated this hypothesis using three complementary experimental approaches. First, we investigated which of the different shell variables contributed most to the variation in individual sexual isolation in the field by using two new statistics developed for that purpose: (1) pair sexual isolation and (2) ri, which is based on the Pearson correlation coefficient. We found that size is the most important trait explaining the sexual isolation and, in particular, the males appear to be the key sex contributing to sexual isolation. Second, we compared the size assortative mating between regions: exposed rocky shore populations from north‐westwern Spain (showing incomplete reproductive isolation due to size assortative mating) and protected Spanish and Swedish populations (showing size assortative mating but not reproductive isolation between ecomorphs). Most of the variation in size assortative mating between localities was significantly explained by the within‐population level of variation on size. Third, we performed a laboratory male choice experiment, which further suggested that the choice is made predominantly on the basis of size. These results confirm the mechanism proposed to explain the sexual isolation in the Galician hybrid zone and thus support this case as a putative example of parallel incipient speciation. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94 , 513–526.  相似文献   

8.
In many animals, body size plays a crucial role in mating success in the context of competition and preference for mates. Increasing evidence has shown that male mate preference can be size‐dependent and, therefore, an important driver of size‐assortative mating. To test this theory, mate choice experiments were performed during the three consecutive stages of mating behaviour, namely trail following, shell mounting and copulation, in the dioecious mangrove snail, Littoraria ardouiniana. These experiments identified two possible forms of size‐dependent male mate preference which could contribute to the formation of size‐assortative mating in these snails. Firstly, whereas small males were unselective, large males were selective and preferred to follow mucus trails laid by large females. Alternatively, the results can also be interpreted as all males were selective and adopted a mating strategy of selecting females similar to, or larger than, their own sizes. Both small and large males also copulated for longer with large than with small females, and this was more pronounced in large males. When two males encountered a female, they engaged in physical aggression, with the larger male excluding the smaller male from copulating with the female. This study, therefore, demonstrated that size‐dependent male mate preference may, along with male–male competition, play an important role in driving size‐assortative mating in these mangrove snails, and this may also be the case in other species that exhibit male mate choice.  相似文献   

9.
Two ecotypes of the rough periwinkle Littorina saxatilis occur at different shore levels, showing assortative mating for size and partial reproductive isolation when they meet at the mid-shore. This system represents a putative case of incomplete speciation in sympatry. Two processes contribute to the assortative mating: morph-specific microhabitat aggregation and mate choice. The estimation of mate choice coefficients in nature and a simulation of the aggregation effects on sexual isolation were used to disentangle these processes as well as to test alternative mechanisms of mate choice. Mate choice significantly increased the frequency of within-morph pairs and significantly decreased the frequency of between-morph pairs, whereas those pairs including at least one hybrid morph mated randomly. These results allow us to reject a discriminant mate choice and support a model of evolution of sexual isolation as a side-effect of size-assortative mating in a context of divergent natural selection for size in the population. This mechanism is more compatible with a model of incomplete by-product ecological speciation, as suggested by previous evidence.  相似文献   

10.
Theory predicts that morph ratios in heterostylous populations are governed by negative frequency-dependent selection typically resulting in equal morph ratios at equilibrium. Previous work on the distylous perennial herb Pulmonaria officinalis, however, showed asymmetric mating between floral morphs and a weak self-incompatibility system, with the long-styled morph (L-morph) producing significantly higher seed set following intramorph crosses and even selfing than the short-styled morph (S-morph), two aspects thought to affect female fecundity and morph-ratio variation. Here, we evaluated morph ratios and population size of all known P. officinalis populations in the northern part of Belgium. Morph ratios deviated significantly from 1:1 (range 0.09-1 L-morph frequency, mean = 0.58). Relative fecundity of the S-morph (i.e. mean seed set of the S-morph/mean seed set of the L-morph) was on average 0.73, was positively related to the frequency of the L-morph, and reached 1 (similar levels of female fecundity) at an average L-morph frequency of 0.66 in the population. As some small populations had the S-morph in majority, our results suggest that local morph ratios are influenced both by the relative fecundity of L- and S-morph individuals and by stochastic processes in small populations.  相似文献   

11.
Size relationships among pairing Gammarus were examined with reference to two hypotheses for sexual size dimorphism and assortative mating among aquatic Peracarida (Crustacea). The sizes of pairing and non-pairing animals were compared in different experimental conditions where the size of one or both sexes was controlled. The experimental results present a complex picture which suggests that both sexual selection and loading constraints are likely to play a role in determining mating decisions in these animals.Department of Adult & Continuing Education, University of Durham  相似文献   

12.
Assortative mating is a key aspect in the speciation process because it is important for both initial divergence and maintenance of distinct species. However, it remains a challenge to explain how assortative mating evolves when diverging populations are undergoing gene flow (e.g., during hybridization). Here I experimentally test how assortative mating is maintained with frequent gene flow between diverged head‐color morphs of the Gouldian finch (Erythrura gouldiae). Contrary to the predominant view on the development of sexual preferences in birds, cross‐fostered offspring did not imprint on the phenotype of their conspecific (red or black morphs) or heterospecific (Bengalese finch) foster parents. Instead, the mating preferences of F1 and F2 intermorph‐hybrids are consistent with inheritance on the Z chromosomes, which are also the location for genes controlling color expression and the genes causing low fitness of intermorph‐hybrids. Genetic associations between color signal and preference loci on the sex chromosomes may prevent recombination from breaking down these associations when the morphs interbreed, helping to maintain assortative mating in the face of gene flow. Although sex linkage of reproductively isolating traits is theoretically expected to promote speciation, social and ecological constraints may enforce frequent interbreeding between the morphs, thus preventing complete reproductive isolation.  相似文献   

13.
1. The effect of body size on the assortative mating and reproductive behaviour of the univoltine grasshopper Sphenarium purpurascens (Charpentier) was studied in Central Mexico. 2. Assortative mating by size was observed in the field. Evidence of positive assortative mating in relation to body size was found in laboratory experiments. Female fecundity and male success in contests were also correlated with body size. 3. Larger females had a higher number of eggs per pod. Larger males usually won fights and were able to take over females from other males, and to resist takeovers by other males while guarding. 4. Individuals of both sexes were observed copulating with more than one sexual partner in the field, suggesting polygamy. Male–male contests determined access to females, and males exhibited a postcopulatory prolonged mate-guarding behaviour lasting up to 18 days. 5. In a 2-year study, sex ratio was male-biased at the beginning of the reproductive season and decreased to 1:1 by the end of the season, suggesting that the population is protandrous. 6. The results of this study indicate that assortative mating results from male–male competition and female availability, and suggests that body size is a potential target of natural and sexual selection.  相似文献   

14.
In sexually polymorphic species, the morphs are maintained by frequency-dependent selection through disassortative mating. In heterodichogamous populations in which disassortative mating occurs between the protandrous and protogynous morphs, a decrease in female fitness in one morph is hypothesized to drive sexual specialization in the other morph, resulting in dimorphic populations. We test these ideas in a population of the heterodichogamous species, Acer opalus . We assessed both prospective gender of individuals in terms of their allocations and actual parentage using microsatellites; we found that most matings in A. opalus occur disassortatively. We demonstrate that the protogynous morph is maintained by frequency-dependent selection, but that maintenance of males versus protandrous individuals depends on their relative siring success, which changes yearly. Seeds produced later in the reproductive season were smaller than those produced earlier; this should compromise reproduction through ovules in protandrous individuals, rendering them male biased in gender. Time-dependent gender and paternity analyses indicate that the sexual morphs are specialized in their earlier sexual functions, mediated by the seasonal decrease in seed size. Our results confirm that mating patterns are context-dependent and change seasonally, suggesting that sexual specialization can be driven by seasonal effects on fitness gained through one of the two sexual functions.  相似文献   

15.
In Galician rocky shores two ecotypes of the snail L. saxatilis can be found in sympatry. A ridged and banded ecotype (RB-morph) and a smooth and unbanded ecotype (SU-morph) overlap in midshore with the production of some hybrids. The distinct morphs mate assortatively and there is evidence of a partial reproductive barrier between them. This sexual isolation is caused by a nonrandom microdistribution and mate choice behaviour. Mucus trail-following, movement rate and aggregation behaviour were studied to determine their roles in the mating behaviour and sexual isolation of this species. Morph-specific mucus trail-following could not, in our experiments, explain either of these two processes. The reasons for the aggregation of morphs were investigated by Monte Carlo simulations of data from natural populations, which showed that size aggregation (refuge sizes fit different sized morphs differently) could explain only about 36% of the morph aggregation in adult snails. In the laboratory, morph aggregation was still present, and simulations suggested that size aggregation was the possible explanation. Thus, morph aggregation in Galician L. saxatilis has to be explained also by other causes in addition to size aggregation. These may be a combination of contrasting preferences for barnacle and mussel patches in the two morphs, and possibly longer copulation and pair formation time with similar sized snails of the same morph. Thus aggregation behaviour, but not trail-following, contributes to incipient reproductive isolation and perhaps sympatric speciation in Galician L. saxatilis populations.  相似文献   

16.
Recent developments in sexual selection theory suggest that on their own, mate preferences can promote the maintenance of sexual trait diversity. However, how mate preferences constrain the permissiveness of sexual trait diversity in different environmental regimes remains an open question. Here, we examine how a range of mate choice parameters affect the permissiveness of sexual trait polymorphism under several selection regimes. We use the null model of sexual selection and show that environments with strong assortative mating significantly increase the permissiveness of sexual trait polymorphism. We show that for a given change in mate choice parameters, the permissiveness of polymorphism changes more in environments with strong natural selection on sexual traits than in environments with weak selection. Sets of nearly stable polymorphic populations with weak assortative mating are more likely to show accidental divergence in sexual traits than sets of populations with strong assortative mating. The permissiveness of sexual trait polymorphism critically depends upon particular combinations of natural selection and mate choice parameters.  相似文献   

17.
Formation of partially reproductively isolated ecotypes in the rough periwinkle, Littorina saxatilis , may be a case of incipient nonallopatric ecological speciation. To better understand the dynamics of ecotype formation, its timescale, driving forces and evolutionary consequences, we developed a spatially explicit, individual-based model incorporating relevant ecological, spatial and mate selection data for Swedish L. saxatilis . We explore the impact of bounded hybrid superiority, ecological scenarios and mate selection systems on ecotype formation, gene flow and the evolution of prezygotic isolation. Our model shows that ecotypes are expected to form rapidly in parapatry under conditions applicable to Swedish L. saxatilis and may proceed to speciation. However, evolution of nonrandom mating had complex behaviour. Ecotype evolution was inhibited by pre-existing mating preferences, but facilitated by the evolution of novel preferences. While in many scenarios positive assortative mating reduced gene flow between ecotypes, in others negative assortative mating arose, preferences were lost after ecotype formation, preferences were confined to one ecotype or the ancestral ecotype became extinct through sexual selection. Bounded hybrid superiority (as observed in nature) enhanced ecotype formation but increased gene flow. Our results highlight that ecotype formation and speciation are distinct processes: factors that contribute to ecotype formation can be detrimental to speciation and vice versa. The complex interactions observed between local adaptation and nonrandom mating imply that generalization from data is unreliable without quantitative theory for speciation.  相似文献   

18.
Two rocky shore ecotypes of Littorina saxatilis from north-west Spain live at different shore levels and habitats and have developed an incomplete reproductive isolation through size assortative mating. The system is regarded as an example of sympatric ecological speciation. Several experiments have indicated that different evolutionary forces (migration, assortative mating and habitat-dependent selection) play a role in maintaining the polymorphism. However, an assessment of the combined contributions of these forces supporting the observed pattern in the wild is absent. A model selection procedure using computer simulations was used to investigate the contribution of the different evolutionary forces towards the maintenance of the polymorphism. The agreement between alternative models and experimental estimates for a number of parameters was quantified by a least square method. The results of the analysis show that the fittest evolutionary model for the observed polymorphism is characterized by a high gene flow, intermediate-high reproductive isolation between ecotypes, and a moderate to strong selection against the nonresident ecotypes on each shore level. In addition, a substantial number of additive loci contributing to the selected trait and a narrow hybrid definition with respect to the phenotype are scenarios that better explain the polymorphism, whereas the ecotype fitnesses at the mid-shore, the level of phenotypic plasticity, and environmental effects are not key parameters.  相似文献   

19.
ABSTRACT.   Sexual size dimorphism (SSD) may be due to sexual and natural selection, but identifying specific mechanisms that generate such dimorphism in a species is difficult. I examined SSD in Carolina Wrens ( Thryothorus ludovicianus ) by examining (1) the degree of SSD in the population and between pairs using five morphometrics, (2) assortative mating patterns based on size and age, and (3) relationships between size and longevity. Analysis revealed that males were significantly larger than females in all body measurements. For example, mass, bill, and wing measurements yielded a canonical variable that permitted separation of the sexes and linear classification functions correctly determined the sex of 95% (238/250) of all wrens measured. No evidence was found to suggest that SSD was related to resource partitioning. However, assortative mating trends based on morphometrics (e.g., wing length), positive associations between longevity and morphometrics (e.g., wing length in females and body size in males), and intense male-male contests for territorial resources year-round provide evidence that sexual selection may contribute to SSD in Carolina Wrens.  相似文献   

20.
Summary Assortative mating by size is a common mating pattern that can be generated by several different behavioural mechanisms, with different evolutionary implications. Assortative mating is typically associated with sexual selection and has been regarded as an attribute of populations, species, mating systems or even higher order taxa. In most animal groups, however, appropriate analyses of assortative mating at these different levels are lacking and the causes and forms of assortative mating are poorly understood. Here, we analyse 45 different population level estimates of assortative mating and non-random mating by size in seven confamiliar species of water striders that share a common mating system. A hierarchical comparative analysis shows that virtually all the variance within the clade occurs among samples within species. We then employ meta-analysis to estimate the overall strength of assortative mating, to determine the form of assortative mating and to further assess potential differences among species as well as the probable causes of assortative mating in this group of insects. We found overall weak but highly significant positive assortative mating. We show that analyses of the degree of heteroscedasticity in plots of male versus female size are critical, since the evolutionary implications of true and apparent assortative mating differ widely and conclude that the positive assortative mating observed in water striders was of the true rather than the apparent form. Further, within samples, mating individuals were significantly larger than non-mating individuals in both males and females. All of these non-random mating patterns were consistent among species and we conclude that weak positive assortative mating by size is a general characteristic of those water strider species that share this mating system. We use our results to illustrate the importance of distinguishing between different forms of assortative mating, to discriminate between various behavioural causes of assortative mating and to assess potential sources of interpopulational variance in estimates of assortative mating. Finally, we discuss the value of using meta-analytic techniques for detecting overall patterns in multiple studies of non-random mating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号