首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Despite the essential requirement of telomeric DNA for genome stability, the length of telomere tracts between species substantially differs, raising the question of the minimal length of telomeric DNA necessary for proper function. Here, we address this question using a hypomorphic allele of the telomerase catalytic subunit, TERT. We show that although this construct partially restored telomerase activity to a tert mutant, telomeres continued to shorten over several generations, ultimately stabilizing at a bimodal size distribution. Telomeres on two chromosome arms were maintained at a length of 1 kb, while the remaining telomeres were maintained at 400 bp. The longest telomeres identified in this background were also significantly longer in wild-type populations, suggesting cis-acting elements on these arms either promote telomerase processivity or recruitment. Genetically disrupting telomerase processivity in this background resulted in immediate lethality. Thus, telomeres of 400 bp are both necessary and sufficient for Arabidopsis viability. As this length is the estimated minimal length for t-loop formation, our data suggest that telomeres long enough to form a t-loop constitute the minimal functional length.  相似文献   

2.
Telomere length is maintained in species-specific equilibrium primarily through a competition between telomerase-mediated elongation and the loss of terminal DNA through the end-replication problem. Recombinational activities are also capable of both lengthening and shortening telomeres. Here we demonstrate that elongated telomeres in Arabidopsis Ku70 mutants reach a new length set point after three generations. Restoration of wild-type Ku70 in these mutants leads to discrete telomere-shortening events consistent with telomere rapid deletion (TRD). These findings imply that the longer telomere length set point is achieved through competition between overactive telomerase and TRD. Surprisingly, in the absence of telomerase, a subset of elongated telomeres was further lengthened, suggesting that in this background a mechanism of telomerase-independent lengthening of telomeres operates. Unexpectedly, we also found that plants possessing wild-type-length telomeres exhibit TRD when telomerase is inactivated. TRD is stochastic, and all chromosome ends appear to be equally susceptible. The frequency of TRD decreases as telomeres shorten; telomeres less than 2 kb in length are rarely subject to TRD. We conclude that TRD functions as a potent force to regulate telomere length in Arabidopsis.  相似文献   

3.
Pot1 (protection of telomeres 1) is a single-stranded telomere binding protein that is essential for chromosome end protection and telomere length homeostasis. Arabidopsis encodes two Pot1-like proteins, dubbed AtPot1 and AtPot2. Here we show that telomeres in transgenic plants expressing a truncated AtPot1 allele lacking the N-terminal oligonucleotide/oligosaccharide binding fold (P1DeltaN) are 1 to 1.5 kb shorter than in the wild type, suggesting that AtPot1 contributes to the positive regulation of telomere length control. In contrast, telomere length is unperturbed in plants expressing the analogous region of AtPot2. A strikingly different phenotype is observed in plants overexpressing the AtPot2 N terminus (P2DeltaC) but not the corresponding region in AtPot1. Although bulk telomeres in P2DeltaC mutants are 1 to 2 kb shorter than in the wild type, these plants resemble late-generation telomerase-deficient mutants with severe growth defects, sterility, and massive genome instability, including bridged chromosomes and aneuploidy. The genome instability associated with P2DeltaC mutants implies that AtPot2 contributes to chromosome end protection. Thus, Arabidopsis has evolved two Pot genes that function differently in telomere biology. These findings provide unanticipated information about the evolution of single-stranded telomere binding proteins.  相似文献   

4.
We report here the results of a telomere length analysis in four male Chinese hamsters by quantitative fluorescence in situ hybridization (Q-FISH). We were able to measure telomere length of 64 (73%) of 88 Chinese hamster telomeres. We could not measure telomere length in chromosome 10 or in the short arms of chromosomes 5, 6, 7 and 8 because of the overlaps between the interstitial and terminal telomeric signals. Our analysis in the 73% of Chinese hamster telomeres indicate that their average length is approximately 38 kb. Therefore, Chinese hamster telomeres are comparable in length to mouse telomeres, but are much longer than human telomeres. Similar to previous Q-FISH studies on human and mouse chromosomes, our results indicate that individual Chinese hamster chromosomes may have specific telomere lengths, suggesting that chromosome-specific factors may be involved in telomere length regulation.  相似文献   

5.
Telomere homeostasis, a process that is essential for the maintenance of chromosome integrity, is regulated by telomerase and a collection of associated proteins. By mass spectrometry we have identified a new telomeric protein encoded by the AtWHY1 (Arabidopsis thaliana Whirly 1) gene in Arabidopsis. AtWHY1 specifically binds the single-stranded plant telomeric DNA sequences, but not double-stranded telomeric DNA. To gain insights into the function of AtWHY1 in telomere biogenesis, we have identified two Arabidopsis lines harboring T-DNA insertions in AtWHY1. These lines exhibit neither growth nor developmental defects. However, AtWHY1-deficient plants show a steady increase in the length of telomere tracts over generations. This telomere elongation is correlated with a significant increase in telomerase activity. On the contrary, transgenic plants expressing AtWHY1 show a decreased telomerase activity and shortened telomeres. The evidence presented here indicates that AtWHY1 is a new family of telomere end-binding proteins that plays a role in regulating telomere-length homeostasis in Arabidopsis.  相似文献   

6.
The loss of telomere repeats has been causally linked to in vitro replicative senescence of human diploid fibroblasts (HDFs). In order to study the mechanism(s) by which telomere shortening signals cell senescence, we analyzed the telomere length at specific chromosome ends at cumulative population doublings in polyclonal and clonal HDFs by quantitative fluorescence in situ hybridization. The rate of telomere shortening at individual telomeres varied between 50 and 150 bp per population doubling and short telomeres with an estimated 1-2 kb of telomere repeats accumulated prior to senescence. The average telomere length in specific chromosome ends was remarkably similar between clones. However, some exceptions with individual telomeres measuring 0.5-1 kb were observed. In the fibroblast clones, the onset of replicative senescence was significantly correlated with the mean telomere fluorescence but, strikingly, not with chromosomes with the shortest telomere length. The accumulation of short telomeres in late passages of cultured HDFs is compatible with selection of cells on the basis of telomere length and limited recombination between telomeres prior to senescence.  相似文献   

7.
Telomere length can be maintained by telomerase or by a recombination-based pathway. Because individual telomeres in cells using the recombination-based pathway of telomere maintenance appear to periodically become extremely short, cells using this pathway to maintain telomeres may be faced with a continuous state of crisis. We expressed telomerase in a human cell line that uses the recombination-based pathway of telomere maintenance to test whether telomerase would prevent telomeres from becoming critically short and examine the effects that this might have on the recombination-based pathway of telomere maintenance. In these cells, telomerase maintains the length of the shortest telomeres. In some cases, the long heterogeneous telomeres are completely lost, and the cells now permanently contain short telomeres after only 40 population doublings. This corresponds to a telomere reduction rate of 500 base pairs/population doubling, a rate that is much faster than expected for normal telomere shortening but is consistent with the rapid telomere deletion events observed in cells using the recombination-based pathway of telomere maintenance (Murnane, J. P., Sabatier, L., Marder, B. A., and Morgan, W. F. (1994) EMBO J. 13, 4953-4962). We also observed reductions in the fraction of cells containing alternative lengthening of telomere-associated promyelocytic leukemia bodies and extrachromosomal telomere repeats; however, no alterations in the rate of sister chromatid exchange were observed. Our results demonstrate that human cells using the recombination-based pathway of telomere maintenance retain factors required for telomerase to maintain telomeres and that once the telomerase-based pathway of telomere length regulation is engaged, recombination-based elongation of telomeres can be functionally inhibited.  相似文献   

8.
We have identified a ku80 mutant of Arabidopsis and show that telomerase is needed to generate the longer telomeres observed in this mutant. Telomeres are specialized nucleoprotein structures at the ends of chromosomes that permit cells to distinguish chromosome ends from double-strand breaks, thus preventing chromosome fusion events. Ku80 deficiency results in the lengthening of telomeres, a phenotype also seen in an Arabidopsis ku70 mutant. Furthermore, homogeneous populations of ku80 mutant cells show a steady increase in the length of telomere tracts, which reach an equilibrium length and then stabilize. In contrast to that in mammals, Ku80 deficiency in Arabidopsis cells does not cause end-to-end fusion of chromosomes. This telomere lengthening is dependent on the presence of telomerase, although it is not attributable to a significant increase in telomerase activity per se. These results demonstrate the essential role of the Ku80 protein as a negative regulator of telomerase function in plant cells.  相似文献   

9.
Telomere length is an important parameter of telomere function since it determines number of aspects controlling chromosome stability and cell division. Since telomeres shorten with age in humans and premature aging syndromes are often associated with the presence of short telomeres, it has been proposed that telomere length is also an important parameter for organismal aging. How mean telomere lengths are determined in humans remains puzzling, but it is clear that genetic and epigenetic factors appear to be of great importance. Experimental evidence obtained from many different organisms has provided the basis for a widely accepted counting mechanism based on a negative feedback loop for telomerase activity at the level of individual telomeres. In addition, recent studies in both normal and pathological contexts point to the existence of chromosome-specific mechanisms of telomere length regulation determining a telomere length profile, which is inherited and maintained throughout life. In this review, we recapitulate the available data, propose a synthetic view of telomere length control mechanisms in humans and suggest new approaches to test current hypotheses.  相似文献   

10.
To learn more about the mechanism of de novo telomere synthesis, we have characterized the sequence and structure of newly synthesized telomeres from Euplotes crassus. E. crassus is a particularly useful organism for studying telomere synthesis because millions of telomeres are made in each cell at a well-defined time during the sexual stage of the life cycle. These newly synthesized telomeres are approximately 50 bp longer than mature macronuclear telomeres. We have investigated the structure of the newly synthesized telomeres and have found that they are much more heterogeneous in length than mature telomeres. Most of the heterogeneity is present on the G-rich strand, indicating that the length of this strand is rather loosely controlled. In contrast, the length of the C-rich strand is much less variable, suggesting that synthesis of this strand is the more precisely regulated step in telomere addition. The G-rich strand exhibits variability both in the total number of G4T4 repeats and in the identity of the terminal nucleotide. In most cases, the G-rich strnd extends beyond the C-rich strand to leave a 3' overhang. While the size of this overhang is variable, the median length is 10 nucleotides. This research provides the first detailed picture of a newly synthesized telomere and has allowed us to formulate a model to describe the various steps involved in de novo telomere synthesis.  相似文献   

11.
Telomeres, the nucleoprotein complexes at the ends of eukaryotic chromosomes, are maintained at a species-specific equilibrium length. Arabidopsis thaliana is a self-fertilizing plant and different geographical isolates or ecotypes show differing telomere-lengths. We have exploited this telomere-length polymorphism between Arabidopsis ecotypes to investigate the genetic regulation of telomere length by analysing telomere lengths in 16 different inter-ecotype crosses between plants with differing telomere sizes. With two exceptions, the inter-ecotype hybrid plants present a new telomere-length set point, intermediate between that of the two parents. A regulation mechanism thus shortens the longer and lengthens the shorter telomeres.  相似文献   

12.
Telomere processing in Euplotes.   总被引:4,自引:2,他引:2       下载免费PDF全文
In Euplotes crassus millions of telomeres are synthesized during the sexual phase of the life cycle. Since these newly synthesized telomeres are longer than normal macronuclear telomeres, they must be trimmed to the mature size. We have examined the timing and mechanism of this trimming step. We have shown that a sudden decrease in telomere length takes place at a specific time during macronuclear development. The decrease in telomere length is not caused by incomplete replication of the most terminal DNA sequences; rather it is the result of an active processing event that occurs independently of DNA replication. The developmentally regulated telomere shortening that takes place in Euplotes is reminiscent of the sudden reductions in telomere length which have been observed in other eukaryotes.  相似文献   

13.
R J Craven  T D Petes 《Genetics》1999,152(4):1531-1541
In the yeast Saccharomyces cerevisiae, chromosomes terminate with approximately 400 bp of a simple repeat poly(TG(1-3)). Based on the arrangement of subtelomeric X and Y' repeats, two types of yeast telomeres exist, those with both X and Y' (Y' telomeres) and those with only X (X telomeres). Mutations that result in abnormally short or abnormally long poly(TG(1-3)) tracts have been previously identified. In this study, we investigated telomere length in strains with two classes of mutations, one that resulted in short poly(TG(1-3)) tracts (tel1) and one that resulted in elongated tracts (pif1, rap1-17, rif1, or rif2). In the tel1 pif1 strain, Y' telomeres had about the same length as those in tel1 strains and X telomeres had lengths intermediate between those in tel1 and pif1 strains. Strains with either the tel1 rap1-17 or tel1 rif2 genotypes had short tracts for all chromosome ends examined, demonstrating that the telomere elongation characteristic of rap1-17 and rif2 strains is Tel1p-dependent. In strains of the tel1 rif1 or tel1 rif1 rif2 genotypes, telomeres with Y' repeats had short terminal tracts, whereas most of the X telomeres had long terminal tracts. These results demonstrate that the regulation of telomere length is different for X and Y' telomeres.  相似文献   

14.
Control of human telomere length by TRF1 and TRF2   总被引:52,自引:0,他引:52       下载免费PDF全文
Telomere length in human cells is controlled by a homeostasis mechanism that involves telomerase and the negative regulator of telomere length, TRF1 (TTAGGG repeat binding factor 1). Here we report that TRF2, a TRF1-related protein previously implicated in protection of chromosome ends, is a second negative regulator of telomere length. Overexpression of TRF2 results in the progressive shortening of telomere length, similar to the phenotype observed with TRF1. However, while induction of TRF1 could be maintained over more than 300 population doublings and resulted in stable, short telomeres, the expression of exogenous TRF2 was extinguished and the telomeres eventually regained their original length. Consistent with their role in measuring telomere length, indirect immunofluorescence indicated that both TRF1 and TRF2 bind to duplex telomeric DNA in vivo and are more abundant on telomeres with long TTAGGG repeat tracts. Neither TRF1 nor TRF2 affected the expression level of telomerase. Furthermore, the presence of TRF1 or TRF2 on a short linear telomerase substrate did not inhibit the enzymatic activity of telomerase in vitro. These findings are consistent with the recently proposed t loop model of telomere length homeostasis in which telomerase-dependent telomere elongation is blocked by sequestration of the 3' telomere terminus in TRF1- and TRF2-induced telomeric loops.  相似文献   

15.
In yeast, as in humans, telomere length varies among individuals and is controlled by multiple loci. In a quest to define the extent of variation in telomere length, we screened 112 wild-type Saccharomyces sensu stricto isolates. We found extensive telomere length variation in S. paradoxus isolates. This phenotype correlated with their geographic origin: European strains were observed to have extremely short telomeres (<150 bp), whereas American isolates had telomeres approximately three times as long (>400 bp). Insertions of a URA3 gene near telomeres allowed accurate analysis of individual telomere lengths and telomere position effect (TPE). Crossing the American and European strains resulted in F1 spores with a continuum of telomere lengths consistent with what would be predicted if many quantitative trait loci (QTLs) were involved in length maintenance. Variation in TPE is similarly quantitative but only weakly correlated with telomere length. Genotyping F1 segregants indicated several QTLs associated with telomere length and silencing variation. These QTLs include likely candidate genes but also map to regions where there are no known genes involved in telomeric properties. We detected transgressive segregation for both phenotypes. We validated by reciprocal hemizygosity that YKU80 and TLC1 are telomere-length QTLs in the two S. paradoxus subpopulations. Furthermore, we propose that sequence divergence within the Ku heterodimer generates negative epistasis within one of the allelic combinations (American-YKU70 and European-YKU80) resulting in very short telomeres.  相似文献   

16.
DNA replication in Saccharomyces cerevisiae proceeds according to a temporal program. We have investigated the role of the telomere-binding Ku complex in specifying late replication of telomere-proximal sequences. Genome-wide analysis shows that regions extending up to 80 kb from telomeres replicate abnormally early in a yku70 mutant. We find that Ku does not appear to regulate replication time by binding replication origins directly, nor is its effect on telomere replication timing mediated by histone tail acetylation. We show that Ku instead regulates replication timing through its effect on telomere length, because deletion of the telomerase regulator Pif1 largely reverses the short telomere defect of a yku70 mutant and simultaneously rescues its replication timing defect. Consistent with this conclusion, deleting the genome integrity component Elg1 partially rescued both length and replication timing of yku70 telomeres. Telomere length-mediated control of replication timing requires the TG(1-3) repeat-counting component Rif1, because a rif1 mutant replicates telomeric regions early, despite having extended TG(1-3) tracts. Overall, our results suggest that the effect of Ku on telomere replication timing results from its impact on TG(1-3) repeat length and support a model in which Rif1 measures telomere repeat length to ensure that telomere replication timing is correctly programmed.  相似文献   

17.
Telomere maintenance is thought to be essential for immortalization of human cancer cells to compensate for the loss of DNA from the ends of chromosomes and to prevent chromosome fusion. We have investigated telomere dynamics in the telomerase-positive squamous cell carcinoma cell line SCC-61 by marking the ends of chromosomes with integrated plasmid sequences so that changes in the length of individual telomeres could be monitored. Despite having very short telomeres, SCC-61 has a relatively stable genome and few telomere associations. The marked telomeres in different SCC-61 clones have similar mean lengths which show little change with increasing time in culture. Thus, each marked telomere is maintained at a specific length, which we term the equilibrium mean length (EML). The Gaussian distribution in the length of the marked telomeres demonstrates that telomeres continuously fluctuate in length. Consistent with this observation, the mean lengths of the marked telomere in subclones of these cell lines initially differ, but then gradually return to the EML of the original clone with increasing time in culture. The analysis of a clone with two marked telomeres demonstrated that changes in telomere length can occur on each marked telomere independently or coordinately on both telomeres. These results suggest that the short telomeres in many tumor cell lines do not result from an inability to properly maintain telomeres at a specific length.  相似文献   

18.
Yang SW  Kim SK  Kim WT 《The Plant cell》2004,16(12):3370-3385
Telomeres are specialized nucleoprotein complexes that are essential for preserving chromosome integrity in eukaryotic cells. Several potential telomere binding proteins have recently been identified in higher plants, but nothing is known about their in vivo functions. We previously identified NgTRF1 as a double-stranded telomeric repeat binding factor in tobacco (Nicotiana tabacum) and here show that the binding of NgTRF1 to telomeric repeats inhibits telomerase-mediated telomere extension. To determine whether NgTRF1 is involved in telomere length regulation, we established transgenic tobacco BY-2 cell lines that overexpress or suppress NgTRF1. Pulsed-field gel electrophoresis showed that 35S::NgTRF1 cells exhibited significantly shortened telomeres (45 to 10 kb), whereas 35S::antisense-NgTRF1 cells contained longer telomeres (80 to 25 kb) compared with wild-type and 35S::GUS control cells (65 to 15 kb), indicating that telomere length inversely correlates with the amount of functional NgTRF1 in BY-2 cells. 35S::NgTRF1 cells with shorter telomeres displayed a progressive reduction in cell viability and stopped dividing after 25 to 40 successive rounds of 12-d batch subculture, in sharp contrast with control cells, which have an unlimited capacity for division. Internucleosomal DNA fragmentation, mitochondrial release of cytochrome c, and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling positive nuclei were detected in 35S::NgTRF1 cells during prolonged subculture, indicating that enhanced cell death was attributable to an apoptosis-like mechanism. 35S::antisense-NgTRF1 cells containing low levels of NgTRF1 also exhibited a progressive decrease in cell viability and apoptotic cell death, but less so than did 35S::NgTRF1 cells, suggesting that the level of NgTRF1 is critically associated with cell viability. Taken together, these data indicate that perturbation of NgTRF1 expression results in changes in telomere length and stability, which in turn causes apoptotic cell death in transgenic BY-2 cells. These results are discussed in light of the suggestion that NgTRF1 is involved in the mechanism by which telomere length and stability are maintained. We further suggest that the structural stability of telomeres, in addition to length maintenance, is essential for their function and for the immortality of BY-2 cells.  相似文献   

19.
20.
Tankyrase promotes telomere elongation in human cells   总被引:44,自引:0,他引:44  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号