首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

We characterized the runoff and erosion from a volcanic soil in an Austrocedrus chilensis forest affected by a wildfire, and we evaluated the effects of a mitigation treatment.

Methods

Rainfall simulations were performed in the unburned and burned forest, with and without vegetation cover, and under a mitigation treatment.

Results

After the wildfire, the mean infiltration rate decreased from 100 mm?h?1 in unburned soils to 51 and 64 mm?h?1 in the burned with and without litter and vegetation cover, respectively. The fast establishment of bryophytes accelerated the recovery of soil stability. Sediment production was negligible in the control plots (4.4 g?m?2); meanwhile in the burned plots, it was 118.7 g?m?2 and increased to 1026.1 g?m?2 in the burned and bare plots. Total C and N losses in the control plots were negligible, while in the burned and bare plots the organic C and total N removed were 98.25 and 1.64 g?m2, respectively. The effect of mitigation treatment was efficient in reducing the runoff, but it did not affect the sediment production.

Conclusions

These fertile volcanic soils promoted the recovery of vegetation in a short time after the wildfire, diminishing the risk of erosion.  相似文献   

2.

Aims

The Cerrado, a South American savanna, is considered a priority for conservation. In this case study, we assessed soil feeding activity as a way to improve understanding of the ecosystem functioning, in order to support and refine conservation strategies.

Methods

Soil feeding activity was assessed using the bait-lamina method under different environmental conditions: in the dry and rainy seasons, in burned and unburned areas, and under native and invasive grasses.

Results

Feeding activity was significantly reduced after fire, but recovered to pre-fire levels with the rains. Activity increased significantly during the rainy season in both areas, being more pronounced in the unburned area. The highest feeding activity was observed under the invasive grass (Melinis minutiflora). Feeding activity declined with soil depth and was affected by season and fire.

Conclusions

Seasonality was the most important factor affecting the feeding activity of soil organisms, followed by the fire history and the extant vegetation. Although this method does not allow distinguishing between feeding activity of different organisms, it can provide valuable insights into differences in soil functioning due to changes in environmental conditions.  相似文献   

3.

Background and Aims

Ecosystem recovery following disturbance requires the reestablishment of key soil biogeochemical processes. This long-term 7 year study describes effects of organic material, moisture, and vegetation on soil microbial community development in the Athabasca Oil Sands Region of Western Canada.

Methods

Phospholipid fatty acid analysis was used to characterize and compare soil microbial community composition and development on reclaimed and natural forest sites. Additionally, we conducted a laboratory moisture manipulation experiment.

Results

The use of forest floor material as an organic amendment resulted in a greater percent cover of upland vegetation and placed the soil microbial community on a faster trajectory towards ecosystem recovery than did the use of a peat amendment. The soil microbial composition within the reclaimed sites exhibited a greater response to changes in moisture than did the soil microbial communities from natural sites.

Conclusion

Our research shows that the use of native organic amendment (forest floor) on reclaimed sites, and the associated establishment of native vegetation promote the development of soil microbial communities more similar to those found on natural forest sites. Additionally, soil microbial communities from natural sites may be more resistant to changes in soil moisture than those found on reclaimed sites.  相似文献   

4.

Aims

To gain a better understanding of how rapidly microbial communities respond to different magnitudes of perturbation that mimic minor or catastrophic disturbances.

Methods

Two montane sites in the western Cascade Mountains of Oregon with adjacent areas of forest and meadow vegetation were studied. A reciprocal transplant experiment evaluated both minor (soil cores remaining in the same vegetation type) or more severe disturbance (soil cores transferred to a different vegetation type). The biomass and composition of the bacterial and fungal communities were measured for 2 years following the establishment of the experiment.

Results

Minor disturbance (coring) had little impact on microbial biomass but transferring between vegetation type showed greater fungal biomass in soil incubated in the forest environment. The composition of bacterial communities was not influenced by coring but responded strongly to transfers between vegetation sites, changing to reflect their new environment after 2 years. Fungal community composition responded somewhat to coring, probably from disrupting mycorrhizal fungal hyphae, but more strongly to being transferred to a new environment.

Conclusions

The response of the microbial community to major disturbance was rapid, showing shifts reflective of their new environment within 2 years, suggesting that microbial communities have the capacity to quickly adjust to catastrophic disturbances.  相似文献   

5.

Aims

Wilderness and other natural areas are threatened by large-scale disturbances (e.g., wildfire), air pollution, climate change, exotic diseases or pests, and a combination of these stress factors (i.e., stress complexes). Linville Gorge Wilderness (LGW) is one example of a high elevation wilderness in the southern Appalachian region that has been subject to stress complexes including chronic acidic deposition and several wildfires, varying in intensity and extent. Soils in LGW are inherently acidic with low base cation concentrations and decades of acidic deposition have contributed to low pH, based saturation, and Ca:Al ratio. We hypothesized that wildfires that occurred in LGW followed by liming burned areas would accelerate the restoration of acidic, nutrient depleted soils. Because soils at LGW had extremely low concentrations of exchangeable Ca2+ and Mg2+ dolomitic lime was applied to further boost these cations. We evaluated the effectiveness of dolomitic lime application in restoring exchangeable Ca2+ and Mg2+ and subsequently increasing pH and Ca:Al ratio of soils and making Ca and Mg available to recovering vegetation.

Methods

Five treatment areas were established: severely burned twice (2000 & 2007) with dolomitic lime application (2xSBL); moderately burned twice with lime application (2xMBL); severely burned twice, unlimed (2xSB); moderately burned once (2000), unlimed (1xMB); and a reference area (REF; unburned, unlimed). In 2008 and 2009, we measured overstory, understory, and ground-layer vegetation; forest floor mass and nutrients; and soil and soil solution chemistry within each treatment area.

Results

All wildfire burned sites experienced substantial overstory mortality. However, understory biomass doubled between sample years on the most recently burned sites due to the rapid regrowth of ericaceous shrubs and prolific sprouting of deciduous trees. Burning followed by lime application (2xSBL and 2xMBL) significantly increased shallow soil solution NO3-N, but we found no soil solution NO3-N response to burning alone (2xSB and 1xMB). Surface soil base saturation and exchangeable Ca2+ were significantly affected by liming; Ca2+ concentrations were greater on 2xMBL and 2xSBL than 2xSB, 1xMB and REF. There was a smaller difference due to moderate burning along with greater soil Ca2+ on 1xMB compared to REF, but no difference between 2xSB and REF. Surface and subsurface soil exchangeable Al3+ were lower on 2xSBL than 2xSB, 2xMBL, 1xMB, and REF. Liming decreased soil acidity somewhat as surface soil pH was higher on the two burned sites with lime (pH?=?3.8) compared to 2xSB without lime (pH?=?3.6).

Conclusions

Liming resulted in decreased soil Al3+ on 2xSBL coupled with increased soil Ca2+ on both 2xSBL and 2xMBL, which improved soil Ca/Al ratios. However, the soil Ca/Al ratio response was transitory, as exchangeable Al3+ increased and Ca/Al ratio decreased over time. Higher lime application rates may be necessary to obtain a substantial and longer-term improvement of cation-depleted soils at LGW.  相似文献   

6.

Aims

The extent to which the spatial and temporal patterns of soil microbial and available nutrient pools hold across different Mediterranean forest types is unclear impeding the generalization needed to consolidate our understanding on Mediterranean ecosystems functioning.

Methods

We explored the response of soil microbial, total, organic and inorganic extractable nutrient pools (C, N and P) to common sources of variability, namely habitat (tree cover), soil depth and season (summer drought), in three contrasting Mediterranean forest types: a Quercus ilex open woodland, a mixed Q. suber and Q. canariensis woodland and a Pinus sylvestris forest.

Results

Soil microbial and available nutrient pools were larger beneath tree cover than in open areas in both oak woodlands whereas the opposite trend was found in the pine forest. The greatest differences in soil properties between habitat types were found in the open woodland. Season (drought effect) was the main driver of variability in the pine forest and was related to a loss of microbial nutrients (up to 75 % loss of Nmic and Pmic) and an increase in microbial ratios (Cmic/Nmic, Cmic/Pmic) from Spring to Summer in all sites. Nutrient pools consistently decreased with soil depth, with microbial C, N and P in the top soil being up to 208 %, 215 % and 274 % larger than in the deeper soil respectively.

Conclusions

Similar patterns of variation emerged in relation to season and soil depth across the three forest types whereas the direction and magnitude of the habitat (tree cover) effect was site-dependent, possibly related to the differences in tree species composition and forest structure, and thus in the quality and distribution of the litter input.  相似文献   

7.

Aims

Natural disturbances leave long-term legacies that vary among landscapes and ecosystem types, and which become integral parts of successional processes at a given location. As humans change land use, not only are immediate post-disturbance patterns altered, but the processes of recovery themselves are likely altered by the disturbance. We assessed whether short-term effects on soil and vegetation that distinguish wildfire from forest harvest persist over 60 years after disturbance in boreal black spruce forests, or post-disturbance processes of recovery promote convergence of the two disturbance types.

Methods

Using semi-variograms and Principal Coordinates of Neighbour Matrices, we formulated precise, a priori spatial hypotheses to discriminate spatial signatures following wildfire and forest harvest both over the short- (16–18 years) and long-term (62–98 years).

Results

Both over the short- and the long-term, wildfire generated a wide spectrum of responses in soil and vegetation properties at different spatial scales, while logging produced simpler patterns corresponding to the regular linear pattern of harvest trails and to pre-disturbance ericaceous shrub patches that persist between trails.

Conclusions

Disturbance by harvest simplified spatial patterns associated with soil and vegetation properties compared to patterns associated with natural disturbance by fire. The observed differences in these patterns between disturbance types persist for over 60 years. Ecological management strategies inspired by natural disturbances should aim to increase the complexity of patterns associated with harvest interventions.  相似文献   

8.

Background and aims

Natural abundance of the stable nitrogen (N) isotope 15N can elucidate shifts in plant N acquisition and ecosystem N cycling following disturbance events. This study examined the potential relationship between foliar δ15N and depth of plant N acquisition (surface organic vs. mineral soil) and nitrification as conifer stands develop following stand-replacing wildfire.

Methods

We measured foliar δ15N along an 18-site chronosequence of jack pine (Pinus banksiana) stands, 1 to 72 years in age post-wildfire. Foliar δ15N was compared to total δ15N of the organic (Oe + Oa) and mineral (0–15 cm) soil horizons, and organic horizon N mineralization and nitrification as functions of total mineralization.

Results

Foliar δ15N declined with stand age, yet wildfire effects were heterogeneous. Jack pine seedlings on burned, mineral soil patches in the youngest stand were significantly more enriched than those on unburned, organic patches (P?=?0.007). High foliar values in the youngest stands relative to mineral-horizon δ15N indicate that nitrification also likely contributed to seedling enrichment.

Conclusions

Our results suggest jack pine seedlings on burned patches obtain N from the mineral soil with potentially high nitrification rates, whereas seedlings on unburned patches and increasingly N-limited, mature jack pine acquire relatively more N from organic horizons.  相似文献   

9.

Background and Aims

Mediterranean forests are vulnerable to numerous threats including wildfires due to a combination of climatic factors and increased urbanization. In addition, increased temperatures and summer drought lead to increased risk of forest fires as a result of climate change. This may have important consequences for C dynamics and balance in these ecosystems. Soil respiration was measured over 2 successive years in Holm oak (Quercus ilex subsp. ballota; Qi); Pyrenean Oak (Quercus pyrenaica Willd; Qp); and Scots pine (Pinus sylvestris L.; Ps) forest stands located in the area surrounding Madrid (Spain), to assess the long term effects of wildfires on C efflux from the soil, soil properties, and the role of soil temperature and soil moisture in the variation of soil respiration.

Methods

Soil respiration, soil temperature, soil moisture, fine root mass, microbial biomass, biological and chemical soil parameters were compared between non burned (NB) and burned sites (B).

Results

The annual C losses through soil respiration from NB sites in Qi, Qp and Ps were 790, 1010, 1380 gCm?2?yr?1, respectively, with the B sites emitting 43 %, 22 % and 11 % less in Qi, Qp and Ps respectively. Soil microclimate changed with higher soil temperature and lower soil moisture in B sites after fire. Exchangeable cations and the pH also decreased. The total SOC stocks were not significantly altered, but 6–8 years after wildfires, there was still measurably lower fine root and microbial biomass, while SOC quality changed, indicated by lower the C/N ratio and the labile carbon and a relative increase in refractory SOC forms, which resulted in lower Q10 values.

Conclusions

We found long term effects of wildfires on the physical, chemical and biological soil characteristics, which in turn affected soil respiration. The response of soil respiration to temperature was controlled by moisture and changed with ecosystem type, season, and between B and NB sites. Lower post-burn Q10 integrated the loss of roots and microbial biomass, change in SOC quality and a decrease in soil moisture.  相似文献   

10.
11.
Measurement of soil microbial biomass and abundance offers a means of assessing the response of all microbial populations to changes in the soil environment after a fire. We examined the effects of wildfire on microbial biomass C and N, and abundance of bacteria and fungi 2 months after a fire in a pine plantation. Soil organic carbon (Corg), total nitrogen (Ntot), and electrical conductivity (EC) increased following the fire. In terms of microbial abundance, the overall results showed that burned forest soils had the most bacteria and fungi. Microbial biomass C and N from soil in the burned forest were not significantly different from their unburned forest counterparts. However, microbial indices indicated that fire affects soil microbial community structure by modifying the environmental conditions. The results also suggested that low-intensity fire promotes microorganism functional activity and improves the chemical characteristics of soils under humid climatic conditions.  相似文献   

12.

Aims

To study the relationship between vegetation development and changes in the soil microbial community during primary succession in a volcanic desert, we examined successional changes in microbial respiration, biomass, and community structure in a volcanic desert on Mount Fuji, Japan.

Methods

Soil samples were collected from six successional stages, including isolated island-like plant communities. We measured microbial respiration and performed phospholipid fatty acid (PLFA) analysis, denaturing gradient gel electrophoresis (DGGE) analysis, and community-level physiological profile (CLPP) analysis using Biolog microplates.

Results

Microbial biomass (total PLFA content) increased during plant succession and was positively correlated with soil properties including soil water and soil organic matter (SOM) contents. The microbial respiration rate per unit biomass decreased during succession. Nonmetric multidimensional scaling based on the PLFA, DGGE, and CLPP analyses showed a substantial shift in microbial community structure as a result of initial colonization by the pioneer herb Polygonum cuspidatum and subsequent colonization by Larix kaempferi into central areas of island-like communities. These shifts in microbial community structure probably reflect differences in SOM quality.

Conclusions

Microbial succession in the volcanic desert of Mt. Fuji was initially strongly affected by colonization of the pioneer herbaceous plant (P. cuspidatum) associated with substantial changes in the soil environment. Subsequent changes in vegetation, including the invasion of shrubs such as L. kaempferi, also affected the microbial community structure.  相似文献   

13.
M. Lavoie  M. C. Mack 《Biogeochemistry》2012,107(1-3):227-239
In this study we characterized spatial heterogeneity of soil carbon and nitrogen pools, soil moisture, and soil pH of the first 15?cm of the soil profile; depth of the organic horizon; forest floor covers; and understory vegetation abundances in three sites (1999, 1987 and 1920 wildfires) of a boreal forest chronosequence of interior Alaska. We also investigated the cross-dependence between understory vegetation distribution and soil characteristics. Our results showed higher microbial respiration rates and microbial biomass in the oldest site and greater net N mineralization rates in the mid-successional site. Although spatial heterogeneity was absent at the scale studied for the majority of soil variables (60%), understory vegetation abundances and forest floor cover, spatial heterogeneity decreased with time after fire for the depth of organic horizon, soil microbial biomass, N mineralization rates and feathermoss cover. Our results also showed that increasing time after fire decreased the number of correlations between understory vegetation and soil characteristics while it increased between forest floor covers and soil characteristics. Overall, our study suggest that fire initially creates a patchy mosaic of forest floor cover, from fire hot spots, where high intensity burning exposes mineral soil, to practically unburned areas with intact mosses and lichens. As time since fire passes, forest floor cover and soil characteristics tend to become more uniform as understory species fill in severely burned areas.  相似文献   

14.

Background and aims

The types of natural forests have long been suggested to shape below-ground microbial communities in forest ecosystem. However, detailed information on the impressionable bacterial groups and the potential mechanisms of these influences are still missing. The present study aims to deepen the current understanding on the soil microbial communities under four typical forest types in Northeast Asia, and to reveal the environmental factors driving the abundance, diversity and composition of soil bacterial communities.

Methods

Four forest types from Changbai Nature Reserve, representing mixed conifer-broadleaf forest and its natural secondary forest, evergreen coniferous forest, and deciduous coniferous forest were selected for this study. Namely, Broadleaf-Korean pine mixed forest (BLKP), secondary Poplar-Birch forest (PB), Spruce-Fir forest (SF), and Larch forest (LA), respectively. Soil bacterial community was analyzed using bar-coded pyrosequencing. Nonmetric multidimensional scaling (NMDS) was used to illustrate the clustering of different samples based on both Bray-Curtis distances and UniFrac distances. The relationship between environmental variables and the overall community structure was analyzed using the Mantel test.

Results

The two mixed conifer-broadleaf forests (BLKP and PB) displayed higher total soil nutrients (organic carbon, nitrogen, and phosphorus) and soil pH, but a lower C/N ratio as compared to the two coniferous forests (SF and LA). The mixed conifer-broadleaf forests had higher alpha-diversity and had distinct bacterial communities from the coniferous forests. Soil texture and pH were found as the principle factors for shaping soil bacterial diversity and community composition. The two mixed conifer-broadleaf forests were associated with higher proportion of Acidobacteria, Verrucomicrobia, Bacteroidetes, and Chloroflexi. While the SF and LA forests were dominated by Proteobacteria and Gemmatimonadetes.

Conclusions

Different natural forest type each selects for distinct microbial communities beneath them, with mixed conifer-broadleaf forests being associated with the low-activity bacterial groups, and the coniferous forests being dominated by the so-called high-activity members. The differentiation of soil bacterial communities in natural forests are presumably mediated by the differentiation in terms of soil properties, and could be partially explained by the copiotroph/oligotroph ecological classification model and non-random co-occurrence patterns.  相似文献   

15.
Changes in the soil bacterial community of a coniferous forest were analyzed to assess microbial responses to wildfire. Soil samples were collected from three different depths in lightly and severely burned areas, as well as a nearby unburned control area. Direct bacterial counts ranged from 3.3-22.6 x 10(8) cells/(g.soil). In surface soil, direct bacterial counts of unburned soil exhibited a great degree of fluctuation. Those in lightly burned soil changed less, but no significant variation was observed in the severely burned soil. The fluctuations of direct bacterial count were less in the middle and deep soil layers. The structure of the bacterial community was analyzed via the fluorescent in situ hybridization method. The number of bacteria detected with the eubacteria-targeted probe out of the direct bacterial count varied from 30.3 to 84.7%, and these ratios were generally higher in the burned soils than in the unburned control soils. In the surface unburned soil, the ratios of alpha-, beta- and gamma-proteobacteria, Cytophaga-Flavobacterium group, and other eubacteria groups to total eubacteria were 9.9, 10.6, 15.5, 9.0, and 55.0%, respectively, and these ratios were relatively stable. The ratios of alpha-, beta- and gamma-proteobacteria, and Cytophaga-Flavobacterium group to total eubacteria increased immediately after the wildfire, and the other eubacterial proportions decreased in the surface and middle layer soils. By way of contrast, the composition of the 5 groups of eubacteria in the subsurface soil exhibited no significant fluctuations during the entire period. The total bacterial population and bacterial community structure disturbed by wildfire soon began to recover, and original levels seemed to be restored 3 months after the wildfire.  相似文献   

16.

Background and aims

Knowledge related to extent of differing soil N forms and N transformation rates in subtropical southern China is severely limited. Accordingly, the purpose of this study was to investigate if and how tree species of different foliage types (coniferous, deciduous, and evergreen broadleaved) influence N forms and microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) content as well as gross N transformation rates in the organic and mineral soils of three distinct subtropical forests in China.

Methods

Chloroform fumigation extraction was used to determine MBC and MBN content while 15N-isotope dilution techniques were used to measure gross N transformation rates. Canonical correspondence analysis (CCA) was used to quantify relationships between soil chemical characteristics and changes in soil N transformation rates.

Results

Soil N forms, MBC and MBN content, and N transformation rates were found to be significantly different between tree species. Deciduous forest soil exhibited the highest N transformation rates. Soil N transformation rates were closely associated with total soil C and N and MBC and MBN content.

Conclusions

Soil substrate quantity and soil microbial activity play a more important role in soil N transformation processes than does soil quality in China’s subtropical forests. Tree species type should therefore be taken into account when trying to determine ecosystem N cycling.  相似文献   

17.
After a wildfire in a Pinus halepensis Mill. forest, in northern Greece, the burned trees were logged and the logs were removed either by mechanical or animal traction. The effects of logging and log removal methods on soil and vegetation recovery were evaluated comparing the logged sites with a burned but unlogged site and the unburned forest. Fire and logging did not affect the soil pH and caused only a short-term reduction in organic matter content. Two years after the fire, the highest rates of soil loss were observed in the logged area where mules were used for log removal. Soil moisture showed some differences between treatments during the first year after fire but then values were similar. Logging and particularly the use of skidders for log removal caused an initial increase in the amount of exposed bare ground but later when vegetation cover increased differences were minimized. The main woody species showed a species specific response to the treatments and while seeder species were favoured in the unlogged sites the same was not true for the respouters. In general, the growth and survival of pine seedlings was not affected by treatments.  相似文献   

18.
Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the western US. Alternative forest and fire treatments based on managed wildfire—a regime in which fires are allowed to burn naturally and only suppressed under defined management conditions—offer a potential strategy to ameliorate the effects of fire suppression. Understanding the long-term effects of this strategy on vegetation, water, and forest resilience is increasingly important as the use of managed wildfire becomes more widely accepted. The Illilouette Creek Basin in Yosemite National Park has experienced 40 years of managed wildfire, reducing forest cover by 22%, and increasing meadow areas by 200% and shrublands by 24%. Statistical upscaling of 3300 soil moisture observations made since 2013 suggests that large increases in wetness occurred in sites where fire caused transitions from forests to dense meadows. The runoff ratio (ratio of annual runoff to precipitation) from the basin appears to be increasing or stable since 1973, compared to declines in runoff ratio for nearby, unburned watersheds. Managed wildfire appears to increase landscape heterogeneity, and likely improves resilience to disturbances, such as fire and drought, although more detailed analysis of fire effects on basin-scale hydrology is needed.  相似文献   

19.

Background and aims

Under chronically elevated N deposition, N retention mainly occur at high soil C-to-N ratio. This may be mediated through soil microbes, such as ectomycorrhizal (EM) fungi, saprotrophic fungi and bacteria, and the aim of this study was to evaluate the relationship between soil microbes and forest floor C-to-N ratios.

Methods

Soil samples from 33 Norway spruce (Picea abies (L.) H. Karst) forests in Denmark and southern Sweden in a forest floor C-to-N ratio gradient (ranging from 14 to 35) were analysed regarding the content of phospholipid fatty acids (PLFAs) to estimate their soil microbial community composition and the relative biomasses of different microbial groups. The relation of EM biomass to total fungal biomass was estimated as the loss of the fungal PLFA 18:2ω6,9 during incubation of soils and the production of EM mycelia was estimated using fungal in-growth mesh bags. The soil microbial variables were correlated to forest floor C-to-N ratio, NO 3 - leaching, soil pH and stand age.

Results

Fungal proportions of microbial biomass, EM to total fungi and EM mycelial production were all positively related to C-to-N ratio, while NO 3 - leaching was negatively related to C-to-N ratio.

Conclusions

Both EM and saprotrophic fungi change with forest floor C-to-N ratios and appear to play a central role in N retention in forest soil. A better understanding of the mechanisms behind this process may be revealed if the role of recalcitrant fungal metabolites for N retention (and soil C sequestration) can be identified. Research along this line deserves further studies.  相似文献   

20.

Aims

Soil respiration in forest plantations can be greatly affected by management practices such as irrigation. In northwest China, soil water is usually a limiting factor for the development of forest plantations. This study aims to examine the effects of irrigation intensity on soil respiration from three poplar clone plantations in this arid area.

Methods

The experiment included three poplar clones subjected to three irrigation intensities (without, low and high). Soil respiration was measured using a Li-6400-09 chamber during the growing season in 2007.

Results

Mean soil respiration rates were 2.92, 4.74 and 3.49 μmol m?2 s?1 for control, low and high irrigation treatments, respectively. Soil respiration decreased once soil water content was below a lower (14.8 %) or above an upper (26.2 %) threshold. When soil water content ranged from 14.8 % to 26.2 %, soil respiration increased and correlated with soil temperature. Fine root also played a role in the significant differences in soil CO2 efflux among the three treatments. Furthermore, the three poplar hybrid clones responded differently to irrigation regarding fine root production and soil CO2 efflux.

Conclusions

Irrigation intensity had a strong impact on soil respiration of the three poplar clone plantations, which was mainly because fine root biomass and microbial activities were greatly influenced by soil water conditions. Our results suggest that irrigation management is a main factor controlling soil carbon dynamics in forest plantation in arid regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号