首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Community structure and dynamics can be influenced by resource transfers between ecosystems, yet little is known about how boundary structure determines both the magnitude of exchanges and their effects on recipient and donor communities. Aquatic and terrestrial ecosystems are often linked by resource fluxes and riparian vegetation is commonly affected by anthropogenic alterations to land use or river hydrological regime. I investigated whether shrubs at the freshwater–terrestrial interface alter the supply, distribution and importance of aquatic prey resources to terrestrial consumers. Shrubs were predicted to alter the larval community composition of aquatic insects and the emergence of winged adults, thus affecting aquatic prey subsidies to terrestrial consumers. In addition, shrubs were hypothesized to alter the microclimatic suitability of the riparian zone for adult aquatic insects, act as a physical barrier to their dispersal and affect terrestrial community composition, particularly the abundance and type of predators that could benefit from the aquatic prey resource. Stable isotope dietary analyses and a survey of shrub‐dominated and open grassland riparian habitats revealed that larval densities of aquatic insects (EPTM: Ephemeroptera, Plecoptera, Trichoptera and Megaloptera) were higher in shrub than grassland habitats; however, reduced emergence and lateral dispersal in shrub areas led to lower densities of adults. The temperature and relative humidity of the riparian zone did not differ between the habitats. Ground‐active terrestrial invertebrate communities had a higher proportion of cursorial spiders in grassland, coinciding with greater abundances of aquatic prey. Aquatic prey contribution to cursorial spider diet matched adult aquatic insect abundances. Overall, riparian shrubs reduced the magnitude, or at least altered the timing, of cross‐ecosystem subsidy supply, distribution and use by consumers through mechanisms operating in both the aquatic and terrestrial ecosystems. Thus, the structure of ecosystem boundaries has complex effects on the strength of biological interactions between adjacent systems.  相似文献   

2.
Carbon and nitrogen transfer from a desert stream to riparian predators   总被引:4,自引:0,他引:4  
Adult aquatic insects emerging from streams may be a significant source of energy for terrestrial predators inhabiting riparian zones. In this study, we use natural abundance delta(13)C and delta(15)N values and an isotopic (15)N tracer addition to quantify the flow of carbon and nitrogen from aquatic to terrestrial food webs via emerging aquatic insects. We continuously dripped labeled (15)N-NH(4) for 6 weeks into Sycamore Creek, a Sonoran desert stream in the Tonto National Forest (central Arizona) and traced the flow of tracer (15)N from the stream into spiders living in the riparian zone. After correcting for natural abundance delta(15)N, we used isotopic mixing models to calculate the proportion of (15)N from emerging aquatic insects incorporated into spider biomass. Natural abundance delta(13)C values indicate that orb-web weaving spiders inhabiting riparian vegetation along the stream channel obtain almost 100% of their carbon from instream sources, whereas ground-dwelling hunting spiders obtain on average 68% of their carbon from instream sources. During the 6-week period of the (15)N tracer addition, orb-web weaving spiders obtained on average 39% of their nitrogen from emerging aquatic insects, whereas spider species hunting on the ground obtained on average 25% of their nitrogen from emerging aquatic insects. To determine if stream subsidies might be influencing the spatial distribution of terrestrial predators, we measured the biomass, abundance and diversity of spiders along a gradient from the active stream channel to a distance of 50 m into the upland using pitfall traps and timed sweep net samples. Spider abundance, biomass and richness were highest within the active stream channel but decreased more than three-fold 25 m from the wetted stream margin. Changes in structural complexity of vegetation, ground cover or terrestrial prey abundance could not account for patterns in spider distributions, however nutrient and energy subsidies from the stream could explain elevated spider numbers and richness within the active stream channel and riparian zone of Sycamore Creek.  相似文献   

3.
Many ecosystems are linked to their adjacent ecosystems by movements of organisms. For instance, aquatic and terrestrial ecosystems are linked via emerging aquatic insects that serve as prey for terrestrial consumers. However, the role of these organisms in returning recycled carbon to the ecosystem from which it originated is not well known. This is due to the fact that values of carbon isotope signatures from terrestrial leaves and aquatic resources are usually similar and hence results of isotope mixing models need to be considered with caution. We overcame this problem by adding isotopically distinct terrestrial particulate organic carbon (tPOC) as a tracer to the experimental sides of two lakes that were divided in two equal halves with plastic curtains. We focused on aquatic insect larvae (Chironomidae) that fed on maize Zea mays leaves experimentally added to the lakes, and subsequently became prey for terrestrial predators (spiders) after emergence. The carbon isotope values of Chironomidae and spiders were significantly elevated in the lake treatment sides as compared to reference sides, whereas the values of all autochthonous resources were not affected by maize additions. Estimates from stable isotope mixing models indicated a low but demonstrable contribution of maize leaves to the diet of Chironomidae. Overlap between the isotope values of alder leaves, the major natural tPOC source, and autochthonous resources prevented a reliable quantification of allochthony of Chironomidae. However, we qualitatively demonstrated the flow of terrestrial particulate organic carbon to lakes, as leaf fall, and back to terrestrial surroundings via emerging insects. This ‘boomerang’ carbon flux between land and lakes blurs the distinction between autochthonous and allochthonous carbon sources.  相似文献   

4.
5.
We examined the relationship between body size of the riparian spider Nephila clavata and the contribution of allochthonous (aquatic insects) and autochthonous (terrestrial insects) sources to its diet using stable isotope analysis. During the study period from July to September, the body size of the females increased remarkably (about 60-fold) but that of males remained small. The biomass of both aquatic and terrestrial insects trapped on the spider webs increased with spider size, with the biomass of the former ranging between 30 and 70% of that of the terrestrial insects. The average relative contribution of aquatic insects to the diet of the spiders, calculated from δ13C values, was 40–50% in spiders in the early juvenile and juvenile stages, 35% in adult males and 4% in adult females. There was a significant negative relationship between the relative contribution of aquatic insects and body size of the female spiders. We conclude that aquatic insects might be an important seasonal dietary subsidy for small spiders and that these allochthonous subsidies may facilitate the growth of riparian spiders, which may in turn enable the spiders to feed on larger prey.  相似文献   

6.
Aim We compiled data on prey utilization of spiders at a global scale to better understand the relationship between current climate or net primary production (NPP) and diet breadth, evenness and composition in spiders. We test whether the productivity and the diversity–climatic‐stability (DCS) hypotheses focusing on diversity patterns may also explain global patterns in prey utilization by web‐building and cursorial spiders. Location A global dataset of 95 data points from semi‐natural and natural terrestrial habitats spanning 41.3° S to 56.1° N. Methods We collected data on spider prey (29 groups, mostly order‐level invertebrate taxa) through extensive literature research to identify the relationship between climatic conditions and NPP and spider diets based on 66 studies of prey composition in 82 spider species. Results The number of prey groups in spider diets was positively related to NPP, after accounting for differences in sampling effort in the original studies. In general, diet breadth was significantly higher for spider species in tropical environments. Prey individuals in spider diets were more evenly distributed among different prey groups in warmer environments with lower fluctuations in precipitation. Collembola and other spiders were more common prey for spiders with a cursorial hunting mode. Myriapoda and Collembola were more common prey in cooler climates with more stable precipitation, whereas Isoptera, Lepidoptera, Psocoptera and Coleoptera showed the opposite pattern. Main conclusions The positive relationship between diet breadth and NPP and the negative relationship between prey evenness and seasonality in precipitation support the productivity and the DCS hypotheses, respectively. This effect on global patterns of invertebrate predator–prey interactions suggests that trophic interactions between spiders and their prey are sensitive to climatic conditions. Climatic conditions may not only affect spider community composition, but also considerably alter the functional role of these abundant invertebrate predators in terrestrial ecosystems.  相似文献   

7.
1. Aquatic resource fluxes from streams can provide significant subsidies for riparian consumers. Because aquatic resource fluxes can be highly variable in space and time, the subsidy efficiency (i.e. transfer to the recipient food web) is controlled by the short‐term aggregative response of riparian consumers. 2. Field manipulations of stream‐derived invertebrate prey subsidies were used to examine specific aggregative responses of ground‐dwelling arthropods to riverine subsidy pulses in a braided‐river (Tagliamento River, NE Italy). Subsidy manipulation comprised short‐term reductions of natural stream‐derived subsidies and increased subsidies of stream‐derived invertebrate prey during four seasons. 3. We hypothesised that specific aggregative responses of riparian arthropods depend on their specialisation on aquatic insects which was inferred from stable isotope analysis. Natural riverine subsidy sources including aquatic insect emergence and surface‐drifting organisms were quantified. 4. Arthropods responded significantly with a reduction in abundance by 51%, at reduced subsidies and an increase by 110% at increased subsidies, when averaged over all seasons. Different arthropod taxa responded differently to subsidy manipulations in relation to their specialisation on aquatic subsidies: ground beetles with a diet consisting predominantly of aquatic insects responded only to subsidy reductions, indicating that their local abundance was not limited by natural stream‐derived subsidies; lycosid spiders with a partly aquatic diet showed no significant response; and ants, although relying on a terrestrial diet, responded positively to added stream‐derived invertebrate prey, indicating that stranding of surface‐drifting terrestrial invertebrates represented an important subsidy pathway. 5. Ground beetles and lycosid spiders were seasonally separated in their use of aquatic subsidies. Results indicate that the life‐history characteristics of riparian consumers can control the subsidy efficiency for the recipient community. By the effective uptake of pulsed riverine‐derived subsidies, riparian arthropods can enhance the transfer of riverine food sources to the riparian food web.  相似文献   

8.
9.
Cross‐ecosystem subsidies move substantial amounts of nutrients between ecosystems. Emergent aquatic insects are a particularly important prey source for riparian songbirds but may also move aquatic contaminants, such as mercury (Hg), to riparian food webs. While many studies focus on species that eat primarily emergent aquatic insects, we instead study riparian songbirds with flexible foraging strategies, exploiting both aquatic and terrestrial prey sources. The goal in this study is to trace reliance on aquatic prey sources and correlate it to Hg concentrations in common riparian arachnids (Families Tetragnathidae, Opiliones, and Salticidae) and songbirds (Common Yellowthroat Geothlypis trichas, Spotted Towhee Pipilo maculatus, Swainson''s Thrush Catharus ustulatus, Song Sparrow Melospiza melodia, and Yellow Warbler Setophaga petechia). We used stable isotopes of δ13C and δ15N and Bayesian mixing models in MixSIAR to determine the reliance of riparian predators on aquatic prey sources. Using mixed effects models, we found that arachnid families varied in their reliance on aquatic prey sources. While songbird species varied in their reliance on aquatic prey sources, songbirds sampled earlier in the season consistently relied more on aquatic prey sources than those sampled later in the season. For both arachnids and songbirds, we found a positive correlation between the amount of the aquatic prey source in their diet and their Hg concentrations. While the seasonal pulse of aquatic prey to terrestrial ecosystems is an important source of nutrients to riparian species, our results show that aquatic prey sources are linked with higher Hg exposure. For songbirds, reliance on aquatic prey sources early in the breeding season (and subsequent higher Hg exposure) coincides with timing of egg laying and development, both of which may be impacted by Hg exposure.  相似文献   

10.
A variety of organisms mediate river–terrestrial linkages through spatial subsidies. However, most empirical studies have classified organisms rather broadly (e.g., by functional group or taxonomic family) and have dismissed species-level linkages at the interface of ecosystems. Here, we show how allochthonous resource use varies among taxonomically similar species of ground beetles (family Carabidae) across seasons (June–September). We investigated seasonal shifts in the distribution of five beetle species and their dietary responses to spatial subsidies (emerging aquatic insects) in a Japanese braided river. Despite their taxonomic closeness, the ground beetles showed species-specific responses to spatial subsidies, and beetle distribution patterns tended to coincide with their diets. Overall, 1–56% of ground beetle diets were derived from aquatic prey. One genus (Bembidion spp.) mainly consumed aquatic prey, while three species fed primarily on terrestrial prey across all seasons. However, one species (Lithochlaenius noguchii) showed shifts in its diet from aquatic to terrestrial prey according to subsidy availability. The observed variation in allochthonous resource use was likely related to species-specific foraging modes, physiological tolerance to dry conditions, and interspecific competition. Our findings suggest that considering species-specific interactions is necessary to fully understand cross-system interactions and recipient food-web dynamics.  相似文献   

11.
We analyzed the food source of riparian spiders in a middle reach of the Chikuma River, Japan, by using stable isotope ratios of carbon and nitrogen. The carbon and nitrogen isotope ratios of attached algae were higher than those of terrestrial plants, reflecting a large carbon isotope fractionation in terrestrial plants and a difference in nitrogen sources. The carbon isotope ratios of terrestrial insects were similar to those of the terrestrial plants, and the ratios of aquatic insects were scattered between those of the terrestrial plants and the attached algae. The carbon and nitrogen isotope ratios of spiders were intermediate between those of the terrestrial and aquatic insects. The two-source mixing model using the carbon isotope ratio showed that the web-building spiders utilized both the terrestrial and aquatic insects, with large contribution by the aquatic insects (54% on average with a maximum of 92% among spiders taxa collected in each zone), in the riparian area in a middle reach of the Chikuma River. The large contribution of the aquatic insects was often observed for the spiders collected near river channel (<5m) and for the horizontal web-building spiders collected across the riparian area. The relative contribution of the aquatic insects might be related with food availability (distance from river channel) and spiders food preference reflected in their web types (horizontal vs. vertical). Our results showed that organic materials produced in the river channel, in the riparian area, and in the terrestrial area surrounding the riparian area were mixed at the carnivorous trophic level of riparian spiders.  相似文献   

12.
Alterations to river flow conditions have wide impacts on riparian organisms in terms of behavior and biomass. However, little is known about natural flood impacts on prey use and individual growth of riparian predators. Using stable carbon isotope analysis, we investigated flood impacts on aquatic-prey use and the size structure of an orb-web spider, Nephila clavata, during 3 years under different flood conditions in a black locust forest in the middle reaches of the Chikuma River. Large floods depressed aquatic-prey abundance, but did not affect terrestrial-prey abundance in the riparian forest. Consequently, spider growth was stunted after large floods. Spider body size was positively correlated with the body sizes of both aquatic and terrestrial insects in spider webs, where terrestrial insects were significantly larger than aquatic insects. The δ13C of aquatic insects was about 8‰ higher than that of terrestrial insects, and the δ13C of both insect groups did not vary significantly between months or among years. A negative relationship was found between body size and δ13C in spiders under different subsidies levels. Our results showed that flow regime altered spider growth through changes in aquatic subsidies level, but not aquatic-prey use by the spiders due to relative body sizes of predators and prey. Changes in relative body sizes of predator and prey may be an important factor in understanding nutrients, materials, and energy flows in aquatic and terrestrial linkages in the context of flow regime.  相似文献   

13.
1. Changes in one prey species' density can indirectly affect the abundance of another prey species if a shared predator eats both species. Sometimes, indirect effects occur when prey straddle habitats, including when riparian predator populations grow in response to emergent aquatic insects and increase predation on terrestrial prey. However, predators may largely switch to aquatic insects or become satiated, reducing predation on terrestrial prey. 2. To determine the net indirect effect of aquatic insects on terrestrial arthropods via generalist spider predators, a field experiment was conducted mimicking midge influx and a wolf spider numerical response inside enclosures near an Icelandic lake. Lab mesocosms were also used to assess per capita rates of spider predation u nder differing levels of midge abundance. 3. Midges always decreased sentinel prey predation, but this effect increased with predator density. When midges were absent, predation increased 30% at a high spider density, but predation was equal between spider treatments when midges were present. In situ arthropods showed no effect of midge or spider treatments, although non‐significant abundance patterns were observed congruent with sentinel prey results. 4. In lab mesocosms, prey survivorship increased ≥50% where midges were present and rapidly saturated; the addition of 5, 20, 50, and 100 midges equivalently reduced spider predation, supporting predator distraction rather than satiation as the root cause. 5. The present results demonstrate a strong positive indirect effect of midges and broadly support the concept that predator responses to alternative prey are a major influence on the magnitude and direction of predator‐mediated indirect effects.  相似文献   

14.
Aquatic and terrestrial ecosystems are linked by fluxes of carbon and nutrients in riparian areas. Processes that alter these fluxes may therefore change the diet and composition of consumer communities. We used stable carbon isotope (δ13C) analyses to test whether the increased abundance of aquatic prey observed in a previous study led to a dietary shift in riparian consumers in areas illuminated by artificial light at night (ALAN). We measured the contribution of aquatic‐derived carbon to diets in riparian arthropods in experimentally lit and unlit sites along an agricultural drainage ditch in northern Germany. The δ13C signature of the spider Pachygnatha clercki (Tetragnathidae) was 0.7‰ lower in the ALAN‐illuminated site in summer, indicating a greater assimilation of aquatic prey. Bayesian mixing models also supported higher intake of aquatic prey under ALAN in spring (34% versus 21%). In contrast, isotopic signatures for P. clercki (0.3‰) and Pardosa prativaga (0.7‰) indicated a preference for terrestrial prey in the illuminated site in spring. Terrestrial prey intake increased in spring for P. clercki under ALAN (from 70% to 74%) and in spring and autumn for P. prativaga (from 68% to 77% and from 67% to 72%) and Opiliones (from 68% to 72%; 68% to 75%). This was despite most of the available prey (up to 80%) being aquatic in origin. We conclude that ALAN changed the diet of riparian secondary consumers by increasing the density of both aquatic and terrestrial prey. Dietary changes were species‐ and season‐specific, indicating that the effects of ALAN may interact with phenology and feeding strategy. Because streetlights can occur in high density near freshwaters, ALAN may have widespread effects on aquatic–terrestrial ecosystem linkages.  相似文献   

15.
Jeff Scott Wesner 《Oikos》2012,121(1):53-60
Food webs in different ecosystems are often connected through spatial resource subsidies. As a result, biodiversity effects in one ecosystem may cascade to adjacent ecosystems. I tested the hypothesis that aquatic predator diversity effects cascade to terrestrial food webs by altering a prey subsidy (biomass and trophic structure of emerging aquatic insects) entering terrestrial food webs, in turn altering the distribution of a terrestrial consumer (spider) that feeds on emerging aquatic insects. Fish presence, but not diversity, altered the trophic structure of emerging aquatic insects by strongly reducing the biomass of emerging predators (dragonflies) relative to non‐feeding taxa (chironomid midges). Fish diversity reduced emerging insect biomass through enhanced effects on the most common prey taxa: predatory dragonflies Pantala flavescens and non‐feeding chironomids. Terrestrial spiders (Tetragnathidae) primarily captured emerging chironomids, which were reduced in the high richness (3 spp.) treatment relative to the 1 and 2 species treatments. As a result, terrestrial spider abundance was lower above pools with high fish richness (3 species) than pools with 1 and 2 species. Synergistic predation effects were mostly limited to the high richness treatment, in which fish occupied each level of vertical microhabitat in the water‐column (benthic, middle, surface). This study demonstrates that predator diversity effects are not limited to the habitat of the predator, but can propagate to adjacent ecosystems, and demonstrates the utility of using simple predator functional traits (foraging domain) to more accurately predict the direction of predator diversity effects.  相似文献   

16.
A forest-stream trophic link was examined by stable carbon isotope analyses which evaluated the relationship of aquatic insects emerging from a stream to the diets of web-building spiders. Spiders, aquatic and terrestrial prey, and basal resources of forest and stream food webs were collected in a deciduous forest along a Japanese headwater stream during May and July 2001. The 13C analyses suggested that riparian tetragnathid spiders relied on aquatic insects and that the monthly variation of such dependence is partly associated with the seasonal dynamics of aquatic insect abundance in the riparian forest. Similarly, linyphiid spiders in the riparian forest exhibited 13C values similar to aquatic prey in May. However, their 13C values were close to terrestrial prey in both riparian and upland (150m away from the stream) forests during June to July, suggesting the seasonal incorporation of stream-derived carbon into their tissue. In contrast, araneid spiders relied on terrestrial prey in both riparian and upland forests throughout the study period. These isotopic results were consistent with a previous study that reported seasonal variation in the aquatic prey contribution to total web contents for each spider group in this forest, implying that spiders assimilate trapped prey and that aquatic insect flux indeed contributes to the energetics of riparian tetragnathid and linyphiid spiders.  相似文献   

17.
1. Empirical and theoretical research over the past decade has demonstrated the widespread importance of aquatic subsidies to terrestrial food webs. In particular, adult aquatic insects that emerge from streams and lakes are prey for terrestrial predators. While variation in the magnitude of this subsidy is clearly important, the potential top‐down effects of the predatory adults of some aquatic insects in terrestrial food webs are largely unknown. 2. I used published data on benthic insect density (as a proxy for emergence) in North and South America to explore how the proportion of benthic insects that are predatory as adults varies across a gradient of mean annual stream temperature. 3. The proportion of benthic insects that are predatory as adults varied widely across sites (0–12% by abundance; 0–86% by biomass). There was a positive relationship between mean annual stream temperature and the proportion of predatory adults across all sites, driven largely by the greater abundance/biomass of predatory taxa (e.g. odonates), relative to non‐predators (e.g. midges, mayflies, caddisflies), in tropical than in temperate streams. 4. The ‘trophic structure’ (i.e. the proportion of predators) of emerging adult aquatic insects is an understudied source of variation in aquatic–terrestrial interactions. Incorporation of trophic structure in future studies is needed to understand how future modification of fresh waters may affect adjacent terrestrial food webs through both bottom‐up and top‐down effects.  相似文献   

18.
Davis JM  Rosemond AD  Small GE 《Oecologia》2011,167(3):821-834
Because nutrient enrichment can increase ecosystem productivity, it may enhance resource flows to adjacent ecosystems as organisms cross ecosystem boundaries and subsidize predators in recipient ecosystems. Here, we quantified the biomass and abundance of aquatic emergence and terrestrial spiders in a reference and treatment stream that had been continuously enriched with nitrogen and phosphorus for 5 years. Because we previously showed that enrichment increased secondary production of stream consumers, we predicted that aquatic emergence flux would be higher in the treatment stream, subsequently increasing the biomass and abundance of terrestrial spiders. Those increases were predicted to be greatest for spiders specializing on aquatic emergence subsidies (e.g., Tetragnathidae). By adding a 15N stable isotope tracer to both streams, we also quantified nitrogen flow from the stream into the riparian community. Emergence biomass, but not abundance, was higher in the treatment stream. The average body size of emerging adult insects and the relative dominance of Trichoptera adults were also greater in the treatment stream. However, spider biomass did not differ between streams. Spiders also exhibited substantially lower reliance on aquatic emergence nitrogen in the treatment stream. This reduced reliance likely resulted from shifts in the body size distributions and community composition of insect emergence that may have altered predator consumption efficiency in the treatment stream. Despite nutrient enrichment approximately doubling stream productivity and associated cross-ecosystem resource flows, the response of terrestrial predators depended more on the resource subsidy’s characteristics that affected the predator’s ability to capitalize on such increases.  相似文献   

19.
Prey preference of top predators and energy flow across habitat boundaries are of fundamental importance for structure and function of aquatic and terrestrial ecosystems, as they may have strong effects on production, species diversity, and food‐web stability. In lakes, littoral and pelagic food‐web compartments are typically coupled and controlled by generalist fish top predators. However, the extent and determinants of such coupling remains a topical area of ecological research and is largely unknown in oligotrophic high‐latitude lakes. We analyzed food‐web structure and resource use by a generalist top predator, the Arctic charr Salvelinus alpinus (L.), in 17 oligotrophic subarctic lakes covering a marked gradient in size (0.5–1084 km2) and fish species richness (2–13 species). We expected top predators to shift from littoral to pelagic energy sources with increasing lake size, as the availability of pelagic prey resources and the competition for littoral prey are both likely to be higher in large lakes with multispecies fish communities. We also expected top predators to occupy a higher trophic position in lakes with greater fish species richness due to potential substitution of intermediate consumers (prey fish) and increased piscivory by top predators. Based on stable carbon and nitrogen isotope analyses, the mean reliance of Arctic charr on littoral energy sources showed a significant negative relationship with lake surface area, whereas the mean trophic position of Arctic charr, reflecting the lake food‐chain length, increased with fish species richness. These results were supported by stomach contents data demonstrating a shift of Arctic charr from an invertebrate‐dominated diet to piscivory on pelagic fish. Our study highlights that, because they determine the main energy source (littoral vs. pelagic) and the trophic position of generalist top predators, ecosystem size and fish diversity are particularly important factors influencing function and structure of food webs in high‐latitude lakes.  相似文献   

20.
Spiders are dominant terrestrial predators that consume a large variety of prey and engage in intraguild predation. Although the feeding habits of certain species are well known, the trophic structure of spider assemblages still needs to be investigated. Stable isotope analysis enables characterisation of trophic relationships between organisms because it tracks the energy flow in food webs and indicates the average number of trophic transfers between a given species and the base of the web, thus being a useful tool to estimate the magnitude of intraguild predation in food webs. Using this technique, we studied the trophic groups of spiders and their links within the arthropod food web of a Mediterranean organic citrus grove. We assessed the trophic positions of the 25 most common spider species relative to other arthropod predators and potential prey in the four seasons of the year, both in the canopy and on the ground. The analyses showed great seasonal variation in the isotopic signatures of some arthropod species, as well as the existence of various trophic groups and a wide range of trophic levels among spiders, even in species belonging to the same family. Differences in δ15N between spiders and the most abundant prey in the grove usually spanned two trophic levels or more. Our findings provide field evidence of widespread intraguild predation in the food web and caution against using spider families or guilds instead of individual species when studying spider trophic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号