首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
M. Edenbrow  D. P. Croft 《Oikos》2013,122(5):667-681
Consistent individual differences in behaviour are well documented, for example, individuals can be defined as consistently bold or consistently shy. To date our understanding of the mechanisms underpinning consistent individual differences in behaviour (also termed behavioural types (BTs)) remains limited. Theoretical work suggests life‐history tradeoffs drive BT variation, however, empirical support is scarce. Moreover, whilst life‐history is known to be phenotypically plastic in response to environmental conditions during ontogeny, the extent to which such plasticity drives plasticity in behavioural traits and personality remains poorly understood. Using a natural clonal vertebrate, Kryptolebias marmoratus, we control for genetic variation and investigate developmental plasticity in life‐history and three commonly studied behavioural traits (exploration, boldness, aggression) in response to three ecologically relevant environments; conspecific presence, low food and perceived risk. Simulated predation risk was the only treatment that generated repeatable behaviour i.e. personality during ontogeny. Treatments differed in their effects on mean life‐history and behavioural scores. Specifically, low food fish exhibited reduced growth rate and exploration but did not differ from control fish in their boldness or aggression scores. Conspecific presence resulted in a strong negative effect on mean aggression, boldness and exploration during ontogeny but had minimal effect on life‐history traits. Simulated predation risk resulted in increased reproductive output but had minimal effect upon average behavioural scores. Together these results suggest that life‐history plasticity/variation may be insufficient in driving variation in personality during development. Finally, using offspring derived from each rearing environment we investigate maternal effects and find strong maternal influence upon offspring size, but not behaviour. These results highlight and support the current understanding that risk perception is important in shaping personality, and that social experience during ontogeny is a major influence upon behavioural expression.  相似文献   

2.
The degree of plasticity an individual expresses when moving into a new environment is likely to influence the probability of colonization and potential for subsequent evolution. Yet few empirical examples exist where the ancestral and derived conditions suggest a role for plasticity in adaptive genetic divergence of populations. Here we explore the genetic and plastic components of shoaling behaviour in two pairs of populations of Poecilia reticulata (Trinidadian guppies). We contrast shoaling behaviour of guppies derived from high‐ and low‐predation populations from two separate drainages by measuring the shoaling response of second generation laboratory‐reared individuals in the presence and absence of predator induced alarm pheromones. We find persistent differences in mean shoaling cohesion that suggest a genetic basis; when measured under the same conditions high‐predation guppies form more cohesive shoals than low‐predation guppies. Both high and low‐predation guppies also exhibit plasticity in the response to alarm pheromones, by forming tighter, more cohesive shoals. These patterns suggest a conserved capacity for adaptive behavioural plasticity when moving between variable predation communities that are consistent with models of genetic accommodation.  相似文献   

3.
Understanding how animal personality (consistent between‐individual behavioural differences) arises has become a central topic in behavioural sciences. This endeavour is complicated by the fact that not only the mean behaviour of individuals (behavioural type) but also the strength of their reaction to environmental change (behavioural plasticity) varies consistently. Personality and cognitive abilities are linked, and we suggest that behavioural plasticity could also be explained by differences in brain size (a proxy for cognitive abilities), since accurate decisions are likely essential to make behavioural plasticity beneficial. We test this idea in guppies (Poecilia reticulata), artificially selected for large and small brain size, which show clear cognitive differences between selection lines. To test whether those lines differed in behavioural plasticity, we reared them in groups in structurally enriched environments and then placed adults individually into empty tanks, where we presented them daily with visual predator cues and monitored their behaviour for 20 days with video‐aided motion tracking. We found that individuals differed consistently in activity and risk‐taking, as well as in behavioural plasticity. In activity, only the large‐brained lines demonstrated habituation (increased activity) to the new environment, whereas in risk‐taking, we found sensitization (decreased risk‐taking) in both brain size lines. We conclude that brain size, potentially via increasing cognitive abilities, may increase behavioural plasticity, which in turn can improve habituation to novel environments. However, the effects seem to be behaviour‐specific. Our results suggest that brain size likely explains some of the variation in behavioural plasticity found at the intraspecific level.  相似文献   

4.
Within the same population, individuals often differ in how they respond to changes in their environment. A recent series of models predicts that competition in a heterogeneous environment might promote between‐individual variation in behavioural plasticity. We tested groups of sticklebacks in patchy foraging environments that differed in the level of competition. We also tested the same individuals across two different social groups and while alone to determine the social environment's influence on behavioural plasticity. In support of model predictions, individuals consistently differed in behavioural plasticity when the presence of conspecifics influenced the potential payoffs of a foraging opportunity. Whether individuals maintained their level of behavioural plasticity when placed in a new social group depended on the environmental heterogeneity. By explicitly testing predictions of recent theoretical models, we provide evidence for the types of ecological conditions under which we would expect, and not expect, variation in behavioural plasticity to be favoured.  相似文献   

5.
Phenotypic plasticity: an evolving plant character   总被引:4,自引:0,他引:4  
Phenotypic plasticity is an important mode of adaptation to temporal and spatial environmental variability, particularly in plants. Although data are available concerning interspecific differences in the sizes and shapes of characters, there is little information concerning differences between taxa for the plastic responses of those characters. We have measured: (1) the mean value of a character, (2) the amount of character plasticity, and (3) the pattern of phenotypic plasticity for species in five genera, and calculated the divergences among species for each of these three measures. We compared the divergences of these measures to address the question of whether there is a relationship between the evolution of the character means of species and the evolution of the plasticities of those characters. We found that the evolutionary divergence of character plasticities could be independent of the interspecific divergence of character means. There was, however, a tendency for the divergence of amounts and patterns of plasticity to be related.  相似文献   

6.
Behavioural plasticity is a form of reversible phenotypic plasticity in which a genotype can express different behavioural phenotypes under different environmental conditions. Though an interest in among-individual differences in behavioural plasticity has flourished in recent decades, few studies have considered the effects of intrinsic factors, such as life-history or morphological traits, in tandem with extrinsic factors, such as presence of conspecifics in different social contexts, on predator-induced behavioural plasticity. Here, we present a study conducted with female green swordtail fishes, Xiphophorus hellerii, designed to assess the effects of age-at-maturation and body size on the expression of predator-induced behavioural plasticity in two social contexts: (a) female-only (two females) and (b) female-and-male (two females and a male). We further examined the extent to which individual expression of behavioural plasticity is consistent across these two social contexts. We found that in the presence of a predator, focal females were more timid in response to the stimulus and more tolerant of the non-focal female, and small females expressed this change from bold/less tolerant to timid/more tolerant to a greater degree than large females, regardless of age-at-maturation. However, individuals were not consistent in the degree or direction of plasticity expressed in the behaviours of interest between the female-only and the female-and-male context. Here, we show that within- and among-individual differences in behavioural expression are common but inconsistent. How intrinsic and extrinsic factors independently or together drive expression of plasticity in antipredator and agonistic behaviours is varied and warrants further study.  相似文献   

7.
There is growing evidence that individuals within populations show consistent differences in their behaviour across contexts (personality), and that personality is associated with the extent to which individuals adjust their behaviour as function of changing conditions (behavioural plasticity). We propose an evolutionary explanation for a link between personality and plasticity based upon how individuals manage uncertainty. Individuals can employ three categories of tactics to manage uncertainty. They can 1) gather information (sample) to reduce uncertainty, 2) show strategic (state‐dependent) preferences for options that differ in their associated variances in rewards (i.e. variance‐sensitivity), or 3) invest in insurance to mitigate the consequences of uncertainty. We explicitly outline how individual differences in the use of any of these tactics can generate personality‐related differences in behavioural plasticity. For example, sampling effort is likely to co‐vary with individual activity and exploration behaviours, while simultaneously creating population variation in reactions to changes in environmental conditions. Individual differences in the use of insurance may be associated with differences in risk‐taking behaviours, such as boldness in the face of predation, thereby influencing the degree of adaptive plasticity across individuals. Population variation in responsiveness to environmental changes may also reflect individual differences in variance‐sensitivity, because stochastic change in the environment increases variances in rewards, which may both attract and benefit variance‐prone individuals, but not variance‐averse individuals. We review the existing evidence that individual variation in strategies for managing uncertainty exist, and describe how positive‐feedbacks between sampling, variance‐sensitivity and insurance can maintain and exaggerate even small initial differences between individuals in the relative use of these tactics. Given the pervasiveness of the problem of uncertainty, alternative strategies for managing uncertainty may provide a powerful explanation for consistent differences in behaviour and behavioural plasticity for a wide range of traits.  相似文献   

8.
In many species, temperature‐sensitive phenotypic plasticity (i.e., an individual's phenotypic response to temperature) displays a positive correlation with latitude, a pattern presumed to reflect local adaptation. This geographical pattern raises two general questions: (a) Do a few large‐effect genes contribute to latitudinal variation in a trait? (b) Is the thermal plasticity of different traits regulated pleiotropically? To address the questions, we crossed individuals of Plantago lanceolata derived from northern and southern European populations. Individuals naturally exhibited high and low thermal plasticity in floral reflectance and flowering time. We grew parents and offspring in controlled cool‐ and warm‐temperature environments, mimicking what plants would encounter in nature. We obtained genetic markers via genotype‐by‐sequencing, produced the first recombination map for this ecologically important nonmodel species, and performed quantitative trait locus (QTL) mapping of thermal plasticity and single‐environment values for both traits. We identified a large‐effect QTL that largely explained the reflectance plasticity differences between northern and southern populations. We identified multiple smaller‐effect QTLs affecting aspects of flowering time, one of which affected flowering time plasticity. The results indicate that the genetic architecture of thermal plasticity in flowering is more complex than for reflectance. One flowering time QTL showed strong cytonuclear interactions under cool temperatures. Reflectance and flowering plasticity QTLs did not colocalize, suggesting little pleiotropic genetic control and freedom for independent trait evolution. Such genetic information about the architecture of plasticity is environmentally important because it informs us about the potential for plasticity to offset negative effects of climate change.  相似文献   

9.
Many phenotypic traits show plasticity but behaviour is often considered the 'most plastic' aspect of phenotype as it is likely to show the quickest response to temporal changes in conditions or 'situation'. However, it has also been noted that constraints on sensory acuity, cognitive structure and physiological capacities place limits on behavioural plasticity. Such limits to plasticity may generate consistent differences in behaviour between individuals from the same population. It has recently been suggested that these consistent differences in individual behaviour may be adaptive and the term 'animal personalities' has been used to describe them. In many cases, however, a degree of both behavioural plasticity and relative consistency is probable. To understand the possible functions of animal personalities, it is necessary to determine the relative strength of each tendency and this may be achieved by comparison of statistical effect sizes for tests of difference and concordance. Here, we describe a new statistical framework for making such comparisons and investigate cross-situational plasticity and consistency in the duration of startle responses in the European hermit crab Pagurus bernhardus, in the field and the laboratory. The effect sizes of tests for behavioural consistency were greater than for tests of behavioural plasticity, indicating for the first time the presence of animal personalities in a crustacean model.  相似文献   

10.
A modular concept of phenotypic plasticity in plants   总被引:2,自引:0,他引:2  
Based on empirical evidence from the literature we propose that, in nature, phenotypic plasticity in plants is usually expressed at a subindividual level. While reaction norms (i.e. the type and the degree of plant responses to environmental variation) are a property of genotypes, they are expressed at the level of modular subunits in most plants. We thus contend that phenotypic plasticity is not a whole-plant response, but a property of individual meristems, leaves, branches and roots, triggered by local environmental conditions. Communication and behavioural integration of interconnected modules can change the local responses in different ways: it may enhance or diminish local plastic effects, thereby increasing or decreasing the differences between integrated modules exposed to different conditions. Modular integration can also induce qualitatively different responses, which are not expressed if all modules experience the same conditions. We propose that the response of a plant to its environment is the sum of all modular responses to their local conditions plus all interaction effects that are due to integration. The local response rules to environmental variation, and the modular interaction rules may be seen as evolving traits targeted by natural selection. Following this notion, whole-plant reaction norms are an integrative by-product of modular plasticity, which has far-reaching methodological, ecological and evolutionary implications.  相似文献   

11.
Heterogeneity in the environment favours foragers that are flexible (phenotypically plastic). However, consistent individual differences in behaviour (personality), such as in risk‐taking, might affect an individual's ability to find food, avoid predators and adjust to new conditions. It is now well known that personalities exist in many taxa, but much less is known about individual variation in plasticity. We measured the tendency to begin foraging across different levels of risk in house sparrows (Passer domesticus), using a behavioural reaction norm framework to simultaneously assess personality and plasticity. We asked whether individuals were consistently different across risk levels, and whether they differed in habituation and neophobia, both of which were treated as cases of plasticity. We found that males habituated more than females by beginning to feed sooner after repeated instances of a human disturbance in the presence of an initially unfamiliar object. Individuals of both sexes also exhibited consistent differences across trials, but did not differ in the rate of habituation beyond the difference between the sexes. When a novel object was placed in the foraging area, both sexes exhibited similar degrees of neophobia by delaying feeding. The magnitude of this change varied among birds, indicating individual differences in neophobia. Our results indicate that both personality and individual variation in plasticity exist but should be treated as independent phenomena. The presence of variation in plasticity implies that the raw material necessary for selection on neophobia exists, and that if heritable, plasticity in risk‐taking across contexts could evolve.  相似文献   

12.
The initial response of individuals to human‐induced environmental change is often behavioural. This can improve the performance of individuals under sudden, large‐scale perturbations and maintain viable populations. The response can also give additional time for genetic changes to arise and, hence, facilitate adaptation to new conditions. On the other hand, maladaptive responses, which reduce individual fitness, may occur when individuals encounter conditions that the population has not experienced during its evolutionary history, which can decrease population viability. A growing number of studies find human disturbances to induce behavioural responses, both directly and by altering factors that influence fitness. Common causes of behavioural responses are changes in the transmission of information, the concentration of endocrine disrupters, the availability of resources, the possibility of dispersal, and the abundance of interacting species. Frequent responses are alterations in habitat choice, movements, foraging, social behaviour and reproductive behaviour. Behavioural responses depend on the genetically determined reaction norm of the individuals, which evolves over generations. Populations first respond with individual behavioural plasticity, whereafter changes may arise through innovations and the social transmission of behavioural patterns within and across generations, and, finally, by evolution of the behavioural response over generations. Only a restricted number of species show behavioural adaptations that make them thrive in severely disturbed environments. Hence, rapid human‐induced disturbances often decrease the diversity of native species, while facilitating the spread of invasive species with highly plastic behaviours. Consequently, behavioural responses to human‐induced environmental change can have profound effects on the distribution, adaptation, speciation and extinction of populations and, hence, on biodiversity. A better understanding of the mechanisms of behavioural responses and their causes and consequences could improve our ability to predict the effects of human‐induced environmental change on individual species and on biodiversity.  相似文献   

13.
Environmental variation favors the evolution of phenotypic plasticity. For many species, we understand the costs and benefits of different phenotypes, but we lack a broad understanding of how plastic traits evolve across large clades. Using identical experiments conducted across North America, we examined prey responses to predator cues. We quantified five life‐history traits and the magnitude of their plasticity for 23 amphibian species/populations (spanning three families and five genera) when exposed to no cues, crushed‐egg cues, and predatory crayfish cues. Embryonic responses varied considerably among species and phylogenetic signal was common among the traits, whereas phylogenetic signal was rare for trait plasticities. Among trait‐evolution models, the Ornstein–Uhlenbeck (OU) model provided the best fit or was essentially tied with Brownian motion. Using the best fitting model, evolutionary rates for plasticities were higher than traits for three life‐history traits and lower for two. These data suggest that the evolution of life‐history traits in amphibian embryos is more constrained by a species’ position in the phylogeny than is the evolution of life history plasticities. The fact that an OU model of trait evolution was often a good fit to patterns of trait variation may indicate adaptive optima for traits and their plasticities.  相似文献   

14.
Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures.  相似文献   

15.
Recent work on animal personalities has shown that individuals within populations often differ consistently in various types of behaviour and that many of these behaviours correlate among individuals to form behavioural syndromes. Individuals of certain species have also been shown to differ in their rate of behavioural innovation in arriving at novel solutions to new and existing problems (e.g., mazes, novel foods). Here, we investigate whether behaviours traditionally studied in personality research are correlated with individual rates of innovation as part of a wider behavioural syndrome. Guppies (Poecilia reticulata) of both sexes from three different wild population sources were assessed: (a) exploration of an open area; (b) speed through a three‐dimensional maze; (c) investigation of a novel object; and (d) attraction to a novel food. The covariance structure (syndrome structure) was examined using structural equation modelling. The best model separated behaviours relating to activity in all contexts from rates of exploration/investigation and innovation. Innovative behaviour (utilizing new food and moving through a novel area) in these fish therefore forms part of the same syndrome as the traditional shy‐bold continuum (exploration of an open area and investigation of a novel object) found in many animal personality studies. There were no clear differences in innovation or syndrome structure between the sexes, or between the three different populations. However, body size was implicated as part of the behavioural syndrome structure, and because body size is highly correlated with age in guppies, this suggests that individual behavioural differences in personality/innovation in guppies may largely be driven by developmental state.  相似文献   

16.
Human‐altered environmental conditions affect many species at the global scale. An extreme form of anthropogenic alteration is the existence and rapid increase of urban areas. A key question, then, is how species cope with urbanization. It has been suggested that rural and urban conspecifics show differences in behaviour and personality. However, (i) a generalization of this phenomenon has never been made; and (ii) it is still unclear whether differences in personality traits between rural and urban conspecifics are the result of phenotypic plasticity or of intrinsic differences. In a literature review, we show that behavioural differences between rural and urban conspecifics are common and taxonomically widespread among animals, suggesting a significant ecological impact of urbanization on animal behaviour. In order to gain insight into the mechanisms leading to behavioural differences in urban individuals, we hand‐raised and kept European blackbirds (Turdus merula) from a rural and a nearby urban area under common‐garden conditions. Using these birds, we investigated individual variation in two behavioural responses to the presence of novel objects: approach to an object in a familiar area (here defined as neophilia), and avoidance of an object in a familiar foraging context (defined as neophobia). Neophilic and neophobic behaviours were mildly correlated and repeatable even across a time period of one year, indicating stable individual behavioural strategies. Blackbirds from the urban population were more neophobic and seasonally less neophilic than blackbirds from the nearby rural area. These intrinsic differences in personality traits are likely the result of microevolutionary changes, although we cannot fully exclude early developmental influences.  相似文献   

17.
Behavioral plasticity marks an individual's ability to modulate behavior across functional contexts. Behavioral syndromes, on the other hand, appear as consistent individual variation in behavior that is both repeatable for individuals within a functional context (e.g., consistent voracity toward prey) and correlated across contexts (e.g., high voracity toward prey and high levels of boldness toward enemies). Thus, adaptive plasticity and syndromes represent two extremes of a behavioral plasticity continuum upon which most behavioral phenotypes fall. We tested for both adaptive plasticity and behavioral syndromes in the western black widow spider, Latrodectus hesperus. We measured behavior in three contexts: startle, startle + prey, and startle + mate, and found (1) classic behaviorally plastic responses to predation risk, (2) high repeatability of behavior within contexts, and (3) evidence of a correlation between startle + prey and startle + mate contexts, indicative of a behavioral syndrome. As relative behavioral plasticity may vary across populations, we also compared urban and desert populations to test whether spiders from these habitats exhibit different behaviors and/or behavioral syndromes. While we found that urban males used in mating trials courted urban females significantly more than desert females, we found no other differences in the behavior of urban and desert black widows. Thus, black widows, regardless of habitat, are characterized by both context‐specific behavioral plasticity and across‐context correlations, presenting a phenotypic complexity that is likely exhibited, to varying degrees, by most organisms.  相似文献   

18.
Life history evolution of many clonal plants takes place with long periods of exclusively clonal reproduction and under largely varying ramet densities resulting from clonal reproduction. We asked whether life history traits of the clonal herb Ranunculus reptans respond to density-dependent selection, and whether plasticity in these traits is adaptive. After four generations of exclusively clonal propagation of 16 low and 16 high ramet-density lines, we studied life history traits and their plasticities at two test ramet-densities. Plastic responses to higher test-density consisted of a shift from sexual to vegetative reproduction, and reduced flower production, plant size, branching frequency, and lengths of leaves and internodes. Plants of high-density lines tended to have longer leaves, and under high test-density branched less frequently than those of low-density lines. Directions of these selection responses indicate that the observed plastic branching response is adaptive, whereas the plastic leaf length response is not. The reverse branching frequency pattern at low test-density, where plants of high-density lines branched more frequently than those of low-density lines, indicates evolution of plasticity in branching. Moreover, when grown under less stressful low test-density, plants of high-density lines tended to grow larger than the ones of low-density lines. We conclude that ramet density affects clonal life-history evolution and that under exclusively clonal propagation clonal life-history traits and their plasticities evolve differently at different ramet densities.  相似文献   

19.
Habitat‐specific selection pressures have been widely recognized, but whether selection favours different personality types in different habitats has rarely been evaluated. This study aimed to test whether personality‐related differences in annual reproductive success differed between two populations of blue tits (Cyanistes caeruleus) occupying different Mediterranean habitats (oakwood and pinewood). We measured exploration and parental provisioning behaviours and used a path analysis to ask how the interplay between these two behavioural traits affected reproductive success in each of these two habitats. We found that blue tits breeding in the pinewood were slow‐exploring compared to blue tits breeding in the oakwood, suggesting the occurrence of personality‐related differences in settlement, or behavioural plasticity in response to habitat. Exploration behaviour and feeding rates were positively associated, suggesting that they affect each other or that there is an environmental factor affecting both traits simultaneously. Finally, fast explorers were favoured in the pinewood, while there was no selection acting on exploration behaviour in the oak habitat. These findings emphasize the importance of integrating habitat selection, plasticity and personality in the study of behavioural evolution.  相似文献   

20.
Animals can adjust their behaviours depending on ecological context (i.e., behavioural plasticity), and an individual's response to a given context may also vary from occasion to occasion (intra‐individual variability). Recognizing the roles of both behavioural plasticity and intra‐individual variability is important in understanding how behavioural diversity is maintained within populations. However, how the ecological context itself influences the individual behavioural response and intra‐individual variability (e.g., how variable an individual is in their behavioural expression) remains largely unexplored. Here, we examine boldness expression (the duration of startle response) in a specialised spider‐eating jumping spider, Portia labiata, across three contexts following a mild disturbance: presence of a conspecific intruder (most dangerous), environmental change but no conspecific intruder, and no conspecific intruder or environmental change (safest). We found that context does not significantly influence the average boldness expression at the population level. However, each individual responded to each context differently, and the repeatability of boldness expression—the proportion of behavioural variation attributable to the between ‐individual level—is context‐dependent. We also found that in the presence of a conspecific intruder, spiders behave less predictably than in the environmental change context, but not differently from the safest context. These findings may suggest that the presence of conspecifics influences behavioural consistency in individuals, but that this may occur without influencing the population average behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号