首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine the effect of a sustained propylene glycol administration to recipients of frozen/thawed in vivo derived bovine embryos. Heifers were treated with oral propylene glycol for the last 20 days before embryo transfer (n = 142), and untreated as controls (n = 133). Progesterone, insulin, insulin-like growth factor-I, glucose, urea and triglyceride were analysed in blood on Day 0 and Day 7 of the estrous cycle corresponding to embryo transfer. The heifers were selected as recipients when showing progesterone levels <2.0 ng/ml (Day 0) and >2.5 ng/ml (Day 7), according to corpus luteum quality on Day 7 by technicians unaware of animals treated. Within treated animals, significantly more recipients were selected, and increased progesterone, corpus luteum quality, pregnancy and calving rates were recorded. Day 7 progesterone concentrations were higher in heifers treated and transferred. Propylene glycol increased insulin and insulin-like-growth factor-I, but glucose, urea and triglyceride did not vary. Furthermore, insulin-like-growth factor-I, glucose and triglyceride increased at estrous time, but urea decreased and insulin remained unaltered. Together with the sustained gain in pregnancy rates throughout the experiment (2 years), other evidences suggested that the observed effects did not rely on nutritional deficiency. Thus, propylene glycol improved pregnancy rates after embryo-transfer, and progesterone, insulin and insulin-like-growth factor-I are probably involved in this effect.  相似文献   

2.
To determine whether systemic and/or intraovarian concentrations of insulin-like growth factor-I (IGF-I) are affected by short-term fasting, 24 heifers were blocked by weight and, within block, were assigned to one of three treatments: fasted for 0 h (controls; n = 8), fasted for 24 h (n = 8), or fasted for 48 h (n = 8). Blood plasma was collected every 8 h from -64 h to 0 h before ovariectomy (OVEX). OVEX was performed per vagina under local anesthesia during the follicular phase of an estrous cycle (36-42 h after synchronization with prostaglandin-F2 alpha). Follicular fluid (FFL) and granulosa cells were collected individually from follicles greater than or equal to 6 mm (large), and FFL was pooled from follicles 1.0-5.9 mm (small) in diameter. Fasting did not affect (p greater than 0.20) the number (mean +/- SE) of small (52 +/- 7) or large (1.5 +/- 0.4) follicles per heifer, specific binding of 125I-hCG to granulosa cells of follicles greater than or equal to 8 mm in diameter, or concentrations of progesterone in FFL of small follicles. At OVEX, body weight was less (p less than 0.01) for 24 h- and 48 h-fasted heifers (412 +/- 7 kg and 399 +/- 7 kg, respectively) than for 0 h-fasted heifers (442 +/- 7 kg). At OVEX, plasma concentrations of IGF-I were lower (p less than 0.05) in the 48 h-fasted group (105 +/- 8 ng/ml) than in the 0 h-fasted group (140 +/- 8 ng/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
This study was designed to test the hypothesis that treatment with super-ovulatory drugs suppresses endogenous pulsatile LH secretion. Heifers (n=5/group) were superovulated with eCG (2500 IU) or FSH (equivalent to 400 mg NIH-FSH-P1), starting on Day 10 of the estrous cycle, and were injected with prostaglandin F(2alpha) on Day 12 to induce luteolysis. Control cows were injected only with prostaglandin. Frequent blood samples were taken during luteolysis (6 to 14 h after PG administration) for assay of plasma LH, estradiol, progesterone, testosterone and androstenedione. The LH pulse frequency in eCG-treated cows was significantly lower than that in control cows (2.4 +/- 0.4 & 6.4 +/- 0.4 pulses/8 h, respectively; P<0.05), and plasma progesterone (3.4 +/- 0.4 vs 1.8 +/- 0.1 ng/ml, for treated and control heifers, respectively; P<0.05) and estradiol concentrations (25.9 +/- 4.3 & 4.3 +/- 0.4 pg/ml, for treated and control heifers, respectively; P<0.05) were higher compared with those of the controls. No LH pulses were detected in FSH-treated cows, and mean LH concentrations were significantly lower than those in the controls (0.3 +/- 0.1 & 0.8 +/- 0.1, respectively; P<0.05). This suppression of LH was associated with an increase in estradiol (9.5 +/- 1.4 pg/ml; P<0.05 compared with controls) but not in progesterone concentrations (2.1 +/- 0.2 ng/ml; P>0.05 compared to controls). Both superovulatory protocols increased the ovulation rate (21.6 +/- 3.9 and 23.0 +/- 4.2, for eCG and FSH groups, respectively; P>0.05). These data demonstrate that super-ovulatory treatments decrease LH pulse frequency during the follicular phase of the treatment cycle. This could be explained by increased steroid secretion in the eCG-trated heifers but not in FSH-treated animals.  相似文献   

4.
Objectives were to determine: 1) whether estradiol, given via implants in amounts to stimulate a proestrus increase, induces preovulatory-like luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surges; and 2) whether progesterone, given via infusion in amounts to simulate concentrations found in blood during the luteal phase of the estrous cycle, inhibits gonadotropin surges. All heifers were in the luteal phase of an estrous cycle when ovariectomized. Replacement therapy with estradiol and progesterone was started immediately after ovariectomy to mimic luteal phase concentrations of these steroids. Average estradiol (pg/ml) and progesterone (ng/ml) resulting from this replacement were 2.5 and 6.2 respectively; these values were similar (P greater than 0.05) to those on the day before ovariectomy (2.3 and 7.2, respectively). Nevertheless, basal concentrations of LH and FSH increased from 0.7 and 43 ng/ml before ovariectomy to 2.6 and 96 ng/ml, respectively, 24 h after ovariectomy. This may indicate that other ovarian factors are required to maintain low baselines of LH and FSH. Beginning 24 h after ovariectomy, replacement of steroids were adjusted as follows: 1) progesterone infusion was terminated and 2 additional estradiol implants were given every 12 h for 36 h (n = 5); 2) progesterone infusion was maintained and 2 additional estradiol implants were given every 12 h for 36 h (n = 3); or 3) progesterone infusion was terminated and 2 additional empty implants were given every 12 h for 36 h (n = 6). When estradiol implants were given every 12 h for 36 h, estradiol levels increased in plasma to 5 to 7 pg/ml, which resembles the increase in estradiol that occurs at proestrus. After ending progesterone infusion, levels of progesterone in plasma decreased to less than 1 ng/ml by 8 h. Preovulatory-like LH and FSH surges were induced only when progesterone infusion was stopped and additional estradiol implants were given. These surges were synchronous, occurring 61.8 +/- 0.4 h (mean +/- SE) after ending infusion of progesterone. We conclude that estradiol, at concentrations which simulate those found during proestrus, induces preovulatory-like LH and FSH surges in heifers and that progesterone, at concentrations found during the luteal phase of the estrous cycle, inhibits estradiol-induced gonadotropin surges. Furthermore, ovarian factors other than estradiol and progesterone may be required to maintain basal concentrations of LH and FSH in heifers.  相似文献   

5.
Blood samples were collected for the measurement of progesterone concentrations from 320 Holstein-Friesian heifers on Days 7 and 21 post-estrus. All animals were the recipients of either a fresh or previously frozen embryo on Day 7 and were palpated for pregnancy on Day 60 post-estrus. At the time of transer, progesterone levels were highly variable and were not strongly related to subsequent pregnancy status. There was a tendency for lower pregnancy rates in heifers receiving fresh embryos if progesterone levels were less than 1 ng/ml (33 vs 64% overall), and for previously frozen embryos when progesterone concentrations were less than 3 ng/ml (34 vs 44% overall). Progesterone concentrations were not related to subjective evaluation of corpus luteum quality by palpation per rectum. No heifers which maintained pregnancy had progesterone levels less than 1 ng/ml on Day 21. Only 41% of 247 heifers receiving either fresh or previously frozen embryos that were not pregnant on Day 60 had progesterone concentrations less than 1 ng/ml on Day 21. These data suggest that many recipients that do not maintain a pregnancy will experience an extended estrous cycle after transfer.  相似文献   

6.
The objective of this study was to investigate the possible effect of recombinant bovine somatotropin (BST) on ovarian folliculogenesis and ovulation rate. Twelve Hereford x Friesian heifers received daily injections of either 25 mg BST (6 heifers) or vehicle (6 heifers) for a period of two estrous cycles until slaughter. Blood samples were collected three times a week for measurements of peripheral growth hormone (GH), insulin-like growth factor I (IGF-I), FSH, LH, estradiol, and progesterone. Serial blood samples were also taken every 10 min for 8 h on Days 12 and 19 of the second estrous cycle to monitor GH, IGF-I, FSH, and LH profiles. At the end of treatment (Day 7 of the third estrous cycle), the heifers were killed and their ovaries were collected. Ovulation rate was determined by counting the number of fresh corpora lutea (CL). All antral follicles greater than or equal to 2 mm in diameter were dissected to assess antral follicle populations. Granulosa and thecal cells from the three largest follicles and CL from each heifer were collected for FSH and LH binding measurements. All heifers had a single ovulation. The treated heifers had significantly more antral follicles (60.2 +/- 6.7) than did the animals in the control group (33.2 +/- 3.2) (p less than 0.001). When follicles were grouped according to diameter, the mean numbers of follicles greater than 10 mm, 5-10 mm, and 2-5 mm in diameter were 0.8 +/- 0.2, 6.8 +/- 1.4, and 52.5 +/- 6.5 for the treated group, and 0.8 +/- 0.2, 6.5 +/- 1.0, and 25.8 +/- 2.7 for controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Twenty-two estrous cyclic, 2-yr-old Brahman heifers were randomly assigned to receive either estrus synchronization with Syncro-Mate-B((R)) (SMB; 11) or no treatment (Control; 11). Blood samples were collected via tail vessel puncture at onset of estrus and daily thereafter until Day 11 after estrus. Blood samples were also collected from five SMB and five Control heifers at 0, 4, 8 and 12 h after the onset of estrus. All samples were processed to yield serum and stored at -20 degrees C until radioimmunoassay. Heifers were inseminated by one technician using semen from a single ejaculate of a Brahman bull 12 h after the onset of estrus. All SMB heifers exhibited estrus within 72 h of implant removal. All heifers had corpora lutea (CL) detected by rectal examination 8 to 12 d following estrus. Serum luteinizing hormone (LH) was not affected by treatment, time (4 - h intervals) or an interaction of treatment by time (P > 0.10). Independent analysis with h indicated that at h 12, SMB (2.2 +/- 0.06 ng/ml) had lower LH than did control heifers (8.9 +/- 2.1 ng/ml). Serum progesterone increased from Day 1 through Day 12 in all heifers, which is indicative of functional CL. Serum progesterone was affected by treatment (P < 0.0001) and time (d intervals; P < 0.10). Progesterone elevation was lower (P < 0.05) and area under the progesterone curve was lower (P < 0.03) in SMB (5.6 +/- 0.5 ng/ml, 32.0 +/- 4.5 units, respectively) when compared with control heifers (7.0 +/- 4 ng/ml, 43.7 +/- 2.4 units, respectively). Conception rate was lower (P < 0.01) in SMB heifers (2 of 11) than in control heifers (8 of 11). The lowered conception rate in SMB treated Brahman heifers may be due to altered timing of LH release following estrus, resulting in an altered time of ovulation.  相似文献   

8.
Two experiments were conducted to evaluate effects of gonadotropin-releasing hormone (GnRH) on the function of the bovine corpus luteum during the estrous cycle. In Experiment 1, 10 beef heifers were assigned randomly into two groups; each heifer served as her own control. Heifers in Group I (n = 5) were injected i.v. with vehicle (saline) on Day 2 of the cycle (Day 0 = day of estrus) followed by an i.v. injection of 100 micrograms GnRH on Day 2 of the subsequent estrous cycle. Group II (n = 5) heifers were treated similarly except injections were given on Day 10 of the estrous cycle. All heifers were bled via the jugular vein at 15 min intervals beginning 30 min prior to injection and for 3 h after injection. Blood samples were also taken on alternate days after injection through Day 16 of the cycle. Gonadotropin-releasing hormone caused a significant release of luteinizing hormone (LH) on both treatment days with the peak occurring at 15 to 30 min postinjection. Treatment with GnRH on either Day 2 or 10 caused a reduction in serum progesterone levels on Days 12, 14 and 16 of the cycle (Group I, control 3.99, 3.97; 4.07 vs. treated 2.63, 3.45, 2.87; Group II, control 3.18, 3.82, 4.13 vs. treated 2.50, 2.82, 3.17 ng/ml, respectively; common SE = 0.24 p less than 0.03). Length of the estrous cycle did not differ between groups (Group I, control 20.7 vs. treated 20.9; Group II, control 20.7 vs. treated 21.1 days, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The objectives of this experiment were to determine if subnormal levels of progesterone (P4) indicative of luteal insufficiency influence (1) pulsatile release of luteinizing hormone (LH), (2) the interval to the preovulatory surge of LH after removal of P4, and (3) the secretion of P4 during the estrous cycle subsequent to administration of subnormal levels of P4. On Day 5 (Day = 0 day of estrus) of the estrous cycle, cows received P4-releasing intravaginal devices (PRID) to produce normal (2 PRIDs; n = 7) or subnormal (0.5 PRID; n = 6) concentrations of P4. Five cows served as controls. On Day 10, serial blood samples were collected from all cows. Collection of blood samples was again initiated on Day 17 in cows receiving PRIDs. The PRIDs were removed and blood collection continued for 78 h. Daily blood samples were collected from all animals for 42 days subsequent to estrus (estrous cycles 1 and 2, respectively). During estrous cycle 1, mean concentration of P4 was lower (p less than 0.05) and frequency of pulses of LH was higher (p less than 0.05) in cows receiving subnormal P4 than in cows receiving normal P4 and control cows. Plasma concentrations of estradiol (E2) were higher (p less than 0.05) on Days 9-16 of estrous cycle 1 in cows receiving subnormal P4 than in cows receiving normal P4 or in control cows. Concentrations of E2 were greater (p less than 0.05) at 6, 18, and 30 h following removal of PRIDs in cows receiving subnormal P4 than in cows receiving normal P4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Holstein heifers were given 5 injections (twice/day) of 10 ml charcoal-extracted bovine follicular fluid (bFF; N = 6) or 10 ml saline (N = 5) beginning 12 h after the onset of oestrus. Blood samples were collected for determination of plasma concentrations of FSH, LH, progesterone and oestradiol-17 beta. Treatment with bFF suppressed the secondary FSH surge (P less than 0.01). Cessation of bFF injections was followed by a rebound period during which FSH was elevated compared with controls (P less than 0.01). Daily ultrasonographic examinations revealed that follicular growth occurred in waves, with 4 of 5 control heifers exhibiting 3 waves and the other 2 waves. In contrast, 5 of 6 bFF-treated animals exhibited 2 waves and the other 3 waves. Appearance of follicles in the first wave was delayed in bFF-treated heifers (Day 3.3 +/- 0.3 compared with Day 1.4 +/- 0.2; P less than 0.0001) and appearance of the dominant follicle of the first wave was delayed (Day 4.5 +/- 0.3 compared with Day 1.8 +/- 0.2; P less than 0.0001). Follicles in the second wave appeared later in animals treated with bFF (Day 12.7 +/- 0.4 compared with Day 10.4 +/- 0.6; P less than 0.01), and the dominant follicle of this wave also appeared later (Day 13.0 +/- 0.5 compared with Day 10.6 +/- 0.5; P less than 0.01). Oestradiol-17 beta increased during the early luteal phase, but this increase occurred later in heifers treated with bFF (peak concentrations on Day 6.3 +/- 0.6 compared with Day 4.2 +/- 0.2; P less than 0.05). LH, progesterone and cycle length were not affected by bFF. Delayed follicular growth associated with suppression of FSH suggests that the secondary FSH surge is important in the initiation of follicular development early in the bovine oestrous cycle, and thus may play a role in the regulation of ovarian follicular dynamics.  相似文献   

11.
Two experiments were conducted to study the in vitro effects of prostaglandins F2 alpha (PGF2 alpha), E2 (PGE2), and luteinizing hormone (LH) on oxytocin (OT) release from bovine luteal tissue. Luteal concentration of OT at different stages of the estrous cycle was also determined. In Experiment 1, sixteen beef heifers were assigned randomly in equal numbers (N = 4) to be killed on Days 4, 8, 12, and 16 of the estrous cycle (Day 0 = day of estrus). Corpora lutea were collected, an aliquot of each was removed for determination of initial OT concentration, and the remainder was sliced and incubated with vehicle (control) or with PGF2 alpha (10 ng/ml), PGE2 (10 ng/ml), or LH (5 ng/ml). Luteal tissue from heifers on Day 4 was sufficient only for determination of initial OT levels. Luteal OT concentrations (ng/g) increased from 414 +/- 84 on Day 4 to 2019 +/- 330 on Day 8 and then declined to 589 +/- 101 on Day 12 and 81 +/- 5 on Day 16. Prostaglandin F2 alpha induced a significant in vitro release of luteal OT (ng.g-1.2h-1) on Day 8 (2257 +/- 167 vs. control 1702 +/- 126) but not on Days 12 or 16 of the cycle. Prostaglandin E2 and LH did not affect OT release at any stage of the cycle studied. In Experiment 2, six heifers were used to investigate the in vitro dose-response relationship of 10, 20, and 40 ng PGF2 alpha/ml of medium on OT release from Day 8 luteal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
To determine whether progesterone facilitates PGF(2)alpha-induced luteolysis prior to day 5 of the estrous cycle, 48 Holstein-Friestian heifers were assigned at random to four treatments: 1) 4 ml corn oil/day + 5 ml Tris-HCl buffer (control); 2) 25 mg prostaglandin F(2)alpha (PGF(2)alpha); 3) 100 mg progesterone/day (progesterone); 4) 100 mg progesterone/day + 25 mg PGF(2)alpha (combined treatment). Progesterone was injected subcutaneously daily from estrus (day 0) through day 3. The PGF(2)alpha was injected intramuscularly on day 3. Estrous cycle lengths were decreased by progesterone: 20.2 +/- 0.56, 19.2 +/- 0.31 (control and PGF(2)alpha); 13.2 +/- 1.40, and 11.7 +/- 1.27 (progesterone and combined). The combination of progesterone and PGF(2)alpha did not shorten the cycle any more than did progesterone alone (interaction, P>0.05). PGF(2)alpha treatment reduced progesterone concentrations on day 6 (P<0.05) and both progesterone and PGF(2)alpha reduced plasma progesterone on day 8 (P<0.01 and P<0.05, respectively). LH was measured in blood samples collected at 10- min intervals for 4 hr on day 4 from three heifers selected at random from each of the four treatment groups. Mean LH concentration for control heifers ranged from 0.35 to 0.63 ng/ml (overall mean, 0.49 ng/ml) and for progesterone-treated heifers ranged from 0.12 to 0.30 ng/ml (overall mean, 0.23 ng/ml). LH concentrations were greater in control heifers (P<0.01). The mean LH pulse rate for control heifers was 2.7 pulses/heifers/4 hr, while that for the progesterone-treated heifers was 1.7 pulses/heifer/4 hr. The mean pulse amplitude for control and progesterone treatments was 0.47 ng/ml and 0.36 ng/ml, respectively. Neither pulse amplitude nor frequency were different between treatment groups.  相似文献   

13.
Bovine luteal cells from Days 4, 8, 14 and 18 of the estrous cycle were incubated for 2 h (1 x 10(5) cells/ml) in serum-free media with one or a combination of treatments [control (no hormone), prostaglandin F2 alpha (PGF), oxytocin (OT), estradiol-17 beta (E) or luteinizing hormone (LH)]. Luteal cell conditioned media were then assayed by RIA for progesterone (P), PGF, and OT. Basal secretion of PGF on Days 4, 8, 14 and 18 was 173.8 +/- 66.2, 111.1 +/- 37.8, 57.7 +/- 15.4 and 124.3 +/- 29.9 pg/ml, respectively. Basal release of OT and P was greater on Day 4 (P less than 0.01) than on Day 8, 14 and 18 (OT: 17.5 +/- 2.6 versus 5.6 +/- 0.7, 6.0 +/- 1.4 and 3.1 +/- 0.4 pg/ml; P: 138.9 +/- 19.5 versus 23.2 +/- 7.5, 35.4 +/- 6.5 and 43.6 +/- 8.1 ng/ml, respectively). Oxytocin increased (P less than 0.01) PGF release by luteal cells compared with control cultures irrespective of day of estrous cycle. Estradiol-17 beta stimulated (P less than 0.05) PGF secretion on Days 8, 14 and 18, and LH increased (P less than 0.01) PGF production only on Day 14. Prostaglandin F2 alpha, E and LH had no effect on OT release by luteal cells from any day. Luteinizing hormone alone or in combination with PGF, OT or E increased (P less than 0.01) P secretion by cells from Days 8, 14 and 18. However on Day 8, a combination of PGF + OT and PGF + E decreased (P less than 0.05) LH-stimulated P secretion. These data demonstrate that OT stimulates PGF secretion by bovine luteal cells in vitro. In addition, LH and E also stimulate PGF release but effects may vary with stage of estrous cycle.  相似文献   

14.
The objective of this study was to examine changes in intrafollicular concentrations of inhibins and steroids in heifers during growth of dominant follicles. To obtain dominant ovulatory follicles, heifers received injections of prostaglandin (PG) on Day 9 of an estrous cycle and were ovariectomized (OVX) 0, 24, 48, 60, or 72 h after injection. To obtain dominant nonovulatory follicles, heifers were OVX on Day 3, 6, or 9 of a cycle. Follicular size was determined, follicular fluid (FF) was collected from follicles 6 mm or greater in diameter, and RIA was used to quantify concentrations of inhibins, estradiol, and progesterone in FF. During growth of dominant ovulatory follicles, concentrations of estradiol and progesterone increased, whereas inhibins decreased when compared with dominant follicles on Day 9 before PG treatment. Concentrations of inhibins were inversely correlated with size and concentrations of estradiol in dominant ovulatory follicles. As dominant nonovulatory follicles increased in size, concentrations of inhibins, estradiol, and progesterone increased. Concentrations of inhibins were positively correlated with size and with progesterone concentrations in dominant nonovulatory follicles. Concentrations of inhibins were greater in dominant nonovulatory follicles than in atretic follicles. In summary, intrafollicular concentrations of inhibins decreased during growth of dominant ovulatory follicles, but increased during growth of dominant nonovulatory follicles. Because of the well-known suppressive action of inhibins on FSH secretion, we hypothesize that inhibins are involved in growth and atresia of dominant follicles during the bovine estrous cycle.  相似文献   

15.
In three experiments, we examined endogenous opioid inhibition of luteinizing hormone (LH) secretion during the bovine estrous cycle. An increase in serum LH in response to the opioid antagonist naloxone (Na; 1 mg/kg i.v.) was the criterion for opioid inhibition. Estrous cycles were synchronized via prostaglandin administration. In Experiment 1, mean serum LH was not different during the luteal phase in yearling heifers (n = 6/group) at Hour 1 after Nal (2.1 ng/ml) compared to controls (1.8 ng/ml). However, LH peak amplitude was increased (p less than 0.05) in the Nal compared to the control group. Serum LH was increased (p less than 0.01) during the follicular phase in heifers at Hour 1 post-Nal compared to controls (4.7 and 3.5 ng/ml, respectively). Again, Nal administration was followed by increased (p less than 0.05) LH pulse amplitude compared to control. In Experiment 2, no effect of Nal upon serum LH was detected in cows (n = 9) during proestrus, metestrus, midluteal and late luteal portions of the estrous cycle. In Experiment 3, the LH response to Nal was examined simultaneously in yearling heifers and cows (n = 5/group) during the luteal and follicular phases. Serum LH increased (p less than 0.001) during Hour 1 post-Nal in heifers compared to cows during the follicular (3.4 vs. 1.7 ng/ml) but not during the luteal phase. LH pulse amplitude also increased (p less than 0.05) during Hour 1 post-Nal in heifers compared to cows during the luteal (2.5 vs. 1.1 ng/nl and follicular (2.5 vs. 1.3 ng/ml) phases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effect of an induced hyperadrenal state on luteinizing hormone (LH) secretion and subsequent ovarian function was examined in both intact and adrenalectomized (ADRX) heifers. Treatments were begun on Day 2 or Day 16 of an estrous cycle in order to examine their effect on corpus luteum development or ovulation, respectively. In Experiment I, continuous intravenous infusion of ACTH (1.0 mg/24 h) to intact heifers decreased LH concentrations during the early phase of the cycle (Days 3-5). Treatment of ADRX heifers with hydrocortisone succinate (HS) (100 mg/24 h) did not appear to change mean LH concentrations, although da Rosa and Wagner (1981) have reported reduced plasma concentrations of progesterone at mid-cycle in these ACTH-treated intact heifers and HS-treated ADRX heifers. ACTH treatment of ADRX heifers had no effect on LH or progesterone. In the second study, there were similar frequencies of LH surges at the anticipated time of ovulation in all treatment groups. HS (100 mg/24 h) in ADRX heifers and ACTH (0.5 mg/24 h) in intact heifers was given continuously beginning on Day 16 of an estrous cycle. Although some animals in all groups exhibited LH surges, the ACTH-treated intact and HS-treated ADRX heifers failed to show a consistent subsequent increase in progesterone concentrations in plasma, suggesting a failure of luteal development. Although no difference was seen in baseline concentrations of LH, there was a greater difference between basal and overall mean LH concentrations in control groups than was observed in ACTH- or HS-treated animals. These induced hyperadrenal states resulted in depression of ovarian function as shown by decreased plasma progesterone during the luteal phase of the cycle. It is not known if other noncorticoid steroids from the adrenal cortex are necessary for a full expression of this effect.  相似文献   

17.
Angus (n=6), Brangus (5/8 Angus x 3/8 Brahman, n=6), and Brahman x Angus (3/8 Angus x 5/8 Brahman, n=6) heifers exhibiting estrous cycles at regular intervals were used to determine if the percentage of Bos indicus breeding influenced the secretory patterns of LH in response to a GnRH treatment on Day 6 of the estrous cycle. Heifers were pre-synchronized with a two-injection PGF(2 alpha) protocol (25 mg i.m. Day -14 and 12.5 mg i.m. Day -3 and -2 of experiment). Heifers received 100 microg GnRH i.m. on Day 6 of the subsequent estrous cycle. Blood samples were collected at -60, -30, and -1 min before GnRH and 15, 30, 60, 90, 120, 150, 180, 240, 300, 360, 420, and 480 min after GnRH to determine concentrations of serum LH. Estradiol concentrations were determined at -60, -30, and -1 min before GnRH. On Day 6 and 8, ovaries were examined by ultrasonography to determine if ovulation occurred. On Day 13, heifers received 25 mg PGF(2 alpha) i.m. and blood samples were collected daily until either the expression of estrus or Day 20 for heifers not exhibiting estrus to determine progesterone concentrations. There was no effect (P>0.10) of breed on ovulation rate to GnRH as well as size of the largest follicle, mean estradiol, and mean corpus luteum volume at GnRH. Mean LH was greater (P<0.05) for Angus (7.0+/-0.8 ng/mL) compared to Brangus (4.6+/-0.8 ng/mL) and Brahman x Angus (2.9+/-0.8 ng/mL), which were similar (P>0.10). Mean LH peak-height was similar (P>0.10) for Brangus (13.9+/-3.4 ng/mL) compared to Angus (21.9+/-3.4 ng/mL) and Brahman x Angus (8.0+/-3.4 ng/mL), but was greater (P<0.05) for Angus compared to Brahman x Angus. Interval from GnRH to LH peak was similar (P>0.10) between breeds. As the percentage of Bos indicus breeding increased the amount of LH released in response to GnRH on Day 6 of the estrous cycle decreased.  相似文献   

18.
Differences in follicular development and circulating hormone concentrations, between lactating cows and nulliparous heifers, that may relate to differences in fertility between the groups, were examined. Multiparous, cyclic, lactating Holstein cows (n=19) and cyclic heifers (n=20) were examined in the winter, during one estrous cycle. The examinations included ultrasound monitoring and daily blood sampling. Distributions of two-wave and three-wave cycles were similar in the two groups: 79 and 21% in cows, 70 and 30% in heifers, respectively. Cycle lengths were shorter by 2.6 days in heifers than in cows, and in two-wave than in three-wave cycles. The ovulatory follicle was smaller in heifers than in cows (13.0+/-0.3 mm versus 16.5+/-0.05 mm). The greater numbers of large follicles in cows than in heifers corresponded well to the higher concentrations of FSH in cows. The duration of dominance of the ovulatory follicle tended to be longer in cows than in heifers. Estradiol concentrations around estrus and the preovulatory LH surge were higher in heifers than in cows (20 versus 9 ng/ml). Progesterone concentrations were higher in heifers than in cows from Day 3 to Day 16 of the cycle. Circulating progesterone did not differ between two-wave and three-wave cycles. The results revealed differences in ovarian follicular dynamics, and in plasma concentrations of steroids and gonadotropins; these may account for the differences in fertility between nulliparous heifers and multiparous lactating cows.  相似文献   

19.
Two trials were conducted to measure the progesterone (P(4)) decline and luteinizing hormone (LH) surge in serum subsequent to administration of a short half-life (short t (1 2 )) prostaglandin (PGF(2alpha)) or a long half-life (long t (1 2 )) prostaglandin analogue (fenprostalene) on Days 6 or 11 of the estrous cycle. Twenty-five crossbred Shorthorn and five Hereford heifers with a mean weight of 331.4 +/- 29.8 kg were used in both trials. The heifers were randomly allotted to receive either a short t (1 2 ) or long t (1 2 ) prostaglandin treatment on Day 6 or 11 of the estrous cycle. A crossover design for the main effect, treatment (type of prostaglandin), was conducted. Heifers that received PGF(2alpha) in Trial I were given fenprostalene in Trial II and vice versa. Stage of the estrous cycle (day) was the same for each heifer in both trials. Stage of estrous cycle was standardized to either Day 6 or 11 by administering Syncro-Mate B (SMB). Blood was collected every hour for 80 h post injection to quantify LH and P(4) concentrations. There were no significant differences (P > 0.05) between the short t (1 2 ) or long t (1 2 ) for either P(4) or LH profiles. In addition, no differences were detected between stages of the estrous cycle for the timing of the preovulatory surge of LH after prostaglandin administration.  相似文献   

20.
Fourteen gilts that had displayed one or more estrous cycles of 18-22 days (onset of estrus = Day 0) and four ovariectomized (OVX) gilts were treated with naloxone (NAL), an opiate antagonist, at 1 mg/kg body weight in saline i.v. Intact gilts were treated during either the luteal phase (L, Day 10-11; n = 7), early follicular phase (EF, Day 15-17; n = 3), or late follicular phase (LF, Day 18-19; n = 4) of the estrous cycle. Blood was collected at 15-min intervals for 2 h before and 4 h after NAL treatment. Serum luteinizing hormone (LH) concentrations for L gilts averaged 0.65 +/- 0.04 ng/ml during the pretreatment period and increased to an average of 1.3 +/- 0.1 ng/ml (p less than 0.05) during the first 60 min after NAL treatment. Serum prolactin (PRL) concentrations for L gilts averaged 4.8 +/- 0.2 ng/ml during the pretreatment period and increased to an average of 6.3 +/- 0.3 ng/ml (p less than 0.05) during the first 60 min after NAL treatment. Serum PRL concentrations averaged 8.6 +/- 0.7 ng/ml and 7.6 +/- 0.6 ng/ml in EF and LF gilts, respectively, prior to NAL treatment, and decreased (p less than 0.05) to an average of 4.1 +/- 0.2 ng/ml and 5.6 +/- 0.4 ng/ml in EF and LF gilts, respectively, during the fourth h after NAL. Naloxone treatment failed to alter serum LH concentrations in EF, LF, or OVX gilts and PRL concentrations in OVX gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号