首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
K Matsumoto  I Uno  T Ishikawa 《Cell》1983,32(2):417-423
Control of the initiation of meiosis was examined in diploids of yeast homozygous for two temperature-sensitive mutations, cyr1 and CYR3, which are defective in adenylate cyclase and cAMP-dependent protein kinase, respectively. The cyr1 and CYR3 mutations permitted the initiation of meiosis, but resulted in the frequent production of two-spored asci at the restrictive temperature. Unlike the wild-type diploid cells, the cyr1 and CYR3 homozygous diploid cells were capable of initiating meiosis even in nutrient growth media. This unique feature of the cyr1 and CYR3 mutants suggests that these mutations relate to the choice between mitotic and meiotic processes. In diploids homozygous for the bcy1 mutation that results in deficiency of the regulatory subunit of cAMP-dependent protein kinase and production of a high level of the catalytic subunit of this enzyme, no premeiotic DNA replication and commitment to intragenic recombination occurred, and no spores were formed. We conclude that the initiation of meiosis may be dependent upon the repression of cAMP production and the inactivation of cAMP-dependent protein kinase.  相似文献   

2.
The meiotic effects of several cell division cycle (cdc) mutations of Saccharomyces cerevisiae have been investigated by electron microscopy and by genetic and biochemical methods. Diploid strains homozygous for cdc mutations known to confer defects on vegetative DNA synthesis were subjected to restrictive conditions during meiosis. Electron microscopy revealed that all four mutants were conditionally arrested in meiosis after duplication of the spindle pole bodies but before spindle formation for the first meiotic division. None of these mutants became committed to recombination or contained synaptonemal complex at the meiotic arrest. — The mutants differed in their ability to undergo premeiotic DNA synthesis under restrictive conditions. Both cdc8 and cdc21, which are defective in the propagation of vegetative DNA synthesis, also failed to undergo premeiotic DNA synthesis. The arrest of these mutants at the stage before meiosis I spindle formation could be attributed to the failure of DNA synthesis because inhibition of synthesis by hydroxyurea also caused arrest at this stage. — Premeiotic DNA synthesis occurred before the arrest of cdc7, which is defective in the initiation of vegetative DNA synthesis, and of cdc2, which synthesizes vegetative DNA but does so defectively. The meiotic arrest of cdc7 homozygotes was partially reversible. Even if further semiconservative DNA replication was inhibited by the addition of hydroxyurea, released cells rapidly underwent commitment to recombination and formation of synaptonemal complexes. The cdc7 homozygote is therefore reversibly arrested in meiosis after DNA replication, whereas vegetative cultures have previously been shown to be defective only in the initiation of DNA synthesis.  相似文献   

3.
The effects of short pulses of cycloheximide on the traversal of the G1 phase of the cell cycle of the yeast Saccharomyces cerevisiae were examined. Cells were released from a block at the regulatory stage of G1, termed ‘start’, and pulsed with cycloheximide. Delays in budding which were considerably longer than the length of the pulse were observed. During the delay the cells remained blocked at ‘start’. No delay in budding was observed after cycloheximide pulses, when cells were released from a cdc 24 block which arrests the budding process but not ‘start’. Overall protein synthesis did not show an additional delay after the pulse. The extra lag following cycloheximide pulses appears to reflect a unique feature of ‘start’. It may be accounted for by a requirement at ‘start’ for a labile protein with a half-life time of about 6 min.  相似文献   

4.
Summary The protein serine-threonine kinase p34 cdc2+ plays a central role in the control of the mitotic cell cycle of the fission yeast Schizosaccharomyces pombe. p34 cdc2+ function is required both for the initiation of DNA replication and for entry into mitosis, and is also required for the initiation of the second meiotic nuclear division. Recent extensive analysis of p34 cdc2+ homologue proteins in higher eukaryotes has demonstrated that p34 cdc2+ function is likely to be conserved in all eukaryotic cells. Here we report the isolation and characterisation of five new temperature-sensitive alleles of the cdc 2+ gene. All five have been cloned and sequenced, together with the meiotically defective cdc2-N22 allele, bringing the total of p34 cdc2+ mutants cloned in this and previous reports to seventeen. The five temperature-sensitive alleles define four separate mutations within the p34 cdc2+ protein sequence, two of which give rise to cell cycle arrest in G2 only, when shifted to the restrictive temperature. The nature of the mutation in each protein is described and possible implications for the structure and function of p34 cdc2+ discussed.  相似文献   

5.
Mutants of Saccharomyces cerevisiae that are derepressed for meiosis and spore formation have been isolated and characterized genetically. All are the result of single, recessive nuclear mutations that fall into four linkage groups. Three of these groups are represented by spd1, spd3 and spd4 mutations, which in homozygous diploids confer poor growth and extensive sporulation on a range of non-fermentable media. Haploids carrying any of these mutations are arrested under these conditions in the G1 phase of the cell division cycle as large unbudded cells. The alleles of the spd2 mutation complemented all other mutations but were very closely linked to the spd1 locus. The fourth linkage group was represented by a mutation conferring temperature-sensitive growth and derepressed sporulation on homozygous diploids grown between 25 degrees C and 30 degrees C on media containing galactose or glycerol, but not glucose, as energy source. Above 30 degrees C this mutant lysed on all media. The mutation it carried failed to complement available cdc25 mutations. These data bring to five the number of loci at which mutation can lead to derepressed sporulation (spd1, spd3, spd4, cdc25 and cdc35). The spd1 locus has been mapped 13.9 cM to the left of the centromere on chromosome XV, adjacent to the SUP3 gene. Diploid strains homozygous for spd mutations are genetically unstable, giving rise to asporogenous mutants at high frequency, usually as the result of a second mutation unlinked to the spd mutation. Diploids homozygous for these mutations, and for spd mutations, show an altered regulation of the formulation of at least three polypeptides normally subject to carbon source repression.  相似文献   

6.
Summary The cell division cycle gene CDC25 was replaced by various disrupted and deleted mutant copies. Mutants disrupted at a central position of the gene, or lacking 532 residues within the amono-terminal half of the gene product grow normally in glucose, but not in acetate media, and they fail to sporulate as homozygous diploids. Disruptions or deletions within the carboxy-terminal half are lethal, except for the deletion of the 38 carboxy-terminal residues, which are required for sporulation but not for growth in glucose or acetate media. It is concluded that distinct domains of the CDC25 gene product are involved in the control of mitosis and/or meiosis.  相似文献   

7.
Are Mitotic Functions Required in Meiosis?   总被引:31,自引:0,他引:31       下载免费PDF全文
G. Simchen 《Genetics》1974,76(4):745-753
Sporulation of diploid yeasts (Saccharomyces cerevisiae), homozygous or heterozygous for temperature-sensitive mitotic cell-cycle mutations, was examined at the restrictive and permissive temperatures. Twenty genes, represented by 32 heterozygotes and 60 homozygotes, were divided into three groups, showing (i) normal sporulation, (ii) no sporulation at the restrictive temperature but normal sporulation at the permissive temperature, (iii) no sporulation at both temperatures. Group (i) as well as several other strains were tested for their meiotic behavior with regard to intragenic recombination and haploidization. The conclusion reached was that all the mitotic nuclear-division and DNA-synthesis functions were required in meiosis. The only cell-division mutations not to affect meiosis were in three cytokinesis loci and in one budemergence locus.  相似文献   

8.
The replication of the 2 μm DNA of Saccharomyces cerevisiae has been examined in cell division cycle (cdc) mutants. The 2 μm DNA does not replicate at the restrictive temperature in cells bearing the cdc28, cdc4, and cdc7 mutations which prevent passage of cells from the G1 phase into S phase. Plasmid replication also is prevented in a mating-type cells by α factor, a mating hormone which prevents cells from completing an event early in G1 phase. The 2 μm DNA ceases replication at 36 °C in a mutant harboring the cdc8 mutation, a defect in the elongation reactions of nuclear DNA replication. Plasmid replication continues at the restrictive temperature for approximately one generation in a cdc13 mutant defective in nuclear division. These results show that 2 μm DNA replication is controlled by the same genes that control the initiation and completion of nuclear DNA replication.  相似文献   

9.
Temperature-sensitive mutations occurring in two unlinked complementation groups, cdc4 and cdc8, are recessive and result in a defect in DNA replication at the restrictive temperature. Results obtained with synchronous cultures suggest that cdc4 functions in the initiation of DNA replication and cdc8 functions in the propagation of DNA replication.  相似文献   

10.
 Sporulation in the yeast Saccharomyces cerevisiae is a meiotic developmental process that occurs in MAT a/MATα heterozygotes in response to nutrient deprivation. Here, the fate and role of peroxisomes during sporulation and germination has been examined by a combination of immunoelectron microscopy and the use of pex mutants defective in peroxisomal functions. Using a green fluorescent protein probe targeted to peroxisomes we show that peroxisomes are inherited through meiosis and that they do not increase in number either during sporulation or spore germination. In addition, there is no requirement for peroxisome degradation prior to spore packaging. Unlike the situation in filamentous fungi, peroxisomes do not proliferate during the yeast life cycle. Functional peroxisomes are dispensable for efficient meiotic development on acetate medium since homozygous Δpex6 diploids sporulated well and produced mature spores that were resistant to diethyl ether. Like haploids, diploid cells can proliferate their peroxisomes in response to oleate as sole carbon source in liquid medium, but under these conditions they do not sporulate. On solid oleate medium, homozygous pex5,Δpex6, and pex7 cells were unable to sporulate efficiently, whereas the wild type was. The results presented here are discussed in terms of the transmission of organelles to progeny cells. Accepted: 19 December 1997  相似文献   

11.
12.
A diploid homozygous for cdc9, a conditional mutation defective in DNA ligase [2], has been used to investigate the role of this enzyme in premeiotic DNA synthesis. The cdc9 ligase has the same effect on premeiotic as on mitotic DNA synthesis and at the restrictive temperature the newly synthesized DNA is recovered in small fragments. A difference has been observed, however, between meiotic and mitotic cells, namely in their ability to join together these fragments on return to the permissive temperature. In mitotic cells this can be readly demonstrated within 50 min, whereas in contrast little joining was detected in meiotic cells, even after 2 h at the permissive temperature.  相似文献   

13.
Nuclear and mitochondr1al DNA synthesis during yeast sporulation   总被引:9,自引:0,他引:9  
Nuclear and mitochondrial DNA synthesis during sporulation of Saccharomyces cerevisiae has been studied in a wild-type (aα) strain and 3 sporulation deficient strains. We find that in a strain carrying a dominant mutation which prevents sporulation, nuclear DNA synthesis is initiated but not completed; mitochondrial DNA synthesis, on the other hand, does take place. In aa and αα diploids no initiation of nuclear DNA synthesis is seen to occur, and only a very low level of mitochondrial DNA synthesis is observed. We conclude that mitochondrial DNA synthesis in sporulation medium is uncoupled from nuclear DNA synthesis. In addition, the steps at which the sporulation process is arrested in aa and αα cells and in the dominant mutant can be ordered in time as being before and after the initiation of nuclear DNA synthesis.  相似文献   

14.
A method of screening for meiotic mutations based on genetic analysis of chromosome disjunction in germline mosaic clones of females homozygous for potential mutations is proposed. The clones are obtained at high frequency due to the use of the transgenic FLP/FRT system of mitotic recombination. This system permits obtaining homozygous clones in the first generation after mutagenesis, whereas the cultures are set up after selection for potential meiotic mutations. This significantly enhances, the efficiency of screening by the elimination of the limiting stage. Using this method, the following mutations were revealed in the 3L arm of Drosophila: ff6leading to disturbed centriole disjunction, which results in appearance of multi-tail spermatids and three-pole spindles during male meiosis; ff3leading to the formation of chromosome bridges in anaphase and telophase, chromosome nondisjunction, and premature chromatin condensation after metaphase; embryonic lethal ff29, with disturbed coordination between nuclear and centrosome cycles during syncytial cleavage; and a series of other mutations causing a wide spectrum of disturbances in male meiosis. Comparison of the proposed method with procedures of screening for yeast cell-cycle mutations showed that we succeeded in attaining the efficiency of screening in the Drosophilamodel close to that in the yeast model.  相似文献   

15.
Summary In Saccharomyces cerevisiae a nuclear recessive mutation, lpd1, which simultaneously abolishes the activities of lipoamide dehydrogenase, 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase has been identified. Strains carrying this mutation can grow on glucose or poorly on ethanol, but are unable to grow on media with glycerol or acetate as carbon source. The mutation does not prevent the formation of other tricarboxylic acid cycle enzymes such as fumarase, NAD+-linked isocitrate dehydrogenase or succinate-cytochrome c oxidoreductase, but these are produced at about 50%–70% of the wild-type levels. The mutation probably affects the structural gene for lipoamide dehydrogenase since the amount of this enzyme in the cell is subject to a gene dosage effect; heterozygous lpd1 diploids produce half the amount of a homozygous wild-type strain. Moreover, a yeast sequence complementing this mutation when present in the cell on a multicopy plasmid leads to marked overproduction of lipoamide dehydrogenase. Homozygous lpd1 diploids were unable to sporulate indicating that some lipoamide dehydrogenase activity is essential for sporulation to occur on acetate.  相似文献   

16.
An experimental rationale for deciphering the relative dependence of steps in a developmental pathway (Jarvik & Botstein, 1973; Hereford & Hartwell, 1974) has been employed to determine the relationship between the hydroxyurea-sensitive step and various temperature-sensitive steps in the cell cycle of Saccharomyces cerevisiae. Since hydroxyurea inhibits DNA replication in yeast (Slater, 1973), the data identify gene products upon whose function DNA replication is dependent (cdc 4, 6, 7, 2, 8, 21) and gene products whose function or synthesis requires DNA replication (cdc 2, 8, 21, 9, 13, 16, 23, 5, 15). Other gene products (cdc 3, 11, 24) function independent of DNA replication. These results suggest that the events of the cell cycle occur in a proscribed order because many of the gene products that mediate these events arc restricted to a prescribed sequence of function.Mutations in two genes (cdc 2 and 6) result in cells that remain sensitive to hydroxyurea after an incubation at the restrictive temperature, despite the fact that both mutants incorporate radioactive precursors into DNA at the restrictive temperature (Hartwell, 1973). It is suggested that cdc 6 specifies a function that is necessary for the proper initiation of DNA replication, and cdc 2 a function that is necessary for correct DNA elongation, and that in the absence of either of these functions the DNA that is made is either faulty or incomplete.  相似文献   

17.
18.
19.
Previous study has demonstrated that incubation of yeast cells of strain AP-1 in sporulation medium at 36° permits them to begin meiosis but that they become arrested at pachytene and undergo enhanced intragenic recombination between ade2 heteroalleles. Tetrad analysis was undertaken to characterize the altered program of meiotic recombination more widely. In one set of experiments, pachytene-arrested cells were permitted to resume sporulation upon transfer to the permissive temperature. In the resulting asci, both postmeiotic segregation and gene conversion were increased several-fold at a number of loci relative to unarrested controls, whereas reciprocal recombination increased two- to threefold. Another set of experiments analyzed the genetic consequences of inducing the pachytene-arrested cells to revert directly to mitotic growth without completion of meiosis. The appearance of homozygous sectors from heterozygous markers revealed that these cells had become committed to appreciable recombination but that reciprocal exchange was less frequent than in normal asci. Taken together, the data indicate that pachytene arrest rendered the cells committed to enhanced recombination upon resumption of sporulation but that most of the crossing over did not occur until release from the arrest. —The genetic basis of pachytene arrest by AP-1 was investigated by mating each of its parents with progeny of strain Y55, which is able to sporulate at 36°. Both of these diploids sporulated at 36°, and asci from the one studied further exhibited 2:2 segregation of the sporulation defect, indicating that pachytene arrest is dependent on a recessive, temperature-sensitive allele at a chromosomal locus.  相似文献   

20.
Summary A mutation (rec) confering low mitotic recombination in a haploid of Aspergillus nidulans carrying the duplication I pab y adE8 bi +/IIdy y + adE20 bi was tested for its effect on mitotic recombination in diploids and on meiosis. The method involved the building of strains that on mating in pairwise combinations can give heterokaryons and diploids homozygous for different sets of chromosomes coming from the rec strain. Three such diploids were tested so far, in which no effect on recombination frequency was found; it means that if rec affects diploids it is not located on linkage groups III, IV, V, or VII. The strains for building the other diploids have been constructed. The construction of a diploid homozygous for linkage group I from the rec parent required a transfer of the duplicated segment y + adE20 bi from chromosome II to its original place on chromosome I. A method for this transfer involving two-step selection is described.A mutation (pop) confering very high mitotic-recombination frequency was found to have a profound effect on crossing over in diploids: all the asexual spores show at least one crossing-over event. The high recombination could be due to the effect of pop on chromosome exchange per se, or on chromosome pairing and thus indirectly on exchange. A test designed to support the second hypothesis failed to supply this support. Since there are other results supporting the first hypothesis it is concluded that pop has a direct effect on mitotic crossing over. The possible uses of pop mutants for mitotic genetic mapping, and for testing whether mitotic crossing over is a special case of sister-strand exchange, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号