首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vos  G. J. M.  Bergevoet  I. M. J.  Védy  J. C.  Neyroud  J. A. 《Plant and Soil》1994,160(2):201-213
A field experiment was carried out at a pilot plot that was cropped with oilseed rape, and then left partly fallow and partly cropped with a green manure (mustard) during the autumn after harvest of the oilseed rape. The rape residues were incorporated in the soil. Methods used to quantify the N fluxes from harvest until sowing of the next crop were (1) 15N balance method, (2) total mineral N analysis and (3) NO emission measurements. Losses of spring applied fertilizer N were negligible in cropped plots and minimal in fallow plots during the following autumn-winter period. Most of the plant-N residues was retained by the organic N pool of the upper 30-cm soil layer. The green manure contributed slightly to soil available N at sowing of the next crop. However, the incorporation of plant material resulted in a nitrate flux that was at risk of leaching on the fallow plots, and on the green manure plots after incorporation of the green manure. This nitrate was largely derived from soil organic N, not from unused fertilizer applied in spring or from immobilized fertilizer. The NO emissions from the green manure plots were significantly higher than emissions from the fallow plots. The plants had a stimulating effect on the NO emission. A relationship between the NO emission and the soil nitrate concentration could not be established. No emissions were measured after green manure incorporation due to the low temperatures at the pilot plot. However, a greenhouse experiment showed an increased emission after incorporation. The NO emissions seemed to be related with the soil ammonium concentration.  相似文献   

2.
豆科绿肥及施氮量对旱地麦田土壤主要肥力性状的影响   总被引:10,自引:0,他引:10  
通过2a田间定位试验,研究渭北旱塬地区夏闲期插播并翻压不同豆科绿肥(长武怀豆、大豆和绿豆)以及小麦生长季不同施氮量(0,108,135,162 kg/hm2)对麦田土壤肥力性状的影响,以期为提高旱地土壤质量提供理论依据.试验结果表明:(1)种植豆科绿肥能显著提高土壤有机质、活性有机质和全氮含量,增加土壤碳库管理指数(CPMI),对土壤速效钾含量没有显著影响;(2)绿豆还田量高于长武怀豆和大豆,然而土壤培肥效果逊于长武怀豆和大豆;(3)夏闲期种植绿肥明显消耗了土壤水分,导致绿肥翻压前、小麦播前直至收获后,0-200 cm土壤贮水量显著低于休闲处理,但耗水量与休闲没有明显差异,由于小麦产量显著增加,因此豆科绿肥显著提高了水分生产效率;(4)与不施氮相比,小麦生长季施用氮肥能显著增加土壤水分生产效率,却对土壤各肥力性状的影响均不显著.夏闲期种植并翻压豆科绿肥是旱地培肥土壤、提高水分生产效率的有效途径.  相似文献   

3.
Readily available chemical fertilizers have resulted in a decline in the use of organic manure (e.g., green manures), a traditionally sustainable source of nutrients. Based on this, we applied urea at the rate of 270 kg ha−1 with and without green manure in order to assess nitrogen (N) productivity in a double rice cropping system in 2017. In particular, treatment combinations were as follows: winter fallow rice-rice (WF-R-R), milk vetch rice-rice (MV-R-R), oil-seed rape rice-rice (R-R-R) and potato crop rice-rice (P-R-R). Results revealed that green manure significantly (p ≤ 0.05) improved the soil chemical properties and net soil organic carbon content increased by an average 117.47%, total nitrogen (N) by 28.41%, available N by 26.64%, total phosphorus (P) by 37.77%, available P by 20.48% and available potassium (K) by 33.10% than WF-R-R, however pH was reduced by 3.30% across the seasons. Similarly, net dry matter accumulation rate enhanced in green manure applied treatments and ranked in order: P-R-R > R-R-R > MV-R-R > WF-R-R. Furthermore, the total leaf dry matter transport (t ha−1 ) for the P-R-R in both seasons was significantly higher by an average 11.2%, 7.2% and 36 % than MV-R-R, R-R-R, and WF-R-R, respectively. In addition, net total nitrogen accumulation (kg ha−1 ) was found higher in green manure applied plots compared to the control. Yield and yield attributed traits were observed maximum in green manure applied plots, with treatments ranking as follows: P-R-R > R-R-R > MV-R-R > WF-R-R. Thus, results obtained highlight ability of green manure to sustainably improve soil quality and rice yield.  相似文献   

4.
It has been demonstrated that plant roots can take up small amounts of low-molecular weight (LMW) compounds from the surrounding soil. Root uptake of LMW compounds have been investigated by applying isotopically labelled sugars or amino acids but not labelled organic matter. We tested whether wheat roots took up LMW compounds released from dual-labelled (13C and 15N) green manure by analysing for excess 13C in roots. To estimate the fraction of green manure C that potentially was available for root uptake, excess 13C and 15N in the primary decomposers was estimated by analysing soil dwelling Collembola that primarily feed on fungi or microfauna. The experimental setup consisted of soil microcosm with wheat and dual-labelled green manure additions. Plant growth, plant N and recoveries of 13C and 15N in soil, roots, shoots and Collembola were measured at 27, 56 and 84 days. We found a small (<1%) but significant uptake of green manure derived 13C in roots at the first but not the two last samplings. About 50% of green manure C was not recovered from the soil-plant system at 27 days and additional 8% was not recovered at 84 days. Up to 23% of C in collembolans derived from the green manure at 56 days (the 27 days sampling was lost). Using a linear mixing model we estimated that roots or root effluxes provided the main C source for collembolans (54−79%). We conclude that there is no solid support for claiming that roots assimilated green manure derived C due to very small or no recoveries of excess 13C in wheat roots. During the incubation the pool of green manure derived C available for root uptake decreased due to decomposition. However, the isotopic composition in Collembola indicated that there was a considerable fraction of green manure derived C in the decomposer system at 56 days thus supporting the premise that LMW compounds containing C from the green manure was released throughout the incubation. Responsible Editor: A. C. Borstlap.  相似文献   

5.
In the highlands of Western Kenya, we investigated the reversibility of soil productivity decline with increasing length of continuous maize cultivation over 100 years (corresponding to decreasing soil organic carbon (SOC) and nutrient contents) using organic matter additions of differing quality and stability as a function of soil texture and inorganic nitrogen (N) additions. The ability of additions of labile organic matter (green and animal manure) to improve productivity primarily by enhanced nutrient availability was contrasted with the ability of stable organic matter (biochar and sawdust) to improve productivity by enhancing SOC. Maize productivity declined by 66% during the first 35 years of continuous cropping after forest clearing. Productivity remained at a low level of 3.0 t grain ha-1 across the chronosequence stretching up to 105 years of continuous cultivation despite full N–phosphorus (P)–potassium (K) fertilization (120–100–100 kg ha−1). Application of organic resources reversed the productivity decline by increasing yields by 57–167%, whereby responses to nutrient-rich green manure were 110% greater than those from nutrient-poor sawdust. Productivity at the most degraded sites (80–105 years since forest clearing) increased in response to green manure to a greater extent than the yields at the least degraded sites (5 years since forest clearing), both with full N–P–K fertilization. Biochar additions at the most degraded sites doubled maize yield (equaling responses to green manure additions in some instances) that were not fully explained by nutrient availability, suggesting improvement of factors other than plant nutrition. There was no detectable influence of texture (soils with either 11–14 or 45–49% clay) when low quality organic matter was applied (sawdust, biochar), whereas productivity was 8, 15, and 39% greater (P < 0.05) on sandier than heavier textured soils with high quality organic matter (green and animal manure) or only inorganic nutrient additions, respectively. Across the entire degradation range, organic matter additions decreased the need for additional inorganic fertilizer N irrespective of the quality of the organic matter. For low quality organic resources (biochar and sawdust), crop yields were increasingly responsive to inorganic N fertilization with increasing soil degradation. On the other hand, fertilizer N additions did not improve soil productivity when high quality organic inputs were applied. Even with the tested full N–P–K fertilization, adding organic matter to soil was required for restoring soil productivity and most effective in the most degraded sites through both nutrient delivery (with green manure) and improvement of SOC (with biochar).  相似文献   

6.
Summary Sudangrass [Sorghum sudanense (Piper) Stapf] was grown in a greenhouse pot experiment on 39 soils having a broad range of chemical and physical characteristics. Labelled N as sodium nitrate (9% excess N15) was applied at rates of 200 and 400 mg of N per pot (2kg of soil). After 6 weeks of growth, total N and N15 were determined on plant tops and roots and on the cropped soils. Maximum yield differed widely among the soils owing to variations in yield-limiting factors other than N. Despite the diversity of responses to N fertilizer, the experiment provided a meaningful basis for assessing soil nitrogen availability. Amounts of N taken up from soils were similar from pots receiving no fertilizer N and from pots receiving labeled N.Amounts of soil organic N mineralized during cropping plus the mineral N present initially in the soils correlated highly with amounts of soil N taken up by whole plants (tops and roots). Average recovery by whole plants of mineral N formed before and during the cropping period was about 85 per cent, a value corresponding closely to recovery of fertilizer N in this experiment. The similarity in recovery of N provided by soil and fertilizer suggests that mineral N from these sources comprised a common pool that behaved as an entity with respect to mineralization-immobilization relations or other reactions affecting N availability to plants.A-values, the amounts of soil N having an availability equivalent to that of applied fertilizer N, were similar for two levels of applied labeled N and for tops and whole plants. Moreover, A-values were similar to amounts of N mineralized before and during crop growth. This result is particularly significant, since amounts of N mineralized during crop growth were estimated from N mineralization potentials, taking into account the effects of temperature on the mineralization rate constant. Thus, the study provides preliminary evidence that the soil N mineralization potential offers a basis for reliably estimating amounts of soil N mineralized during selected periods of time under specified temperature regimes.  相似文献   

7.
Legume‐containing leys are commonly used to improve soil fertility in the 2‐year conversion period from conventional to organic production. While in‐conversion land may be grazed, in stockless farming systems, land is effectively out of production, leading to a reduction in income and pressure on cash flow. The impacts of seven organic conversion strategies on the first organic crop (winter wheat) were previously reported. This study investigates the effect of the conversion strategies on the second (winter beans) and third (winter oats) organic crops, thereby extending the analysis throughout the first complete rotation. The strategies were (a) 2‐years’ red clover–ryegrass green manure, (b) 2‐years’ hairy vetch green manure, (c) red clover for seed production then a red clover–ryegrass green manure, (d) spring wheat undersown with red clover, then a red clover green manure, (e) spring oats, then winter beans, (f) spring wheat, then winter beans and (g) spring wheat undersown with red clover, then a barley–pea intercrop. Conversion strategy had a significant impact on organic bean yield, which ranged from 2.78 to 3.62 t ha?1, and organic oat yield, which ranged from 3.24 to 4.17 t ha?1. In the organic bean crop, weed abundance prior to harvest, along with soil texture, accounted for 70% of yield variation. For the oats, soil mineral nitrogen in November together with weed abundance in April accounted for 72% of the variation in yield. The impacts of conversion strategies on soil mineral nitrogen levels were still detectable 3 years after conversion. The results from this study indicate that the choice of conversion crop has important long‐term implications. More exploitative conversion strategies, that is those with a higher proportion of cash cropping, had an increased weed burden and decreased levels of soil mineral nitrogen, leading to reduced yields of beans and oats, 2 and 3 years after conversion.  相似文献   

8.
Current inputs of organic materials to cropped lands on sandy Alfisols and Entisols in Sahelian West Africa are insufficient to arrest soil organic matter (SOM) decline. Crop residues and green manures require proper management in order to maximize their contribution to nutrient supply and SOM maintenance. The objectives of this study were to quantify the rates of C and N mineralization from cowpea (Vigna unguiculata (L.) Walp.) green manure, cowpea residue, and millet (Pennisetum glaucum (L.) R.Br.) residue under field conditions in Niger and to determine the effect of these organic amendments on pearl millet yield. Millet was grown (1) as sole crop, (2) as intercrop with cowpea, (3) as intercrop with cowpea that was incorporated as green manure during the second half of the growing season, (4) with incorporated cowpea residue (2000 kg ha–1), (5) with millet residue mulch (3000 kg ha–1), and (6) with N fertilizer. Carbon loss as CO2 from soil with and without organic amendment was measured three times per week during the growing season. Nitrogen fertilizer increased millet yield only in a year with a favorable rainfall distribution. Cowpea grown in intercrop with millet during the first part of the growing season and subsequently incorporated as green manure between millet rows increased millet grain yield in a year with sufficient early rainfall, which could be attributed to the rapid rate of decomposition and nutrient release during the first 3 weeks after incorporation. In a year with limited early rainfall, however, densely planted green manure cowpeas competed for water and nutrients with the growing millet crop. Incorporated cowpea residue and millet residue mulch increased millet yield. Surface applied millet residue had high rates of decomposition only during the first 3 days after a rainfall event, with 34% of the millet residue C lost as CO2 in one rainy season. Recovery of undecomposed millet residue at the end of the rainy season was related to presence or absence of termites, but not to seasonal C loss. Millet residue mulch increased soil organic C content of this sandy Alfisol in Niger. Cowpea and millet residues had a greater effect on SOM and millet yield than cowpea green manure due to their greater rate of application and slower rate of decomposition.  相似文献   

9.
The potential for aerobic mineralization of [U-14C]dibenzo-p-dioxin (DD) was investigated in samples of three different agricultural soils already contaminated with polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) by industrial activities. The influence of amendments, i.e. wheat straw and compost, and of soil treatment by inoculation with lignolytic fungi, grown on wheat straw substrate, was tested. All the soils tested contained an indigenous DD-mineralizing microflora. The soil characterized by the highest organic matter content and the highest content of soil microbial biomass displayed the best DD mineralization of 36.6% within 70 days, compared with the two organic-matter-poor soils with an endogenous DD mineralization of 19.5% and 23.3% respectively. Amendments with compost increased DD mineralization up to 28% in both soils with low organic matter and microbial biomass content, but did not affect mineralization in the organic-matter-rich soil. Addition of wheat straw had no constant influence on DD mineralization in the soils tested. The best DD mineralization resulted from inoculation with lignolytic white-rot fungi (Phanerochaete chrysosporium, Pleurotus sp. Florida, Dichomitus squalens) and with an unidentified lignolytic fungus, which was isolated originally from a long-term PCDD/F-contaminated soil. A mineralization of up to 50% within 70 days was reached by this treatment. The influence of inoculated fungi on mineralization differed between the soils investigated. Received: 14 April 1997 / Received revision: 24 June 1997 / Accepted: 29 June 1997  相似文献   

10.
We compared symbiotic N2 fixation by winter forage legumes (clovers, medics and vetches) using the 15N natural abundance technique in three experiments. Vetches (Vicia spp.) were the most productive legumes, and woollypod vetch fixed (shoot+root) up to 265 kg N ha–1 (mean 227 kg N ha–1) during a 4–5 months period over winter and early spring. Balansa and Berseem clovers, and Gama medic were highly productive in the first experiment, but fixed significantly less N than woollypod vetch in the second experiment. A 6-year study (1997–2003) compared cotton (Gossypium hirsutum L.) systems with and without vetch, or with faba beans (Vicia faba L.) to assess the effects of these crops on cotton production. Woollypod vetch was grown either between annual cotton crops, or between wheat (Triticum aestivumL.) and cotton crops. Vetch added 230 kg N ha–1 (174 kg fixed N ha–1) to the soil when incorporated as a green manure. Faba bean shoot residues and nodulated roots contributed 108 kg fixed N ha–1 to the soil, following the removal of 80 kg N ha–1 in the harvested seed (meaned over three crops). Lablab (Lablab purpureus L. – summer-growing and irrigated) added 277 kg N ha–1 (244 kg fixed N ha–1) before incorporation as a green manure in the first year of the experiment. The economic optimum N fertiliser rate for each cropping system was determined every second year when all systems were sown to cotton. Cotton following cotton required 105 kg fertiliser N ha–1, but only 40 kg N ha–1 when vetch was grown between each cotton crop. Cotton following wheat required 83 kg fertiliser N ha–1 but no N fertiliser was needed when vetch was grown after wheat (the highest yielding system). Cotton following faba beans also required no N fertiliser. The vetch-based systems became more N fertile over the course of the experiment and produced greater lint yields than the comparative non-legume systems, and required less N fertiliser. While no cash flow was derived from growing vetch, economic benefits accrued from enhanced cotton yields, reduced N fertiliser requirements and improved soil fertility. These findings help explain the rotational benefits of vetches observed in other regions of the world.  相似文献   

11.
Cowpea [Vigna unguiculata (L). Walp.] has great potential as green manure due to its rapid N accumulation and efficient N2 fixation. The objective of this study was to measure the rate of N mineralization from cowpea plant parts harvested at onset of flowering (5 weeks) and mid pod-fill (7 weeks) under near optimum conditions. Cowpeas were grown in a greenhouse and supplied with 15NH4 15NO3 to isotopically label tissue. Cowpea leaves, stems, and roots were incorporated into a sandy soil (Psammentic Paleustalf) and net N mineralized was measured several times during a 10 week incubation. The amount of N accumulated in 7-week old cowpeas was more than double that in 5-week old cowpeas. The portion of N mineralized after 10 weeks was 24% for 5-week old cowpeas and 27% for 7-week old cowpeas. The rate of N mineralization from leaves and stems increased with plant age, but decreased for roots. The amount of N mineralized from 7-week old cowpeas was more than double (235%) that from 5-week old cowpeas due to greater N accumulation and a more rapid rate of N mineralization of the more mature cowpeas. The greatest amount of N was released from leaves, which amounted to 74 and 65% of total N mineralization from 5- and 7-week old cowpeas, respectively. The percentage of N mineralized by 10 weeks was linearly related to the tissue N concentration of the plant parts and to their C/N ratio. These relationships allow a quick estimation of the amount of N that would mineralize from cowpea residues incorporated into soil based on their N concentration or C/N ratio.  相似文献   

12.
A computer simulation model of the turnover of organic matter in soil was adapted to simulate the change in soil organic C and N contents of soil during several years following annual additions of farm slurry to maize fields. The model proved successful in estimating the build-up of both C and N in soil and the leaching of N to ground-water in response to applications of slurry ranging from 50 to 300 tons per hectare per year. The model was then used to estimate the build-up of organic matter in soil under crops of fodder maize that were grown using the excess of manure produced during the last 20 years in the Netherlands. The build-up of organic matter from these applications was estimated to lead to about 70 kg extra nitrogen mineralized ha-1 yr-1. As a result of legislation manure applications have decreased and are expected to decrease further in the immediate future. Calculations suggest that after 10 years of manure applied at rates no longer exceeding the amount needed to replace the phosphorus removed by crops, the extra mineralization of N will still be between 45 and 60 kg ha-1 yr-1. If manure applications cease altogether then the extra mineralization will be about 25–30 kg N ha-1 yr-1.  相似文献   

13.
Soil nitrogen heterogeneity in a Dehesa ecosystem   总被引:1,自引:0,他引:1  
The C mineralization and N transformations during the decomposition of sunflower stalks (Helianthus annuus L.) and wheat straw (Triticum aestivum L.) with and without addition of (NH4)2SO4 (27.53 atom% 15N) were studied in a Vertisol. Soil samples were incubated under aerobic conditions for 224 days at 22 °C. The plant residues were added at a rate of 5.2 g kg-1 soil. Nitrogen was applied at a rate of 50.7 mg N kg-1 soil. Carbon dioxide emission and inorganic N content in soil were periodically determined. Gross N immobilization and remineralization were calculated on the basis of the isotopic dilution technique. At the end of the incubation period a 15N balance was established. Respectively, 68 and 45% of the applied residue-C mineralized from the sunflower stalks and wheat straw after 224 days. Both crop residues caused losses of up to 25% of added 15N after 224 days of incubation. These 15N losses were about three times larger than in the control soil, and were probably due to denitrification. The net immobilization of soil derived N following residue incorporation was largest in the case of wheat straw, depleting all soil inorganic N. In the wheat straw treatment with added (NH4)2SO4 soil inorganic N remained available, resulting in an enhanced initial C mineralization and N immobilization compared to the treatment without added N. In the case of the sunflower stalks, the high inorganic N content of the stalks suppressed the effects of N addition on C mineralization and N immobilization/mineralization. Gross N immobilization amounted to 31.9 and 28.2 mg N g-1 added C after 14 days for wheat straw and sunflower stalks, respectively. At the end of the incubation, about 35% of the newly immobilized N was remineralized in both plant residue treatments. Gross N immobilization plotted against decomposed C suggests that fairly uniform C-N relationships exist during the decomposition of divers C substrates. The results demonstrate that low fertilizer N use efficiencies may be expected in a wheat-sunflower cropping system with incorporation of crop residues, as the fertilizer N applied becomes largely immobilized in the soil organic fraction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Predictive models of the temporal mineralization pattern of organic residues may help in development of strategies to synchronize N mineralization with the crop demand and minimize off-season losses. In the present investigation, two double first-order models with temperature as a driving variable were tested against data on decomposition and N mineralization, respectively, in two field experiments with green manure. On 15 November 1984, mesh bags with red clover (Trifolium pratense L.) shoot material were placed at five depths (0–30 cm) on a sandy-loam and a loam site in south-eastern Norway. 167 days after burial, 73% of the initial clover nitrogen remained on the surface, 62% at 5-cm depth, and 56% at 30-cm depth. The differences among buried samples largely persisted throughout the experimental period (1.5 years). The decomposition rate slowed down appreciably after day 270, when the amount of N in buried bags averaged 33% of the initial N. The effect of site was small and varied during the experiment. The decay model, which was derived from laboratory incubations, predicted the initial observations of remaining clover material fairly well. Later, predicted and measured values diverged because recalcitrant residues decomposed more extensively in the field than in the laboratory. The N mineralization model was tested against net N mineralization from white-clover (T. repens L.) green manure ploughed down in late October. The course of the net N mineralization was well described when disregarding an over-prediction (6–12% of applied clover N), which may be due to N losses not accounted for in the model. The predictions were sensitive to the kind of function applied for correction of decay rates at temperatures below 0° C. The results showed that decomposition of clover green manure is rapid, even at temperatures below 5° C. N-rich plant material, therefore, should be worked into the soil as late as possible in the autumn or, preferably, remain on the soil surface until spring in order to reduce the probability of N losses.  相似文献   

15.
In this study soil chemical and biochemical properties, cover crop biomass production and quality, and climatic factors (AI) have been taken into account in order to identify sensitive agroecological indicators suitable for an early assessment of green manuring outcomes, measured in terms of soil CO2 emission and soil mineralization dynamics in a short term experiment in a Mediterranean environment. The field experiment was conducted over two cropping rotations during 2004–2005 in central Italy. A winter cover crop/sweet pepper sequence with the cover crop used as green manure was adopted. The cover crop treatments were common vetch (CV), rye grass (RG), and fallow soil as the control (Control). Soil enzyme activities (acid phosphatase. protease and β-glucosidase), CO2 emission, and inorganic nitrogen concentrations were monitored from cover crop green manure incorporation to pepper harvesting in order to evaluate soil mineralization dynamics. The climatic conditions were summarized by the monthly aridity index (AI) calculated as the precipitation/temperature ratio. A group of mineralization indexes, calculated using values of available nitrogen and enzyme activities, was used to describe the soil process during crop cycle after green manure. The mineralization process dynamic results as a combined effect of climatic conditions and soil organic matter quality produced by different cover crop green manures. The common vetch green manuring was effective in lowering the soil C/N with respect to the control soil (5.7 vs. 8.3 and 8.5 vs. 12.1 in 2004 and 2005, respectively), promoting CO2 emission (8.95 vs. 5.19 and 6.75 vs. 4.28 Mg CO2-C ha−1 in 2004 and 2005, respectively), enzyme activity, nitrogen release, and crop aboveground biomass (8.59 vs. 7.05 Mg ha−1 dry matter). Among the selected agroecological indicators, the relationships between enzyme activities and the monthly aridity index may suggest a new approach for agronomists and soil scientists to understand the combined effect of temperature and precipitation on soil mineralization dynamic. The high aridity index at the time of green manuring may have caused a priming effect of SOM and promoted soil mineralization during the vegetable crop growing season in a Mediterranean environment. Finally, no evidence was found between soil CO2 emission and the aridity index; soil respiration was mainly affected by cover crop biomass and the soil C/N ratio.  相似文献   

16.
探讨外源养分的输入对土壤系统内碳、氮、磷化学计量特征的影响,对于深刻认识农田土壤有机碳(C)和养分循环及其相互作用过程具有重要意义。以26年的农田长期定位施肥试验为平台,分析长期不同施肥条件下土壤、有机态及微生物生物量碳、氮、磷含量及其化学计量学特征,并根据内稳性模型y=c x~(1/H)计算其化学计量内稳性指数H。结果表明:与长期撂荒处理(CK_0)相比,种植作物条件下26年化肥配施有机肥处理(MNPK和1.5MNPK)显著降低微生物生物量氮含量,但显著提高了微生物生物量磷的含量。相对于撂荒处理,即使长期配施化肥磷处理(NP、PK、NPK),其土壤有机磷降低显著。对于C∶N比而言,化肥配施有机物料处理(秸秆或有机肥)的土壤C∶N比、有机质C∶N及微生物生物量C∶N比均显著低于化肥处理(N、NP、PK和NPK)。对于C∶P比而言,相对于撂荒处理,26年施用磷肥(化肥磷或有机磷)显著降低了土壤C∶P比和微生物生物量C∶P比,而CK和偏施化肥处理(N、NP和PK)显著降低了土壤有机质C∶P比。对于土壤N∶P比而言,撂荒处理土壤N∶P比显著高于其他处理,而撂荒处理土壤有机质N∶P比显著高于CK和化肥处理,表明不施肥或化肥条件下作物种植加剧了土壤有机质中氮素的消耗。微生物生物量C∶N、C∶P、N∶P比的内稳性指数H分别为0.24、0.75、0.64,不具有内稳性特征。微生物生物量C∶N、C∶P、N∶P比分别与土壤C∶N、C∶P、N∶P比呈显著正相关关系,但与土壤有机质碳氮磷化学计量比之间无显著相关性。表明土壤碳、氮、磷元素的改变会直接导致微生物生物量碳、氮、磷化学计量比的改变,但微生物生物量碳氮磷化学计量比对土壤有机质碳氮磷化学计量比无显著影响,土壤有机质的碳氮磷计量比可能更多是受到作物和施肥等养分管理措施的影响。  相似文献   

17.
Nitrogen contribution of cowpea green manure and residue to upland rice   总被引:1,自引:0,他引:1  
Cowpea, Vigna unguiculata (L.) Walp., is well adapted to acid upland soil and can be grown for seed, green manure, and fodder production. A 2-yr field experiment was conducted on an Aeric Tropaqualf in the Philippines to determine the effect of cowpea management practice on the response of a subsequent upland rice crop to applied urea. Cowpea was grown to flowering and incorporated as a green manure or grown to maturity with either grain and pods removed or all aboveground vegetation removed before sowing rice. Cowpea green manure accumulated on average 68 kg N ha−1, and aboveground residue after harvest of dry pods contained on average 46 kg N ha−1. Compared with a pre-rice fallow, cowpea green manure and residue increased grain yield of upland rice by 0.7 Mg ha−1 when no urea was applied to rice. Green manure and residue substituted for 66 and 70 kg urea-N ha−1 on upland rice, respectively. In the absence of urea, green manure and residue increased total aboveground N in mature rice by 12 and 14 kg N ha−1, respectively. These increases corresponded to plant recoveries of 13% for applied green manure N and 24% for applied residue N. At 15 d after sowing rice (DAS), 33% of the added green manure N and 16% of the added residue N was recovered as soil (nitrate + ammonium)-N. At 30 DAS, the corresponding recoveries were 20 and 37% for green manure N and residue N, respectively. Cowpea cropping with removal of all aboveground cowpea vegetation slightly increased (p<0.05) soil (nitrate + ammonium)-N at 15 DAS as compared with the pre-rice fallow, but it did not increase rice yield. Cowpea residue remaining after harvest of dry pods can be an effective N source for a subsequent upland rice crop.  相似文献   

18.
Plant roots and microorganisms play an important role in the soil N cycle and plant N nutrition through the release of extracellular enzymes. In the present greenhouse pot experiment, wheat (Triticum aestivum) seedlings were grown in a fluvo-aquic soil (Udifluvent) to investigate N mineralization and utilization in the rhizosphere of wheat. The soil received chemical fertilizer (15N-labeled urea), chemical fertilizer plus manure (common urea + 15N-labeled swine manure) or no N. Plant roots were separated from the soil with a nylon cloth, and 1-mm increments of soil moving laterally away from roots were analyzed for N, microbial C, and the activities of invertase, urease and protease. Chemical fertilizer plus manure promoted wheat growth and N absorption significantly compared with chemical fertilizer. 15N from both chemical fertilizer and swine manure accumulated significantly in the rhizosphere soil within 5 mm of the roots. Fertilized N could thus move easily laterally towards roots and there was no indication that movement through the soil limited plant N supply. A large proportion of fertilizer N was lost from the soil during the wheat growing period, and N utilization efficiency was 24% for chemical fertilizer and 30% for swine manure. In addition, faster rates of N mineralization, larger amounts of microbial C, and increased activities of invertase, urease and protease occurred in the rhizosphere compared with other parts of the soil. There was a significant correlation between microbial C and N mineralization rate (r?=?0.968, P?<?0.01) in the whole soil. Microbial C also showed significant positive correlations with activities of invertase (r?=?0.892, P?<?0.01) and protease (r?=?0.933, P?<?0.01). Further study showed that adding manure into soil increased microbial C and the activities of invertase and protease; adding urea stimulated urease activity in the same soil. Changes in soil enzyme activities in response to N fertilizers could be considered indicators for different fertilizer managements.  相似文献   

19.
The fate of nitrogen from15N-labelled sheep manure and ammonium sulfate in small lysimeters and plots in the field was studied during two growth seasons. In April 1991,15N-labelled sheep faeces (87 kg N ha–1) plus unlabelled (NH4)2SO4 (90 kg N ha–1), and (15NH4)2SO4 (90 kg N ha–1) were each applied to three soils; soil 1 (100% soil + 0% quartz sand), soil 2 (50% soil + 50% quartz sand) and soil 3 (25% soil + 75% quartz sand). The lysimeters were cropped with spring barley (Hordeum vulgare L.) and undersown ryegrass (Lolium perenne L.). The barley crop recovered 16–17% of the labelled manure N and 56% of the labelled (NH4)2SO4-N. After 18 months 30% of the labelled manure N and 65% of the labelled (NH4)2SO4-N were accumulated in barley, the succeeding ryegrass crop and in leachate collected below 45 cm of soil, irrespective of the soil-sand mixture. Calculating the barley uptake of manure N by difference of N uptake between manured and unmanured soils, indicated that 4%, 10% and 14% of the applied manure N was recovered in barley grown on soil-sand mixtures with 16%, 8% and 4% clay, respectively. The results indicated that the mineralization of labelled manure N was similar in the three soil-sand mixtures, but that the manure caused a higher immobilization of unlabelled ammonium-N in the soil with the highest clay content. Some of the immobilized N apparently was remineralized during the autumn and the subsequent growth season. After 18 months, 11–19% of the labelled manure N was found in the subsoil (10–45 cm) of the lysimeters, most of this labelled N probably transported to depth as organic forms by leaching or through the activities of soil fauna. In unplanted soils 67–74% of the labelled manure N was recovered in organic form in the 0–10 cm soil layer after 4 months, declining to 55–64% after 18 months. The lowest recovery of labelled N in top-soil was found in the soil-sand mixture with the lowest clay content. The mass balance of15N showed that the total recovery of labelled N was close to 100%. Thus, no significant gaseous losses of labelled N occurred during the experiment.  相似文献   

20.
The soil nitrogen cycle was investigated in a pre‐established Lolium perenne sward on a loamy soil and exposed to ambient and elevated atmospheric CO2 concentrations (350 and 700 μL L?1) and, at elevated [CO2], to a 3 °C temperature increase. At two levels of mineral nitrogen supply, N– (150 kgN ha?1 y?1) and N+ (533 kgN ha?1 y?1), 15N‐labelled ammonium nitrate was supplied in split applications over a 2.5‐y period. The recovery of the labelled fertilizer N was measured in the harvests, in the stubble and roots, in the macro‐organic matter fractions above 200 μm in size (MOM) and in the aggregated organic matter below 200 μM (AOM). Elevated [CO2] reduced the total amount of N harvested in the clipped parts of the sward. The harvested N derived from soil was reduced to a greater extent than that derived from fertilizer. At both N supplies, elevated [CO2] modified the allocation of the fertilizer N in the sward, in favour of the stubble and roots and significantly increased the recovery of fertilizer N in the soil macro‐organic matter fractions. The increase of fertilizer N immobilization in the MOM was associated with a decline of fertilizer N uptake by the grass sward, which supported the hypothesis of a negative feedback of elevated [CO2] on the sward N yield and uptake. Similar and even more pronounced effects were observed for the native N mineralized in the soil. At N–, a greater part of the fertilizer N organized in the root phytomass resulted in an underestimation of N immobilized in dead roots and, in turn, an underestimation of N immobilization in the MOM. The 3 °C temperature increase alleviated the [CO2] effect throughout much of the N cycle, increasing soil N mineralization, N derived from soil in the harvests, and the partitioning of the assimilated fertilizer N to shoots. In conclusion, at ambient temperature, the N cycle was slowed down under elevated [CO2], which restricted the increase in the aboveground production of the grass sward, and apparently contributed to the sequestration of carbon belowground. In contrast, a temperature increase under elevated [CO2] stimulated the soil nitrogen cycle, improved the N nutrition of the sward and restricted the magnitude of the soil C sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号