首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. This study examined genetic variation within and among populations of the caddis fly Tasiagma ciliata (Tasimiidae: Trichoptera) from rainforest streams in south-east Queensland, Australia.
2. Very low levels of genetic differentiation at large spatial scales, between subcatchments and between catchments, indicated that dispersal by the winged adults is widespread. However, significant genetic differentiation at the smallest spatial scale examined, within reaches in a single stream, suggested limited movement by larvae within streams.
3. A patchy distribution of deviations from Hardy–Weinberg equilibrium and differences in patterns among allozyme loci suggested that populations in particular reaches were the result of only a few matings.
4. These results are surprising, given the large numbers of larvae present within a single reach. We suggest that stochastic effects of recruitment may underlie much of the spatial and temporal variation in population numbers in these rainforest streams.  相似文献   

2.
The Baja California peninsula represents a biogeographical boundary contributing to regional differentiation among populations of marine animals. We investigated the genetic characteristics of perennial and annual populations of the marine angiosperm, Zostera marina, along the Pacific coast of Baja California and in the Gulf of California, respectively. Populations of Z. marina from five coastal lagoons along the Pacific coast and four sites in the Gulf of California were studied using nine microsatellite loci. Analyses of variance revealed significant interregional differentiation, but no subregional differentiation. Significant spatial differentiation, assessed using θST values, was observed among all populations within the two regions. Z. marina populations along the Pacific coast are separated by more than 220 km and had the greatest θST (0.13–0.28) values, suggesting restricted gene flow. In contrast, lower but still significant genetic differentiation was observed among populations within the Gulf of California (θST = 0.04–0.18), even though populations are separated by more than 250 km. This suggests higher levels of gene flow among Gulf of California populations relative to Pacific coast populations. Direction of gene flow was predominantly southward among Pacific coast populations, whereas no dominant polarity in the Gulf of California populations was observed. The test for isolation by distance (IBD) showed a significant correlation between genetic and geographical distances in Gulf of California populations, but not in Pacific coast populations, perhaps because of shifts in currents during El Niño Southern Oscillation (ENSO) events along the Pacific coast.  相似文献   

3.
The success of invasive ants is frequently attributed to genetic and behavioural shifts in colony structure during or after introduction. The Argentine ant ( Linepithema humile ), a global invader, differs in colony genetic structure and behaviour between native populations in South America and introduced populations in Europe, Japan, New Zealand and North America. However, little is known about its colony structure in Australia. We investigated the genetic structure and behaviour of L. humile across Melbourne, Victoria by quantifying variation at four microsatellite loci and assaying intraspecific aggression at neighbourhood (30–200 m), fine (1–3.3 km) and regional (5–82 km) spatial scales. Hierarchical analyses across these scales revealed that most genetic variation occurred among workers within nests (∼98%). However, although low genetic differentiation occurred among workers between nests at the fine and regional scales (∼2%), negligible differentiation was detected among workers from neighbouring nests. Spatial genetic autocorrelation analysis confirmed that neighbouring nests were genetically more similar to each other. Lack of aggression within and across these scales supported the view that L. humile is unicolonial and forms a large supercolony across Melbourne. Comparisons of genetic structure of L. humile among single nests sampled from Adelaide, Brisbane, Hobart and Perth with Melbourne showed no greater levels of genetic differentiation or dissimilar spatial structure, suggesting an Australia-wide supercolony.  相似文献   

4.
SUMMARY 1. Dispersal ability is an important ecological factor that can influence population structure. In an attempt to determine the extent that the pattern of genetic differentiation is correlated with dispersal ability in stream-dwelling aquatic insects, we used the amplified fragment length polymorphism (AFLP) technique to characterise genetic variation in four aquatic insect species: Gumaga griseola (Trichoptera: Sericostomatidae), Helicopsyche mexicana (Trichoptera: Helicopsychidae), Psephenus montanus (Coleoptera: Psephenidae) and Ambrysus thermarum (Hemiptera: Naucoridae). Individuals were sampled from several sites within two adjacent catchments in the Arizona White Mountains. In addition to the genetic analyses, a 20-week-long trapping study was used to determine the relative dispersal ability of adults of the four species examined.
2. We obtained hierarchical indicators of genetic differentiation for catchments, sites within catchments and sites across the region examined. Overall, average estimators of genetic differentiation ( F -statistics) were consistent with direct observations of organismal movement, although it was our direct observations on adult insect flight that permitted us to interpret our results correctly. This was because of the fact that a lack of genetic differentiation across watersheds can be interpreted in two ways.
3. In contrast to F -statistics, patterns of genetic isolation by distance for each species more clearly reflected dispersal ability, suggesting that such analytical approaches provide less ambiguous information about the importance of gene flow in the hierarchical partitioning of genetic variation in stream organisms.  相似文献   

5.
Aim  To explore the genetic and phylogeographic structure of a temperate forest species, Pinus strobiformis Englem., in a subtropical region in the context of climate change during the Pleistocene. It is expected that the colder conditions during glacial stages favoured range expansions of P. strobiformis , thus promoting gene flow.
Location  Mexico and the United States.
Methods  Estimates of genetic diversity and structure were obtained using chloroplast microsatellite loci of 23 populations of P. strobiformis across its entire range, seven neighbouring populations of Pinus ayacahuite Ehrenb. ex. Schtdl, and one population of Pinus flexilis James.
Results  The genetic diversity of P. strobiformis ( H e = 0.856) was found to be high, especially in western populations, whereas eastern populations were less variable and more genetically similar to P. ayacahuite of central Mexico. We found evidence of significant phylogeographic structure ( N ST = 0.444; P  =   0.026), high genetic structure ( R ST = 0.270), and isolation by distance. Pairwise R ST and samova (spatial analysis of molecular variance) results indicated an east–west partition of genetic variation, with populations within each group showing little differentiation and no isolation by distance.
Main conclusions  The phylogeographic structure of P. strobiformis across the entire range was pronounced, with two main genetic and geographic groups separated by the Chihuahuan Desert. However, within each of the two groups there was little population differentiation and no isolation by distance, suggesting genetic connectivity as a result of population expansions within these areas during glacial stages.  相似文献   

6.
Tamaki I  Setsuko S  Tomaru N 《Heredity》2008,100(4):415-423
Genetic variation and differentiation in Magnolia stellata were studied in 20 populations distributed across most of the species' range using 10 microsatellite markers, and the factors influencing their levels of within-population genetic variation were examined. Generally, populations distributed intermittently from southern Gifu to central Aichi Prefectures showed substantially higher levels of genetic variation (exceptions included populations located at unusually high altitude sites or western and southern edges of the range) than more isolated populations on the Atsumi Peninsula of southern Aichi Prefecture and in northern Mie Prefecture. Significant isolation-by-distance patterns were detected in genetic differentiation among the studied populations, and a neighbor-joining tree based on D(A) distances among the populations reflected well the geographical positions of the populations. The level of within-population genetic variation was significantly influenced not only by the size of the populations (represented by the number of reproductive individuals) but also by their degree of isolation (represented by the number of populations within a radius of 0.5 km around them). Therefore, areas within radii of 0.5 km may encompass M. stellata metapopulations, in which gene flow may usually occur. We suggest that this area may be a suitable standard for constructing conservation units for the species.  相似文献   

7.
1. River systems offer special environments for the dispersal of aquatic plants because of the unidirectional (downstream) flow and linear arrangement of suitable habitats.
2. To examine the effect of this flow on microevolutionary processes in the unbranched bur-reed ( Sparganium emersum ) we studied the genetic variation within and among nine (sub)populations along a 103 km stretch of the Niers River (Germany–The Netherlands), using amplified fragment length polymorphisms.
3. Genetic diversity in S. emersum populations increased significantly downstream, suggesting an effect of flow on the pattern of intrapopulation genetic diversity.
4. Gene flow in the Niers River is asymmetrically bidirectional, with gene flow being approximately 3.5 times higher in a downstream direction. The observed asymmetry is probably caused by frequent hydrochoric dispersal towards downstream locations on the one hand, and sporadic zoochoric dispersal in an upstream direction on the other. The spread of vegetative propagules (leaf and stem fragments) is probably not an important mode of dispersal for S. emersum , suggesting that gene flow is mainly via seed dispersal. Realized dispersal distances exceeded 60 km, revealing a potential for long-distance dispersal in S. emersum .
5. There was no correlation between geographical and genetic distances among the nine S. emersum populations (i.e. no isolation by distance), which may be due to the occurrence of long-distance dispersal and/or colonization and extinction dynamics in the Niers River.
6. Overall, the genetic population structure and regional dispersal patterns of S. emersum in the Niers River are best explained by a linear metapopulation model. Our study shows that flow can exert a strong influence on population genetic processes of plants inhabiting stream systems.  相似文献   

8.
1. River corridors are well-known for their role in plant dispersal. The buoyancy of seeds, the possibility of dispersal by vegetative fragments, and the frequency and efficiency of dispersal among different river catchments determine linear distribution patterns. Little is known about the relative importance of these factors to observed patterns of genetic variation.
2. One hundred and fifty-six Nuphar lutea individuals from forty-four sampling sites in the river catchments of the Cidlina River, the Mrlina River and the Labe River (Czech Republic) were studied using ten microsatellite markers. Interpretation of patterns in genetic variation allowed several conclusions about dispersal mechanisms.
3. Vegetative long-distance dispersal is probably very limited in this species. Only one multilocus genotype was found in more than one sampling site. The distance between the sites was about 75 km.
4. To explain the distribution of Bayesian based clusters of related multilocus genotypes, both along-river and inter-river long-distance dispersals have to be invoked.
5. A marginally significant tendency for higher genetic diversity in the lower part of the river Cidlina was detected. Continuous downstream dispersal of seeds by water currents could be a valid explanation.
6. Significant positive autocorrelation was found among individuals at within-river distances of up to 25 km. Repeated dispersal of seeds over distances in the range of tens of kilometers is common.  相似文献   

9.
1.  Governmental authorities in many countries financially support the implementation of habitat connectivity measures to enhance the exchange of individuals among fragmented populations. The evaluation of the effectiveness of such measures is crucial for future management directions and can be accomplished by using genetic methods.
2.  We retraced the population history of the European tree frog in two Swiss river valleys (Reuss and Thur), performed comprehensive population sampling to infer the genetic structure at 11 microsatellite markers, and used first-generation migrant assignment tests to evaluate the contemporary exchange of individuals.
3.  Compared with the Thur valley, the Reuss valley has lost almost double the number of breeding sites and exhibited a more pronounced genetic grouping. However, similar numbers of contemporary migrants were detected in both valleys. In the Reuss valley, 81% of the migration events occurred within the identified genetic groups, whereas in the Thur valley migration patterns were diffuse.
4.  Our results show that the connectivity measures implemented in the Reuss valley facilitated effective tree frog migration among breeding sites within distances up to 4 km. Nevertheless, the Reuss valley exhibited high genetic differentiation, which reflected the impact of barriers to tree frog movement such as the River Reuss. By contrast in the Thur valley, a larger number of breeding sites have been preserved and high admixture indicated exchange of individuals at distances up to 16 km.
5.   Synthesis and applications . We show that genetic methods can substantiate the effectiveness of connectivity measures taken in conservation management at the landscape scale. We urge responsible authorities from both river valleys to continue implementing connectivity measures and to create a dense network of breeding sites, as spatial gaps of 8 km are rarely traversed by tree frogs.  相似文献   

10.
1. Nucleotide sequences of a 280 base pair region of the cytochrome b gene were used to assess genetic diversity and to infer population histories in the New Zealand mayfly Acanthophlebia cruentata. 2. A hierarchial examination of populations from 19 streams at different spatial scales in the central and northern North Island of New Zealand found 34 haplotypes. A common haplotype was found in all central region streams and unique haplotypes in northern streams. Several central streams had region specific haplotypes with genetically differentiated populations at the 70–100 km scale. 3. Haplotype diversity was high (0.53–0.8) at most sites, but low (0–0.22) in some central sites. amova analyses found significant genetic diversity among regions (69%) and among catchments (58%). Most population pairwise FST tests were significant, with non‐significant pairwise tests among sites in the central region and pairs of sites between neighbouring streams. 4. The levels of sequence divergence are interpreted as the result of Pleistocene divergence in multiple refugia, leading to the evolution of regionally unique haplotypes. The low diversity in some central region populations may result from recent colonisation following local extinctions, associated with volcanic events.  相似文献   

11.
Phylogeography of five Polytrichum species within Europe   总被引:2,自引:0,他引:2  
Using allozymes and microsatellites we have analysed the genetic structure among European populations for several Polytrichum species to infer relevant factors, such as historical events or gene flow, that have shaped their genetic structure. As we observed low levels of genetic differentiation among populations, and no decreasing levels of genetic variation with increasing latitude within most of the examined species, no genetic evidence was obtained for a step-wise recolonization of Europe from southern refugia after the latest glacial period for P. commune , P. uliginosum , P. formosum and P. piliferum . The near absence of population substructuring within these species does indicate that extensive spore dispersal is the most important factor determining the genetic structure among European Polytrichum populations. Gene flow levels have apparently been sufficient to prevent genetic differentiation among populations caused by genetic drift, and to wipe out any genetic structure caused by the postglacial recolonization process. On the other hand, increased genetic differentiation of alpine P. formosum populations suggests that mountain ranges might restrict gene flow significantly among Polytrichum populations. In contrast to most examined Polytrichum species, P. juniperinum showed high levels of genetic differentiation and a profound genetic structure. Assuming that gene flow is not more restricted in P. juniperinum , these findings suggest that this species has recolonized Europe after the latest glacial period from two different refugia, one possibly being the British Isles.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society 2003, 78, 203–213.  相似文献   

12.
Samples of brown trout, Salmo trutia L., from 34 locations throughout the Lough Neagh system in north-east Ireland were electrophoretically examined for genetic variation at 28 enzyme loci. Patterns of allelic variation at 12 polymorphic loci indicated the existence of genetic differentiation within as well as among several river systems, suggesting the existence of multiple brown trout populations. Significant gene frequency differences were detected over distances as little as 3 km, demonstrating the propensity of this species for microgeographic genetic differentiation. This was confirmed by a hierarchical analysis of genetic variance, some 35% of among-sample variance being distributed within tributaries. Within Lough Neagh itself significant genetic differentiation was detected between two morphotypes (dollaghan and salmon-trout) and for one of these (dollaghan) among samples from different years and from different areas of the lough. This suggests the existence of genetically differentiated subpopulations of originating from separate river catchments.  相似文献   

13.
Aim  Levels of genetic diversity can be used to determine haplotype frequency, population size and patterns of invasive species distribution. In this study, we sought to investigate the genetic structure of the invasive marine mussel Mytella charruana and compare variation from invasive populations with variation found within three native populations.
Location  Invaded areas in the USA (Florida, Georgia); native areas in Ecuador, Colombia and Brazil.
Methods  We sequenced 722 bp of the mitochondrial COI gene from 83 M. charruana samples from four invasive populations (USA) and 71 samples from two natural populations (Ecuador, Columbia). In addition, we sequenced 31 individuals of a congeneric species, Mytella guyanensis , from Salvador, Brazil. We constructed the phylogenetic relationship among all haplotypes and compared diversity measures among all populations.
Results  We found significantly higher levels of nucleotide diversity in invasive populations than in native populations, although the number of haplotypes was greater in the native populations. Moreover, mismatch distribution analyses resulted in a pattern indicative of population admixture for the invasive populations. Conversely, mismatch distributions of native populations resulted in a pattern indicative of populations in static equilibrium.
Main conclusion  Our data present compelling evidence that the M. charruana invasion resulted from admixture of at least two populations, which combined to form higher levels of genetic diversity in invasive populations. Moreover, our data suggest that one of these populations originated from the Caribbean coast of South America. Overall, this study provides an analysis of genetic diversity within invasive populations and explores how that diversity may be influenced by the genetic structure of native populations and how mass dispersal may lead to invasion success.  相似文献   

14.
We have studied mitochondrial DNA variation in a local population of the leaf beetle species Gonioctena olivacea, to check whether its apparent low dispersal behaviour affects its pattern of genetic variation at a small geographical scale. We have sampled 10 populations of G. olivacea within a rectangle of 5 x 2 km in the Belgian Ardennes, as well as five populations located approximately along a straight line of 30 km and separated by distances of 3-12 km. For each sampled individual (8-19 per population), a fragment of the mtDNA control region was polymerase chain reaction-amplified and sequenced. Sequence data were analysed to test whether significant genetic differentiation could be detected among populations separated by such relatively short distances. The reconstructed genealogy of the mitochondrial haplotypes was also used to investigate the demographic history of these populations. Computer simulations of the evolution of populations were conducted to assess the minimum amount of gene flow that is necessary to explain the observed pattern of variation in the samples. Results show that migration among populations included in the rectangle of 5 x 2 km is substantial, and probably involves the occurrence of dispersal flights. This appears difficult to reconcile with the results of a previous ecological field study that concluded that most of this species dispersal occurs by walking. While sufficient migration to homogenize genetic diversity occurs among populations separated by distances of a few hundred metres to a few kilometres, distances greater than 5 km results in contrast in strong differentiation among populations, suggesting that migration is drastically reduced on such distances. Finally, the results of coalescent simulations suggest that the star-like genealogy inferred from the mtDNA sequence data is fully compatible with a past demographic expansion. However, a metapopulation structure alone (without the need to invoke a population expansion event) cannot be dismissed as the cause of this star shape.  相似文献   

15.
1. Three independent methods were used to investigate population structure in the butterfly Plebejus argus . First, migration and dispersal ability were measured by mark–release–recapture in seven adjacent habitat patches, and by release of butterflies in unoccupied habitat. Secondly, colonization of newly created habitat was observed over 7 years. Finally, genetic differentiation of local populations within a metapopulation was investigated. Sampled local populations included parts of the mark–release–recapture study area.
2. Plebejus argus is relatively sedentary: the maximum movement detected was 395 m, and only 2% of individuals moved further than 100 m between recaptures on different days. None the less, adjacent local populations in the mark–release–recapture study area were linked by occasional migration, with ≈ 1.4% of individuals moving between patches separated by 13–200 m.
3. Despite low mobility, observed colonizations occurred rapidly over distances of 1 km. Because P. argus occurs at high population densities, 1.4% migration can generate enough migrants to colonize newly suitable habitat quickly at this spatial scale.
4. Mark–release–recapture data were used to predict that there would be limited genetic differentiation through drift between local populations at this spatial scale. The prediction was supported by allele frequency data for the same local populations.
5. Genetic differentiation often indicates higher levels of migration than are revealed by the movements of marked individuals. This study shows that when experimental releases and extensive marking are undertaken in areas that are large relative to most movements, indirect measures of gene flow and direct measures of dispersal can concur.
6. Evidence from the three different approaches was complementary, indicating that P. argus occurs as metapopulations within the study area.  相似文献   

16.
Abstract.  1. Australia has a unique and speciose gall-inducing scale insect fauna that is primarily associated with Myrtaceae. Much of the diversity is currently undescribed or uncharacterised.
2. This study concerns Apiomorpha munita (Hemiptera), a scale insect that induces characteristic four-horned galls on eucalypts of subgenus Symphyomyrtus and exhibits extraordinary karyotypic diversity (2n = 6 – 2n > 100). The three described subspecies of A. munita are each confined to hosts in different sections of Eucalyptus . Previous chromosomal data, however, cast doubt on the validity of the groupings, as two of the subspecies share multiple, different karyotypes (2n = 6, 20, 22, and 24).
3. Allozyme data were used to examine species delimitation, chromosome evolution, host associations and population structure in A. munita .
4. A cryptic-species radiation was revealed, with at least five taxa each restricted to a discrete set of host eucalypt species. This is consistent with host-associated speciation.
5. Karyotypic variation within A. munita partially fits the five distinct genetic groups, but there are additional chromosomal changes that are not accompanied by detected genetic differentiation.
6. The population structure of taxa within the A. munita species complex suggests that there are high levels of inbreeding, as would be expected for scale insects in which adult females are sessile. Some genotypes, however, are found over great distances (up to 1100 km). This is an unusual population structure because it combines low mobility and local differentiation with occasional long-distance dispersal, probably mediated by wind-dispersal of first-instar nymphs.  相似文献   

17.
Appropriate management of species of conservation concern requires designing strategies that should include genetic information as small population size and restricted geographic range can reduce genetic variation. We used AFLPs to investigate genetic variation within and among populations of the endangered narrow endemic Centaurea borjae, and found no evidence for genetic impoverishment despite its <40 km range and potential for vegetative propagation. Genetic variation was comparable to other plants with similar life history (88 % occurring within populations) and potential clone mates were less frequent than expected. Nonetheless, populations separated by few hundred meters showed signs of significant genetic differentiation suggesting low gene flow between them. Our results suggested that the three geographically closer populations located at the center of the range might be treated as a single management unit, while the remaining ones could be considered independent units. We found evidence of fine-scale spatial genetic structure up to 80 m indicating that the collection of germplasm for ex-situ conservation should focus on individuals separated >80 m to maximize genetic variation.  相似文献   

18.

Background and Aims

The sedge genus Carex, the most diversified angiosperm genus of the northern temperate zone, is renowned for its holocentric chromosomes and karyotype variability. The genus exhibits high variation in chromosome numbers both among and within species. Despite the possibility that this chromosome evolution may play a role in the high species diversity of Carex, population-level patterns of molecular and cytogenetic differentiation in the genus have not been extensively studied.

Methods

Microsatellite variation (11 loci, 461 individuals) and chromosomal diversity (82 individuals) were investigated in 22 Midwestern populations of the North American sedge Carex scoparia and two Northeastern populations.

Key Results

Among Midwestern populations, geographic distance is the most important predictor of genetic differentiation. Within populations, inbreeding is high and chromosome variation explains a significant component of genetic differentiation. Infrequent dispersal among populations separated by >100 km explains an important component of molecular genetic and cytogenetic diversity within populations. However, karyotype variation and correlation between genetic and chromosomal variation persist within populations even when putative migrants based on genetic data are excluded.

Conclusions

These findings demonstrate dispersal and genetic connectivity among widespread populations that differ in chromosome numbers, explaining the phenomenon of genetic coherence in this karyotypically diverse sedge species. More generally, the study suggests that traditional sedge taxonomic boundaries demarcate good species even when those species encompass a high range of chromosomal diversity. This finding is important evidence as we work to document the limits and drivers of biodiversity in one of the world''s largest angiosperm genera.  相似文献   

19.
Aim  In order to look for a possible centre of survival for the Norway spruce ( Picea abies Karst.) in the south-western Alps, six natural populations of this area were investigated by means of genetic markers in order to assess the degree and the distribution of genetic diversity within the species.
Location  Western and South-western Alps.
Methods  Populations were genotyped using seven simple sequence repeat (SSR) markers. Basic population genetics parameters were estimated and the amount of genetic differentiation calculated.
Results  A large amount of variability was found (0.59 <  H e < 0.67); genetic differentiation as measured by F ST was 0.05, close to other similar studies; no isolation by distance was detected by a Mantel test. Analysis of molecular variance confirmed a high degree of variability within populations and a low degree of variability among populations. Finally, the number of populations from which those observed could have arisen was estimated by Bayesian analysis.
Main conclusions  The results presented here suggest that the present populations derive their genetic make-up from three inferred clusters. The possible existence in this area of a relict/refuge population during the last glaciation is discussed.  相似文献   

20.
SUMMARY 1. The large microgeographical differentiation revealed by allozyme studies in brown trout ( Salmo trutta) populations is one of the most striking features of this species. Additionally, allozymes showed great genetic differences between Atlantic and Mediterranean populations on a macrogeographical scale.
2. This study was carried out in order to assess whether the great differences observed between Atlantic and Mediterranean populations persisted where the two are geographically close (the 'microgeographical scale'). Sixteen populations of brown trout, S. trutta , were screened for genetic variation at 25 allozyme loci. The sampling sites, which occupied a relatively small geographical area, were distributed across Cantabrian (Atlantic) and Mediterranean drainages in Northern Spain.
3. The neighbour-joining tree, inferred from Nei's genetic distance, showed that brown trout populations clustered into two different groups. These groups corresponded to the Cantabrian and the Mediterranean groups of populations, although no clear geographical pattern emerged within each of the groups. This geographical pattern is basically caused by significant differences in the frequency distribution of the CK-A1 * locus, with a higher frequency of * 115 in Cantabrian samples (0.586 ± 0.091) while allele * 100 was more frequent in Mediterranean samples (0.931 ± 0.038). In addition, this study revealed alleles exclusive to the Mediterranean and Cantabrian populations, agreeing with previous findings.
4. Genetic differentiation between Cantabrian and Mediterranean regions (14.19%) was similar to that estimated in Spain at a larger scale (13%), showing that most of the differences between the regions can be observed even in a small geographical area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号