首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
According to optimal foraging theory, herbivores can base food choice mainly on the quality or the quantity of food, or both. Among herbivorous primates, folivorous lemurs living in the highly seasonal environment of Madagascar have to cope with the shortage of high-quality food during the dry season, at least in deciduous forests. We studied (Verreaux's sifaka) in Kirindy, western Madagascar, to understand the influence of dry season and food quality and quantity on behavioral patterns and feeding strategy (qualitative vs. quantitative dietary choice) of a folivorous lemur in a deciduous forest. We followed 7 groups (4 groups/period; 3 individuals/group/month) during 4 periods of the year (wet season: February–March; early/middle/late dry season: May–June; July–September; October–November). We collected samples of plants eaten and examined behavioral and feeding patterns, considering food quality (macronutrients, proteins/fibers ratio, and tannins) and abundance. We found 1) a significant reduction of home range, core area, and daily path length from the wet to the dry season, possibly related to dietary change and 2) a daily period of inactivity in the dry season for energy conservation. Regarding the feeding strategy, Kirindy sifakas showed 1) high variation and selection in choosing food items and 2) a dietary choice based mainly on quality: Kirindy sifakas fed on plant species/families independently from their abundance and tannins represented a feeding deterrent during the dry season. Overall, behavioral and dietary adaptations allow Kirindy sifakas to overcome the shortage of high-quality food in the lean period.  相似文献   

2.
A. Prejs  K. Prejs 《Oecologia》1987,71(3):397-404
Summary Food resources in the environment and in the diets of small fish inhabiting two water bodies in a tropical savanna were studied during both wet and dry seasons. During the wet season (high water, abundant food) most fish species in both habitats fed predominantly on vegetation-dwelling invertebrates. Most fish species switched to alternative foods (algae and detritus) following the drastic decline in invertebrate food available towards the end of the dry season. In one habitat, this change in diet was accompanied by an increase in the volume of food intake. In the second habitat, only two larger species foraged intensively, while smaller species showed low food intake or almost ceased feeding. These differences may be explained by the high risk of predation for small fish in the second habitat. Dietary overlaps among fish species were high at the end of the dry season and moderate in the wet season. However, critical analysis of such factors as food abundance, the size and number of shared prey, and diet breadth showed that all significant overlaps were ecologically unimportant i.e. there was only weak competition for food.  相似文献   

3.
Birds from semi-arid regions may suffer dehydration during hot, dry seasons with low food availability. During this period, both energetic costs and water requirements for thermoregulation increase, limiting the scope of activity. For granivorous birds feeding on dry seeds, this is a major challenge and availability of water may affect the value of food. Water availability could (1) increase the value of a food patch when the surrounding environment is poor, due to an increase in the marginal value of energy, and (2) increase the value of the entire environment to the forager when environmental quality increases, due to an increase in the marginal value of time. We aimed to test this by measuring giving-up densities (GUDs, remaining food densities after foraging) of granivorous birds in the presence or absence of filled water pots, at different seasons differing in background food and water availability. We predicted that GUDs will increase with water provision during the dry season with moderate food, but in the early wet season with low food and water availability, GUDs will decrease with water provision. Later in the wet season, our experimental addition of water should have no effect. During seasons with low water availability but differing in food availability, results confirmed our predictions. However, when water became more abundant as the wet season progressed, birds still foraged more intensely during days with added water. In all seasons, birds fed more intensely in cover than in exposed areas, suggesting that predation risk rather than heat influenced microhabitat selection.  相似文献   

4.
The responses of animals to seasonal food shortages can have important consequences for population dynamics and the structure and function of food webs. We investigated how an ambush foraging snake, the northern death adder Acanthophis praelongus, responds to seasonal fluctuations in prey availability in its tropical environment. In the dry season, field metabolic rates and water flux, as measured by doubly labeled water, were significantly lower than in the wet season. Unlike some other reptiles of the wet-dry tropics, death adders showed no seasonal difference in their resting metabolism. About 94% of the decrease in energy expended in the dry season was due to a decrease in activity and digestion, with lower body temperatures accounting for the remainder. In the dry season, death adders were less active and moved shorter distances between foraging sites than in the wet season. Analysis of energy expenditure suggested that adders fed no more than every 2-3 wk in the dry season but fed more frequently during the wet season. Unlike many lizards that cease feeding during the dry season, death adders remain active and attempt to maximize their energy intake year-round.  相似文献   

5.
Data collected on the feeding behavior, food intake, and chemical analyses of plant foods were used to document seasonal variation in diet and nutrition in Eulemur mongoz in northwestern Madagascar. E. mongoz conforms to the general Eulemur dietary pattern, with a predominantly frugivorous diet supplemented mainly by leaves, flowers, and nectar. Phytochemical analysis revealed high water contents in all the main plant foods; mature fruit and flowers contained the most water-soluble carbohydrates; immature leaves were richest in protein and essential amino acids; the limiting amino acids in all plant foods were methionine and cystine; ash (mineral) content was highest in petioles and mature leaves; crude lipid content was highest in seeds; and crude fiber content was indistinguishable between immature and mature fruit and leaves. High-fiber foods were eaten during both seasons; the wet season diet was dominated by high-energy foods (mature fruit, nectar, and seeds), while the dry season diet contained foods high in energy (mature fruit and flowers) and high in protein (immature leaves) and minerals (mature leaves and petioles). However, nutrient intake did not vary between seasons, implying that nutrient requirements are met throughout the year. These results suggest we draw more conservative conclusions when interpreting dietary variability in the absence of chemical analysis, and also draw into question the idea that nutritional stress is a factor in the timing of reproduction in lemurs and, by extension, is linked to the prevalence of female dominance and small group size in lemurs.  相似文献   

6.
Multiple factors determine diet selection of herbivores. However, in many diet studies selection of single nutrients is studied or optimization models are developed using only one currency. In this paper, we use linear programming to explain diet selection by African elephant based on plant availability and nutrient and deterrent content over time. Our results indicate that elephant at our study area maximized intake of phosphorus throughout the year, possibly in response to the deficiency of this nutrient in the region. After adjusting the model to incorporate the effects of this deficiency, elephant were found to maximize nitrogen intake during the wet season and energy during the dry season. We reason that the increased energy requirements during the dry season can be explained by seasonal changes in water availability and forage abundance. As forage abundance decrease into the dry season, elephant struggle to satisfy their large absolute food requirements. Adding to this restriction is the simultaneous decrease in plant and surface water availability, which force the elephant to seek out scarce surface water sources at high energy costs. During the wet season when food becomes more abundant and energy requirements are satisfied easier, elephant aim to maximize nitrogen intake for growth and reproduction. Our study contributes to the emerging theory on understanding foraging for multiple resources.  相似文献   

7.
The honey badger, or ratel, Mellivora capensis has not been well studied despite its extensive distribution. As part of the first detailed study, visual observations of nine habituated free-living individuals (five females, four males) were used to investigate seasonal, annual and sexual differences in diet and foraging behaviour. Theory predicts that generalist predators 'switch' between alternative prey species depending on which prey species are currently most abundant, and diet breadth expands in response to decreased availability of preferred food types. There were significant seasonal differences in the consumption of eight prey categories related to changes in prey availability but no seasonal differences in food intake per kg of body mass. As predicted, the cold-dry season diet was characterized by low species richness and low foraging yield but high dietary diversity, while the reverse was true in the hot-dry and hot-wet seasons. In accordance with these predictions, results suggest that the honey badger maintains its intake level by food switching and by varying dietary breadth. Despite marked sexual size dimorphism, male and female honey badgers showed no intersexual differences in prey size, digging success, daily food intake per unit body weight or foraging behaviour. Results do not support the hypothesis that size dimorphism is primarily an adaptation to reduce intersexual competition for food.  相似文献   

8.
The activities and food selection of four hand-reared kudus were recorded in a large fenced enclosure containing natural savanna vegetation in the Nylsvley Nature Reserve, South Africa. Leaves of selected species were analysed chemically for crude protein, fibre constituents, phosphorus, condensed tannin and total polyphenols. Available protein and metabolizable energy were estimated allowing for potential antinutritional effects of tannins.
Leaves of palatable deciduous woody plants and herbaceous forbs formed the main dietary constituents during the late wet season. Foliage from palatable evergreens and robust forbs were added to the diet during the dry season. Towards the end of the dry season unpalatable species of evergreens were eaten. At the start of the growing season new leaves of otherwise unpalatable woody species formed the staple food source, together with fruits of Strychnos spp. Correspondingly, protein and digestible dry matter concentrations in the diet declined to reach a low at the end of the dry season.
Total daily food intake increased to compensate for reduced dietary quality during the dry season, until little edible foliage remained. While the estimated daily intake of protein remained well above maintenance requirements, the estimated metabolizable energy intake fell below requirements during the late dry season. Phosphorus intake may have been submaintenance in the dry season. Nutritional balance was dependent on the availability of particular vegetation components to serve as nutritional stepping stones during crucial times of the year. These included forbs during the late wet season, palatable evergreens in the dry season, and Strychnos fruits plus early-flushing woody plants during the dry season-wet season transition.  相似文献   

9.
The foraging activity of Constrictotermes cyphergaster was investigated in the Caatinga of Northeast Brazil. Eight colonies were monitored for seven days, during both dry and wet seasons. Foraging activity occurred in exposed columns at night, generally between 22:00 and 05:00 h. During the wet season, foraging activity was significantly higher, with one bout every 1.6 ± 0.2 days, than the dry season, when foraging bouts were performed every 1.9 ± 0.3 days. Foraging activity throughout the study colonies presented high temporal synchronization. In both seasons, foraging was negatively correlated with air temperature and positively correlated with humidity. The foraging trails were often re-utilized and ranged from 1 to 18.5 meters in length. No difference between seasons in the area potentially utilized by the study colonies was observed. Approximately 51000 individuals participated in the foraging bout during the dry season, whereas some 87000 individuals participated in the foraging bout during the wet season. This corresponds to 43 and 74% of the estimated total nest population for the dry and wet seasons respectively. The average ratio soldiers:workers during foraging was 1:1.2 in the dry season and 1:2 in the wet season. The higher frequency and number of individuals foraging during the wet season in the present study are likely to be a strategy from C. cyphergaster to store energy reserves to be utilized during the dry season. Received 28 November 2005; revised 29 May 2006 and 16 August 2006; accepted 1 September 2006.  相似文献   

10.
Black-shanked douc langurs (Pygathrix nigripes) are Southeast Asian colobines about which primatologists know very little, but they are classed as endangered because of population decline due to habitat loss. Two preliminary studies have shown that this monkey is primarily folivorous, but there are few details of plant selection or seasonal changes in diet. We set out to observe douc langurs directly in the wild to quantify the diet during wet and dry seasons. We confirmed that the species relies on foliage throughout the year, but it includes significant proportions of fruit and flowers in its diet when those items are available. The douc langurs selected various parts from 152 species of plants in 2 national parks, but there did not appear to be favorite species that were heavily selected over others. In both the wet and dry seasons, the black-shanked douc langurs ate mostly leaves, but the diversity of plants consumed increased and the proportion of fruit eaten almost doubled in the wet season. There were diurnal shifts in food selection, but we found no evidence that the douc langurs were foraging strategically to maximize their protein or energy intake.  相似文献   

11.
Intersexual and seasonal variation in foraging behaviour of impala (Aepyceros melampus), was studied in the Lake Mburo National Park, Uganda. There was a moderate seasonal difference in foraging efficiency (as measured by ‘acceptable food abundance’), with a minimum in dry season and a maximum in Rainy season. The variation between sexes was more distinct with a pronounced minimum in time spent browsing of males in early wet season. By distinguishing between feeding time spent grazing and feeding time spent browsing the seasonal variation was confirmed. The proportion of foraging time spent feeding (expressed as ‘food ingestion rate’) showed an inverse pattern with a maximum in the late dry season (75.5%), decreasing values throughout the Rainy season and a minimum in early dry season (57.8%). Differences between sexes were explained in terms of reproductive demands and seasonal balance in terms of moderate climate throughout the year. Impala foraging patterns in the bimodal tropics (two Rainy seasons) is discussed and compared with unimodal tropics. The findings are matched against current ideas on optimal foraging.  相似文献   

12.
From June through December, data were collected on the diet and ranging patterns of moustached (Saguinus mystax) and saddle-back (Saguinus fuscicollis) tamarin monkeys in the Amazon Basin of northeastern Peru. During this 7-month period, insects and nonleguminous fruits accounted for 83% of tamarin feeding and foraging time. Despite marked seasonal variation in rainfall and forest productivity, patterns of habitat utilization, day range, dietary diversity, resource exploitation, and activity budget remained relatively stable throughout the year. Moustached and saddle-back tamarins appear to solve problems of food acquisition and exploit patchily distributed feeding sites using a relatively limited set of foraging patterns. In general, these primates concentrate their daily feeding efforts on several trees from a small number of target plant species. These feeding sites are uncommon, produce only a small amount of ripe fruit each day, and are characterized by a high degree of intraspecific fruiting and flowering synchrony. Trees of the same species are frequently visited in succession, and individual feeding sites are revisited several times over the course of 1–2 weeks. This type of foraging pattern occurred during both dry and wet seasons and when exploiting fruit, nectar, legume, and exudate resources. Seasonal variation in the percentage of feeding and foraging time devoted to insectivory was also limited. In this investigation, there was no consistent evidence that temporal changes in overall forest fruit production had a major impact on the feeding, foraging, or ranging behavior of either tamarin species.  相似文献   

13.
Roan antelope are distributed mainly in regions characterized by infertile soils, offering food of low quality. We hypothesized that roan may select localities with higher soil nutrient levels and/or grass swards with more favourable properties in terms of food abundance or quality than generally available in those regions. Roan antelope were observed in a savanna region in South Africa where soils of widely varying nutrient status occurred. Roan favoured open grassland over wooded savanna areas. During the wet season, roan preferred sites with felsite‐derived soil of intermediate soil nutrient status. Grasslands growing on nutrient enriched alluvial soils were preferred outside of the early wet season, although most of the favourable sward characteristics were present in other landscape units. Food quantity, rather than quality appeared to attract roan to foraging sites in the late wet and early dry seasons. Food quality appeared more important in the early wet and late dry seasons. The higher degree of clustering of leafy material within foraging swards seemed to be an additional discriminating factor. The factors governing the selection of foraging sites by roan did not seem notably different from those influencing other species of grazing ruminant, but roan nevertheless seemed tolerant of stemmy grasslands growing on nutrient richer substrates.  相似文献   

14.
Polyspecific associations (PSA) occur when 2 or more species maintain proximity or coordinate activities. PSA may provide ecological benefits similar to those of monospecific groups, i.e., protection against predation and improved foraging efficiency, but may also impart costs, such as feeding competition. I studied 3 New World Callitrichidae—Callimico goeldii, Saguinus fuscicollis, and S. labiatus—in northwestern Brazil over 18 mo between April 1999 and August 2003, during which single primary study groups of C. goeldii, S. labiatus, and S. fuscicollis consistently associated with one another. I compared patterns of PSA participation to variation in plant diets during wet and dry seasons. All 3 species associated an average 61% of observation time, but with significant seasonal variation in PSA. During the dry season, April–September, PSA occurred significantly less frequently than during the wet season, October–March (37% vs. 88%). The variation in PSA corresponded with seasonal shifts in plant food diets, resulting in less dietary overlap among all 3 species during the dry season, particularly between Callimico goeldii and Saguinus labiatus. Dietary richness, diversity, and evenness were also lower in the dry compared to the wet season for each species. The results suggest a link between PSA participation and diet among the taxa; foraging-related costs or feeding competition may constrain PSA during the dry season.  相似文献   

15.
Summary The linear programming model (LPM) of Belovsky (1978, 1986) and modifications of the classical or contingency model incorporating a digestive constraint (CM) were tested using foraging data recorded for kudus (Tragelaphus strepsiceros) browsing savanna vegetation over the late wet season. Food choice was between the herbaceous and woody plant components for LPM and among plant species or categories for CM. The constraints considered were consumption (cropping) rate, foraging time and digestive capacity. Woody communities dominated byBurkea andAcacia represented alternative habitat types. Following a minor adjustment, LPM represented the overall average diet and predicted the dietary differences between habitat types. However, the kudus failed to respond dietarily to variations among days and foraging sessions (meals) in the parameters constraining intake. The kudus accepted a wider dietary range than predicted to be optimal by CM. Evidence suggested that neither foraging time, nor digestive capacity, formed an effective constraint under the study conditions. Thermal tolerance and gut space may become limiting only towards the extremes of environmental variability that animals experience. LPM is vulnerable to circularity if average parameter values are used to estimate constraint settings. The energy maximizer—time minimizer dichotomy fails to take into account the fitness consequences of alternative foraging responses. CM is less cryptic in its application than LPM and so has greater heuristic value, despite its predictive failures. However, there may be no consistent ranking of food types where multiple constraints that are variable in their effectiveness apply. Dynamic programming models offer a solution, but pose a formidable challenge in complex natural environments.  相似文献   

16.
The wild boar, Sus scrofa, was first introduced for hunting purposes in Argentina in 1906 and presently occupies a wide range of habitats. Understanding the food habits of invasive species is important for predicting the effects of animal food consumption on the environment and on human activities, such as farming. The wild boar is an omnivorous, opportunistic species whose diet is determined by the relative abundance of different types of foods. In general, the wild boar’s diet has been widely studied in the world, both as a native and invasive species, but little is known regarding food resource selection in the Monte Desert biome. Our study assessed the seasonal variation in the diet of wild boars, as well as the nutritional quality of consumed items. Further, we determined the diet selection of this species. Diet analyses were based on faecal samples collected over two seasons (wet and dry) in 1 year. Herbs were the most frequently consumed food item, with wild boars showing a selection for them in both seasons. The wild boar uses food resources according to seasonal availability (larger trophic niche breadth under higher plant diversity, as in the wet season). In turn, within each season, it selects items of high forage quality and high carbohydrate contents. In conclusion, this foraging strategy enables wild boar to maximize energy budget through food selection in order to survive in a semi-arid environment such as the Monte Desert.  相似文献   

17.
The distribution and quality of food resources is generally recognized as the preeminent factor explaining much interspecific and intraspecific variation in the behavior of nonhuman primates. Primates that live in seasonal environments often show predictable responses to fluctuating resources. In order to compensate for the reduction in resource availability, primates variously switch to alternative, poorer quality food sources, increase the amount of time they spend foraging, or increase their daily path length. Some primate species reduce their group size or maximize the group dispersion. I address whether spectral tarsiers (Tarsius spectrum), which are insectivores, modify their behavior in the same ways as frugivores and folivores in response to seasonal or scarce resources. My results indicate that wild spectral tarsiers modify their activity budget in response to seasonal resources. Specifically, during periods of low resource availability, spectral tarsier males and females spent more time traveling and foraging compared to their activity budget during the wet season. Males and females not only increased the amount of time they spent foraging during times of low resource abundance but also modified their foraging behavior. During the wet season, when resource abundance was high, they consumed Orthoptera and Lepidoptera with greater frequency than during the dry season. During the dry season, when resource abundance was low, spectral tarsiers still ate numerous Orthoptera and Lepidoptera, but they also increased consumption of Coleoptera and Hymenoptera. Spectral tarsiers were also more likely to be involved in territorial disputes during the dry season than during the wet season. Intragroup encounters decreased in frequency in the dry season versus the frequency of encounters during the wet season.  相似文献   

18.
We investigated the feeding ecology of Eulemur macaco macaco in an old coastal secondary forest of northwestern Madagascar. We analyzed whether the local combination of introduced and native plant species could provide viable anthropic conditions for sustaining the black lemurs. Fruits (79 spp.) dominated the annual diet (>104 species from 50 families via observations ad libitum and use of a feeding frequency methods). Records from the early dry (mating) and late dry (birth) seasons show that a few major fruit species are staples in conjunction with a variety of other plant items in much lower proportions. We further estimated daily food intake and analyzed nutrient/antinutrient content in the diet during the birth season to evaluate the possibility that black lemurs undergo nutritional stress. They exhibited a high-energy input/low energy output foraging strategy then and had limited use of alternative resources such as leaves throughout the study period. We conclude that the potential for feeding flexibility is low because specialization on fruit results in protein requirements being achieved probably by a narrow margin. We hypothesize that patchy distribution of preferred cash-crop plants and indigenous species currently has a major limiting effect on population size through feeding competition.  相似文献   

19.
Carbon and water balance in Polylepis sericea,a tropical treeline species   总被引:2,自引:0,他引:2  
Polylepis sericea trees grow well above the continuous forest line in the Venezuelan Andes. In these environments, extreme daily temperature ranges can occur at any time of the year and trees experience a 4 month dry period. The purpose of this work was to study carbon and water relations of this species in the field during wet and dry seasons in order to understand this species' success at such high altitudes. Leaf gas exchange (portable system in open mode) and leaf water potential (pressure chamber) were measured at 1–2 h intervals during several daily courses at 4000 m elevation in the Páramo de Piedras Blancas. CO2 assimilation versus leaf temperature curves were also obtained for this species in the laboratory. Clear differences in the measured parameters were observed between seasons. For a wet season day, maximum CO2 assimilation rate was 7.4 mol m-2 s-1 and leaf conductance was relatively constant (approximately 100 mmol m-2 s-1)In the dry season day, maximum CO2 assimilation rate was 5.8 molm-2 s-1 and leaf conductance was close to 60 mmolm-2 s-1. Minimum leaf water potentials measured were -1.3 MPa for the wet and -2.2 MPa for the dry season. The CO2 assimilation-leaf temperature relationship showed a 13.4°C leaf temperature optimum for photosynthesis with maximum and minimum compensation points of 29.5 and -2.8°C, respectively. Maximum night-time respiration was relatively high (2.7 (imol) m-2 s-1)Our results show thatP. sericea maintains a highly positive carbon balance through all daily courses, even though there is a slight water stress effect during the dry season; this suggests that its carbon assimilation machinery is well adapted to the low temperatures and seasonal water stress found in the high tropical mountains.  相似文献   

20.
A population of frillneck lizards, Chlamydosaurus kingii, was monitored by mark-recapture and telemetry over a 2 year period in Kakadu National Park. The aims of the study were to document changes in diet, growth, condition and habitat use between the wet and dry seasons of northern Australia, in light of recent research examining seasonal variation in the physiology of this species. Frillneck lizards feed on a diverse range of invertebrates in both seasons, even though there is a substantial reduction in food avail-ability in the dry season. Harvester termites from the genus Drepanotermes constitute a major component of the diet, and the prevalence of termites in the diet of sedentary foragers in a tropical environment is unusual. Adult male body condition remained relatively stable throughout the year, but females experienced considerable variation. These differences are attributed to different reproductive roles of the sexes. Growth in C. kingii was restricted to the wet season, when food availability was high, and growth was minimal in the dry season when food availability was low. The method used in catching lizards was an important factor in determining seasonal habitat use. Telemetered lizards selected a significantly different distribution of tree species than was randomly available, and they selected significantly larger tree species during the dry season. Lizards spotted along roadsides showed little seasonal variation in the selection of tree species or tree sizes. The results suggest a comprehensive change in the ecology of this species, in response to an annual cycle of low food and moisture availability, followed by a period with few resource restrictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号